Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Контролируемая перестройка генома у инфузорий
Один из самых поразительных примеров целенаправленной перестройки генома демонстрируют инфузории. Это самые сложные из одноклеточных организмов и вообще верх того, что смогла создать эволюция на одноклеточном уровне. Строение инфузорий во многом напоминает многоклеточных, даром что клетка всего одна. Например, у многоклеточных животных различают линию генеративных клеток, геном которых обычно оберегается от всяческих изменений — ведь именно этот геном передается по наследству потомкам. Кроме того, имеется и линия соматических клеток, геном которых может меняться по мере надобности. У инфузорий тоже есть два генома — генеративный и вегетативный (соматический). Генеративный, передающийся по наследству, геном хранится в маленьком ядре (микронуклеусе), содержит кучу мобильных элементов и некодирующих участков и в целом находится в нерабочем состоянии, если не сказать — в полном хаосе. Например, многие гены в нем разорваны на куски и перемешаны. Но тем не менее это нормальный, хотя и сильно запущенный большой эукариотический геном. Кстати, число генов у инфузорий и у человека примерно одинаковое — порядка 30 тысяч. Геном микронуклеуса (МИК-геном), естественно, не работает, да он и не смог бы! Он служит только для передачи генов потомству при половом размножении. Вегетативный — соматический — рабочий геном инфузории хранится в большом ядре, так называемом макронуклеусе. Он по многим параметрам сильно отличается от других эукариотических геномов. Он состоит из множества, иногда из многих тысяч отдельных «нанохромосом». Это настоящие хромосомы, только очень маленькие, обычно содержащие всего один ген. Для каждой нанохромосомы, или МАК-хромосомы, в макронуклеусе имеется очень большое число копий. Соответственно, весь МАК-геном оказывается многократно сдублирован, то есть макронуклеус является полиплоидным, тогда как микронуклеус представляет собой диплоидное ядро. У инфузории окситрихи (Oxytricha ) МАК-геном по размеру в целых 20 раз меньше МИК-генома (50 млн и 1 млрд пар нуклеотидов соответственно; для сравнения, у человека — 3, 5 млрд, у бактерий — обычно до 10 млн). Такое радикальное сокращение МАК-генома при его изготовлении из МИК-генома достигается за счет выбрасывания всего «лишнего». Инфузории размножаются делением, при этом делятся оба ядра. Время от времени инфузории соединяются попарно, чтобы обменяться наследственным материалом. Этот процесс называется конъюгацией и рассматривается как особая разновидность полового процесса. Во время конъюгации микронуклеус претерпевает мейоз, то есть такое деление, в ходе которого число хромосом в поделившемся микронуклеусе сокращается вдвое. Вместо одного диплоидного микронуклеуса у каждой инфузории получается по два гаплоидных (на самом деле по четыре, но два из них тут же разрушаются). Каждая инфузория передает один из двух гаплоидных микронкулеусов своей подруге, а второй оставляет себе. Микронуклеусы затем сливаются. В результате каждая инфузория снова имеет один диплоидный микронуклеус, в котором половина хромосом — ее собственная, а половина получена от партнера. Затем инфузории разъединяются и продолжают жить как жили с той небольшой разницей, что с точки зрения генетики каждая из них теперь превратилась в свою собственную дочь. Во время конъюгации или сразу после нее макронуклеус вместе со своим геномом разрушается, а затем собирается заново. За основу берется генеративный геном микронуклеуса, но он при этом подвергается радикальной перестройке. 95% МИК-генома просто удаляется. «На выброс» идут практически все мобильные элементы и некодирующие последовательности. Остаются чистые гены, почти без примесей. Но реорганизация генома не сводится к удалению не нужных здесь и сейчас участков генома. Происходит также «распутывание» — сборка работоспособных генов из разрозненных и перепутанных обрывков. Как мы помним, многие гены в МИК-геноме разорваны на мелкие кусочки и перемешаны. В промежутках между этими кусочками могут находиться длинные некодирующие вставки. Например, в МИК-геноме ген может иметь такую структуру: 2X7X5X4X8X1X3X6 (цифрами обозначены «рабочие» фрагменты гена, буквой X — ненужные вставки различной длины). В МАК-геноме этот ген будет выглядеть так: 12345678. Откуда клетка знает, в каком порядке нужно соединять обрывки? Ответ на этот вопрос был получен лишь в конце 2007 года. Исследователи из Принстонского университета установили, что для «распутывания» генетической информации инфузории используют образцы (матрицы), представляющие собой молекулы РНК, считанные с нанохромосом