Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


METHYLENEDIOXY-N-PROPARGYLAMPHETAMINE)



 

SYNTHESIS: A solution of 10.5 g propargylamine hydrochloride in 40 mL MeOH was treated with 2.0 g 3,4-methylenedioxyphenylacetone (see under MDMA for its preparation) followed by 0.55 g sodium cyanoborohydride. Concentrated HCl was added as needed, to keep the pH constant at about 6. The reaction seemed to progress very slowly. After about five days, the reaction mixture was added to 400 of H2O, acidified with HCl, and extracted with 3x100 mL CH2Cl2. The aqueous phase was made basic with 25% NaOH, and extracted with 3x100 mL CH2Cl2. Evaporation of the solvent from these extracts yielded 1.6 g of a clear amber, strong smelling oil which, on distillation at 105-110 deg C at 0.2 mm/Hg, yielded 1.0 g of an almost colorless oil. This was dissolved in 20 mL IPA, neutralized with about 10 drops of concentrated HCl, and the spontaneously formed crystals were diluted with 50 mL anhydrous Et2O. After filtration, Et2O washing and air drying, there was obtained 1.1 g white crystals of 3,4-methylenedioxy-N-propargylamphetamine hydrochloride (MDPL) with a mp of 189-190 deg C. Anal. (C13H16ClNO2) N.

 

DOSAGE: greater than 150 mg.

 

DURATION: unknown.

 

EXTENSIONS AND COMMENTARY: There is a continuing uncertainty about the name for the three-carbon radical that contains a triple bond. The hydrocarbon is propyne, although it has been referred to as methylacetylene in the older literature. The adjective, going from the triple bond out to the point of attachment, is called propargyl, as in propargyl chloride. When the adjective must be built on the parent hydrocarbon, the double bond is on the outside and one reads away from it, as in 2-propynyl something. However, when the hydrocarbon is essentially the entire structure, then things get named going towards the triple bond, as in 3-chloro-1-propyne. Wait. I'm not done yet! When the actual hydrocarbon name becomes distorted into the derivative, then the triple bond is again at the high end of the numbering scheme. Propynol is 2-propyn-1-ol, which is, of course, the same as 3-hydroxypropyne, or propargyl alcohol. The code MDPL takes the first and last letter of the two of them, both propargyl and propynyl.      

 

 

 

#118 MDPR; N-PROPYL-MDA; 3,4-METHYLENEDIOXY-N-PROPYLAMPHETAMINE

 

SYNTHESIS: A total of 20 mL concentrated HCl was added beneath the surface of 20 mL propylamine, and when the addition was complete, the mixture was stripped of volatiles under vacuum. The slightly yellow residual oil weighed 20.7 g and set up to crystals on cooling. It was dissolved in 75 mL MeOH, and there was added 4.45 g of 3,4-methylenedioxyphenylacetone (see under MDMA for its preparation) followed by 1.1 g sodium cyanoborohydride. Concentrated HCl in MeOH was added as required to maintain the pH at about 6 as determined with external, dampened universal pH paper. When the generation of base had stopped, the MeOH was allowed to evaporate and the residue was suspended in 1 L water. This was made strongly acidic with an excess of HCl. After washing with CH2Cl2, the aqueous phase was made basic with 25% NaOH, and extracted with 3x100 mL CH2Cl2. Removal of the solvent from the pooled extracts under vacuum yielded 3.3 g of a pale amber oil that was distilled at 85-90 deg C at 0.2 mm/Hg. This fraction was water-white and weighed 2.3 g. It was dissolved in 10 mL IPA and neutralized with 25 drops concentrated HCl which produced crystals spontaneously. These were diluted with anhydrous Et2O, removed by filtration, washed with additional Et2O, and air dried. In this way there was obtained 2.3 g of 3,4-methylenedioxy-N-propylamphetamine hydrochloride (MDPR) with a mp of 190-192 deg C. Recrystallization from IPA gave a mp of 194-195 deg C. The NMR spectrum was completely consistent with the assigned chemical structure. Anal. (C13H20ClNO2) N.

 

DOSAGE: greater than 200 mg.

 

DURATION: unknown.

 

QUALITATIVE COMMENTS: (with 200 mg) There are the slightest hints of physical response, maybe a smidgin of a lightheadedness at the one hour point. Perhaps a slight teeth clench. Certainly there is no central mental effect.