макронуклеуса (МАК-хромосом) перед тем, как макронуклеус был разрушен. Чтобы это выяснить, пришлось провести множество сложных экспериментов[87]. Для проверки гипотезы о роли РНК-матриц в сборке МАК-хромосом исследователи кормили инфузорий генно-модифицированными бактериями, производящими двухцепочечные молекулы РНК, совпадающие по последовательности нуклеотидов с фрагментом одной из МАК-хромосом. Эукариотические клетки относятся к двухцепочечным РНК с опаской, принимают их за вирусов и начинают уничтожать все РНК с такой же последовательностью нуклеотидов, в том числе и обычные, одноцепочечные. Идея состояла в том, что, проглотив бактерию, инфузория сама уничтожит одну из РНК-матриц, необходимых ей для сборки МАК-хромосом. Так и вышло. В результате после конъюгации получились инфузории, у которых соответствующий участок одной из МАК-хромосом оказался собран неправильно или вообще не собран — просто оставлен в том виде, в каком он был в МИК-хромосоме. При этом все остальные МАК-хромосомы были собраны правильно. Стало быть, РНК-матрицы действительно участвуют в программируемой перестройке генома. Но что они собой представляют — являются ли они копиями целых нанохромосом или отдельных их участков? Исследователи стали выделять и анализировать РНК из инфузорий на разных стадиях жизненного цикла. Выяснилось, что через несколько часов после конъюгации (как раз тогда, когда старый макронуклеус разрушается, а новый начинает формироваться) в клетках появляются длинные молекулы РНК, соответствующие целым МАК-хромосомам вместе с концевыми участками — теломерами. Через 30–50 часов после конъюгации эти молекулы исчезают. Таким образом, перед тем как уничтожить макронуклеус вместе с вегетативным геномом, клетка снимает «резервную копию» с каждой МАК-хромосомы. Эта копия, представляющая собой молекулу РНК, в дальнейшем используется как образец для сборки новых маленьких и аккуратных МАК-хромосом из того безобразия, которое записано в МИК-хромосомах. Следующий вопрос состоял в том, насколько точно РНК-матрицы регулируют процесс сборки МАК-хромосом и можно ли управлять этим процессом, внедряя в клетку искусственные РНК-матрицы. Исследователи синтезировали несколько молекул РНК, похожих на «настоящие» РНК-матрицы, но с измененным порядком фрагментов. Например, если для МИК-гена со структурой 2X7X5X4X8X1X3X6 правильная РНК-матрица имеет вид 12345678, то в искусственной матрице какую-нибудь пару фрагментов меняли местами: 13245678.
РНК-матрица, считанная с МАК-хромосомы перед разрушением макронуклеуса, служит «ключом» для распутывания генетической информации, содержащейся в МИК-хромосоме. Черным цветом обозначены концевые участки хромосом — теломеры.
Впрыскивание таких матриц в инфузорий после конъюгации приводило к формированию МАК-хромосом двух типов: одни воспроизводили правильный порядок фрагментов, ведь правильные матрицы из клеток не удалялись. Другие — тот, который присутствовал в искусственных матрицах. Таким образом, РНК-матрицы осуществляют весьма точное управление процессом сборки МАК-хромосом, и при помощи искусственных матриц можно направлять этот процесс в желаемую сторону. Следующий важный вопрос — регулируют ли РНК-матрицы сборку только тех генов, которые в генеративном геноме перемешаны, то есть имеют неправильный порядок фрагментов, или же этот механизм универсален и применяется ко всем генам без исключения? Исследователи изготовили и ввели в инфузорий РНК- матрицы с неправильным порядком фрагментов для тех генов, которые в генеративном геноме не перемешаны и потому в «распутывании» не нуждаются. В итоге соответствующие гены в МАК-хромосомах оказались неправильно собраны. Значит, механизм универсален. Из этого, кстати, следует интересный эволюционный вывод. Поскольку у инфузорий уже развилась универсальная система «распутывания» измельченных и перепутанных генов, дальнейшая фрагментация МИК-генов и перестановки их частей уже не будут отсеиваться отбором. Ведь есть распутывающий механизм, ему все равно, он все исправит. Видимо, потому-то МИК-геномы инфузорий и пришли постепенно в состояние хаоса. Глядя на рисунок, можно понять, что система изначально могла развиться просто для удаления лишних кусков генома, а «распутывающая» функция ее возникла при этом автоматически, сама собой, как некий довесок — сначала ненужный, но потом ставший необходимым. Таким образом, информация о последовательности, в которой нужно сшивать обрывки генов генеративного генома, передается потомству инфузорий «неклассическим» способом — в виде молекул РНК. А ведь это не такая уж маленькая часть наследственной информации! Могут ли РНК-матрицы передавать потомству также и информацию о последовательности отдельных нуклеотидов? До сих пор речь у нас шла только о последовательности фрагментов генов, то есть о кусках длиной в десятки и сотни нуклеотидов. Каждый ген, как известно, может существовать в виде нескольких вариантов (аллелей), различающихся единичными нуклеотидными заменами или вставками. Поэтому соответствие РНК-матрицы и собираемых на ее основе МАК-хромосом далеко не всегда является абсолютным. Отдельные нуклеотиды могут различаться, и это не мешает правильной сборке. В принципе не исключено, что какие-то нуклеотидные замены могут передаваться из РНК-матрицы в собираемую МАК-хромосому. Конечно, инфузориям нет смысла переносить в МАК-хромосому все различия такого рода. Ведь тогда МАК-хромосомы после конъюгации оставались бы полностью идентичными материнским, и конъюгация потеряла бы всякий смысл. Но, как выяснилось, некоторые нуклеотидные замены все-таки переносятся в МАК-хромосомы из РНК-матриц. Это, однако, происходит не по всей длине собираемого гена, а только в непосредственной близости от мест «сшивки» фрагментов. Это очень важный факт, и он однозначно свидетельствует о том, что в сшивке кусочков ДНК у инфузорий принимает участие только что открытый механизм починки ДНК на основе РНК-матриц (см. раздел «Новые способы работы с информацией» в главе 9). Могут ли подобные системы «редактирования» генома, основанные на использовании РНК-матриц, работать и у других организмов, а не только у инфузорий? Почему бы и нет? Нужно искать. Череда открытий последних лет однозначно показывает, что живая клетка по-прежнему таит в себе множество неизвестных нам молекулярных механизмов, в том числе и таких, которые используются для целенаправленного изменения собственного генома.
И так далее
Мы рассмотрели далеко не все известные на сегодняшний день механизмы, посредством которых живые организмы могут управлять изменениями собственных геномов или геномов своего потомства. Рассказать обо всех случаях такого рода в рамках одной небольшой книги едва ли возможно, но о некоторых из них все же необходимо вкратце упомянуть — для полноты картины.
————— Метилирование ДНК как средство регуляции мутагенеза. Клетка располагает множеством разнообразных средств для регуляции активности генов, и одним из них является метилирование ДНК. Метилирование — это прикрепление метильных групп (-CH3) к некоторым нуклеотидам. Мы еще вернемся к этому явлению в главе «Наследуются ли приобретенные признаки? », а сейчас хотелось бы обратить внимание только на одну особенность этого процесса. Как выяснилось, метилирование нуклеотида повышает вероятность его мутирования. Чаше всего метилируется цитозин (Ц). Метилированный цитозин с большой вероятностью может самопроизвольно превратиться в тимин (Т). Таким образом, метилированные нуклеотиды превращаются в «горячие мутационные точки». Между тем хорошо известно, что метилирование ДНК — процесс отнюдь не хаотический, он идет под управлением сложных молекулярных систем. Клетка метилирует не все нуклеотиды подряд, а лишь те, которые она «хочет» прометилировать. Что же получается? Получается, что клетка имеет возможность по собственному усмотрению размечать свой геном, расставляя на нем «горячие мутационные точки». Вот вам и случайные мутации! —————
Природные генные инженеры. Если вы, дорогие читатели, считаете, что честь изобретения генной инженерии принадлежит человеку, то мне придется вас разочаровать. Генная инженерия была изобретена бактериями задолго до появления Homo sapiens. Мы же не только без спросу позаимствовали чужую идею, но и самих изобретателей заставили себе служить. Жертвой этого вопиющего нарушения авторских прав стал микроб Agrobacterium tumefaciens из группы альфа-протеобактерий (то есть близкий родственник предков митохондрий, о чем говорилось в главе «Великий симбиоз»). У предков агробактерии, как и у многих добропорядочных микробов, имелся особый молекулярный аппарат, предназначенный для сексуальных контактов с другими микробами. Микробный половой процесс сводится к внесению в цитоплазму других микроорганизмов фрагментов своей ДНК в ходе конъюгации (подробно об этом говорится в главе «Наследуются ли приобретенные признаки? »)[88]. Хитрая агробактерия стала использовать этот полезный аппарат для того, чтобы вводить свою ДНК в клетки растений, на которых агробактерия паразитирует. В результате такой инъекции бактериальные гены начинают работать в растительной клетке, это приводит к усиленному делению клеток и образованию опухоли, в которой агробактерия чувствует себя очень комфортно. Это самая настоящая генная инженерия без всяких оговорок, то есть введение чужеродного