 

EXTENSIONS AND COMMENTARY: This particular drug, considering that it was without activity, has proven one of the richest veins of pharmacological raw material. Two clues suggested its potential value. A number of reports in the 150 to 200 milligram area suggested that something was taking place in the periphery even without any clear central effects. The term "body window" was used occasionally by experimenters, an outgrowth of the term "window" that was used (at that time, the mid-1970's) to describe the mental effects of MDMA. It was as if the body was opened up and made receptive, instead of the mind. The second clue came from many anecdotal reports that methedrine (a potent central nervous system stimulant) would augment the effects of an LSD dosage which followed it. The putting of a drug on top of an inactive drug is the "primer" concept. It turned out that MDPR was an extraordinary primer to some following psychedelic, especially LSD, even at modest doses. The putting of a drug on top of an active drug, usually during the latter part of its effectiveness is, as previously stated, called "piggy-backing." A third drug-drug interaction has also been studied; the simultaneous administration of two active drugs, to study synergism. There may be an enhancement, or an inhibition, of one with the other. Let's now re-enter the subsection "Qualitative Comments" again, with this primer concept in mind.

 

QUALITATIVE COMMENTS: (with 160 mg followed at 2 h by 60 5gs LSD) RThe visual phenomena were extraordinary. We were at the beach just south of Mendocino. In anything that had ever been living, there was an endlessly deep microcosm of detail. Endless, and forever more microscopic in intricacy. A sea urchin shell, a bit of driftwood, a scrap of dried seaweed, each was a treasure of jewels. I have never had such wealth of visual eroticism and bliss before. Later, we visited the pygmy forest, but these living fossils were not as magical.

 

(with 160 mg followed at 2 h by 60 5gs LSD) RWe both felt the first effects at about 30 minutes, and an hour later we found ourselves in a startling folie-a-deux, involved in reliving the origins of man's arrival on earth. We were deep in a tropic environment, defending ourselves against the nasties of nature (insects, threatening things, blistering heat) and determining that man could indeed live here and perhaps survive. A shared eyes-closed fantasy that seemed to be the same script for both of us.

 

(with 160 mg followed at 2 h by100 5gs LSD) RThis proved to be almost too intoxicating, and a problem arose that had to have a solution. The entire research group was here, and all were following this same regimen. Two hours into the second half of the experiment a telephone call came that reminded me of a promise I had made to perform in a social afternoon with the viola in a string quartet. Why did I answer the phone? My entire experience was, over the course of about 20 minutes, pushed down to a fragile threshold, and I drove about 10 minutes to attend a swank afternoon event and played an early Beethoven and a middle Mozart with an untouched glass of expensive Merlot in front of me. I could always blame the booze. I declined the magnificent food spread, split, and returned to my own party. Safely home, and given 20 more minutes, I was back into a rolling +++ and I now know that the mind has a remarkable ability to control the particular place the psyche is in.

 

(with 200 mg followed at 2 h by 60 5gs LSD) RThere was a steady climb from the half-hour point to about 2 hours. There was not the slightest trace of anything sinister. There was simply a super tactile person-to-person window. I had an overpowering urge to go out and interact with other people. To see, to talk, to be with others. There are unending fantasies of things erotic. Perhaps being with others should be circumspect. By evening the effects had largely worn off, but this was an incredible day, beautiful and unexpectedly relaxing.

 

EXTENSIONS AND COMMENTARY: There is need for more commentary. It must be noted that all of the above comments used rather modest dosages of LSD. The notes of this period, some two years of exploring interactions of the MD series of compounds as preludes to true psychedelics, are difficult to distill into a simple pattern. Most of these studies used LSD in the 60-100 microgram range which is fundamentally a modest level. Many trials were made where the challenge of acid plopped right on top of an active residue of another drug was more in keeping with the "piggyback" argument. An illustration of this is a trial in which the primer was MDMA followed at 5 hours (this is at a time of almost no effect) with a larger dose of LSD (250 micrograms). The LSD overwhelmed the residual numbing of the MDMA, and the generated state was overwhelmingly erotic and out of body. There can be no way of analytically organizing such a gemisch of drug-drug interactions with any logic that would allow a definitive interpretation. And LSD is not the only agent that can be used to challenge the "body window" such as that produced by MDPR. 2C-B, 2C-T-2 and 2C-T-7 have all been used with fine success as well.

 

In general, the use of an MD compound (looking at it as a stimulant and primer) followed by a psychedelic, brings about an exaggeration and enhancement of the latter compound. Much work must be done in this area to make sense of it all.

 

#119 ME; METAESCALINE; 3,4-DIMETHOXY-5-ETHOXYPHENETHYLAMINE

 

SYNTHESIS: To a vigorously stirred suspension of 18.6 g of 5-bromobourbonal in 100 mL CH2Cl2 there was added 14.2 g methyl iodide, 1.0 g decyltriethylammonium iodide, and 120 mL 5% NaOH. The color was a deep amber, and within 1 min the top phase set up to a solid. This was largely dispersed with the addition of another 50 mL of water. The reaction was allowed to stir for 2 days. The lower phase was washed with H2O, and saved. The upper phase was treated with another 100 mL CH2Cl2, 50 mL of 25% NaOH, another g of decyltriethylammonium iodide, and an additional 50 mL of methyl iodide. The formed solids dispersed by themselves in a few h to produce two relatively clear layers. Stirring was continued for an additional 3 days. The lower phase was separated, washed with H2O, and combined with the earlier extract. The solvent was removed under vacuum to give 20.3 g of an amber oil that was distilled at 120-133 deg C at 0.4 mm/Hg to yield 15.6 g of 3-bromo-4-methoxy-5-ethoxybenzaldehyde as a white crystalline solid with a mp of 52-53 deg C.