генетического материала с целью направленного изменения свойств организма-хозяина. Вся современная генная инженерия растений основана на нещадной эксплуатации агробактерии, которую заставляют вводить в клетки растений различные фрагменты ДНК по прихоти экспериментаторов. Итак, мы видим, что от полового процесса до целенаправленного изменения наследственных свойств — один шаг. А если подумать еще немного, то можно понять, что и шага-то делать не надо. Мы уже пришли. Ведь когда одна бактерия вводит другой бактерии свои гены, разве она не меняет при этом ее наследственные свойства? И разве этот процесс не происходит в известной мере целенаправленно? И разве то, что именно и кому именно будет введено, не может повлиять на эволюцию? Или, может быть, вы думаете, что бактериям все равно, какие гены и кому вводить? Им это далеко не все равно, о чем свидетельствуют имеющиеся у прокариот сложные механизмы химической коммуникации и взаимного узнавания. Вот теперь мы подобрались вплотную к одному секрету, который на самом деле лежит на поверхности. Все живые организмы заботятся о наследственности своего потомства, и естественный отбор вполне в состоянии поддержать такие изменения, которые делают эту заботу более эффективной. Иными словами, эволюция может создавать средства оптимизации самой себя. «Приспособления для эволюции», считавшиеся запретными в классическом неодарвинизме (СТЭ), на самом деле не только возможны — они существуют и окружают нас буквально со всех сторон.
Выбор брачного партнера. Я думаю, что читатели уже все поняли. Можно ли спорить с тем, что, выбирая себе брачного партнера, мы тем самым манипулируем наследственными свойствами (геномом) своего будущего потомства? Пользуясь случаем, хочу «разоблачить» и еще одну устаревшую догму — о безвыборочном или равновероятном скрещивании (панмиксии) в популяции. Впрочем, называть это представление догмой, пожалуй, не стоит: биологи никогда не воображали, будто в природных популяциях скрещивание происходит абсолютно безвыборочно. Однако отклонения от случайного скрещивания традиционно считались несущественными. На самом деле формирование брачных пар никогда не бывает случайным, всегда присутствует элемент выбора. И выбор осуществляется если не на уровне организма, то на уровне половых клеток. Процесс выбора регулируется множеством разнообразных механизмов, поражающих своей сложностью и эффективностью. Даже бактерии не меняются генами с кем попало: у них есть целый ряд способов отличить «своих» от «чужих» и выбрать из множества потенциальных партнеров оптимального. У эукариот способы и алгоритмы выбора необычайно развились и усложнились. По-видимому, многие организмы умеют на основе химических сигналов оценивать степень своего родства с потенциальным партнером. Результаты такого анализа учитываются при принятии «брачного решения». Как показали исследования последних лет, механизмы различения своих и чужих на уровне многоклеточных организмов удивительным образом связаны и переплетены с аналогичными механизмами на уровне отдельных клеток и молекул. Иммунная система, задача которой — отличать свое от чужого на молекулярном уровне, может участвовать и в оценке степени родства потенциального партнера. В обоих случаях важную роль играют белки из надсемейства иммуноглобулинов. Специальные эксперименты показали, что даже люди в состоянии извлечь ключевую информацию о генотипе другого человека по запаху его одежды. Это кажется фантастикой, но это факт. Например, показано, что женщине больше всего нравится запах тела тех мужчин, чей генотип по определенным параметрам наиболее сильно отличается от ее собственного. Рыбка колюшка в аналогичной ситуации предпочитает промежуточный вариант: не слишком генетически близкого, но и не слишком неродственного самца. А есть и такие случаи, правда, редкие, когда животные вполне целенаправленно стремятся к инбридингу — скрещиванию с ближайшими родственниками. Совершенно очевидно, что смещение брачных предпочтений в ту или иную сторону может влиять на эволюцию. Например, предпочтение «максимально неродственных» может привести к межвидовой гибридизации. Мы должны иметь в виду, что, вопреки расхожему мнению, межвидовые гибриды часто оказываются вполне жизнеспособными и плодовитыми. Напротив, предпочтение «максимально родственных» может привести к тому, что компактная группа особей, желающих скрещиваться только друг с другом, самоизолируется от остальных представителей своего вида. В результате исходный вид разделится на два, и произойдет акт видообразования[89].
|
Последнее изменение этой страницы: 2019-03-29; Просмотров: 282; Нарушение авторского права страницы