 

A mixture of 15.6 g 3-bromo-4-methoxy-5-ethoxybenzaldehyde and 10 mL cyclohexylamine was heated with an open flame until it appeared free of H2O. The residue was put under a vacuum (0.5 mm/Hg) and distilled at 148-155 deg C yielding 19.2 g 3-bromo-N-cyclohexyl-4-methoxy-5-ethoxybenzylidenimine as an off-white crystalline solid with a melting point 66-68.5 deg C. Recrystallization from 100 mL boiling MeOH gave a mp of 67-68.5 deg C. The C=N stretch in the infra-red was at 1640 cm-1. Anal. (C16H22BrNO2) C,H.

 

A solution of 17 g 3-bromo-N-cyclohexyl-4-methoxy-5-ethoxybenzyl-idenimine in 200 mL anhydrous Et2O was placed in an atmosphere of He, stirred magnetically, and cooled with an external dry-ice acetone bath. Then 38 mL of a 1.55 M solution of butyllithium in hexane was added over 2 min, producing a clear yellow solution. There was then added 25 mL of butyl borate at one time, and the stirred solution allowed to return to room temperature. This was followed with 100 mL of saturated aqueous ammonium sulfate. The Et2O layer was separated, washed with additional saturated ammonium sulfate solution, and evaporated under vacuum The residue was dissolved in 200 mL of 50% MeOH and treated with 12 mL of 30% hydrogen peroxide. This reaction was mildly exothermic, and was allowed to stir for 15 min, then added to an aqueous solution of 50 g ammonium sulfate. This was extracted with 2x100 mL CH2Cl2, the pooled extracts washed once with H2O, and the solvent removed under vacuum. The residue was suspended in dilute HCl, and heated on the steam bath for 0.5 h. Stirring was continued until the reaction was again at room temperature and then it was extracted with 2x100 mL CH2Cl2. These extracts were pooled and in turn extracted with 2x100 mL dilute NaOH. The aqueous extracts were reacidified with HCl, and reextracted with 2x100 mL CH2Cl2. After pooling, the solvent was removed under vacuum to yield an oily residue. This was distilled at 118-130 deg C at 0.2 mm/Hg to yield 7.5 g of 3-ethoxy-5-hydroxy-4-methoxybenzaldehyde as a distillate that set to white crystals. Recrystallization from cyclohexane gives a product with a mp of 77-78 deg C. Anal. (C10H12O4) C,H.

 

A solution of 7.3 g of 3-ethoxy-5-hydroxy-4-methoxybenzaldehyde in 100 mL acetone was treated with 5 mL methyl iodide and 8.0 g finely powdered anhydrous K2CO3, and held at reflux on a steam bath for 6 h. The solvent was removed under vacuum, and the residue was suspended in H2O. After making this strongly basic, it was extracted with 3x50 mL CH2Cl2, the extracts were pooled, and the solvent removed under vacuum. The residual amber oil was distilled at 110-120 deg C at 0.4 mm/Hg to yield 7.3 g of a white oil. This spontaneously set to white crystals of 3,4-dimethoxy-5-ethoxybenzaldehyde which had a mp of 49-49.5 deg C. Anal. (C11H14O4) C,H. This same aldehyde can be obtained, but in a less satisfactory yield, by the ethylation of 3,4-dimethoxy-5-hydroxybenzaldehyde described under the preparation of metaproscaline (MP).

 

A solution of 7.2 g 3,4-dimethoxy-5-ethoxybenzaldehyde in 100 mL nitromethane containing 0.1 g anhydrous ammonium acetate was held at reflux for 50 min. The excess nitromethane was removed under vacuum producing 6.8 g of a red oil which was decanted from some insoluble material. Addition of 10 mL hot MeOH to the decantings, gave a homogeneous solution that spontaneously crystallized on cooling. The yellow crystals were removed by filtration, washed sparingly with MeOH and air dried yielding 3.5 g yellow crystals of 3,4-dimethoxy-5-ethoxy-beta-nitrostyrene, with a mp of 89.5-90 deg C after recrystallization from MeOH. Anal. (C12H15NO5) C,H.

 

A solution of 2.0 g LAH in 100 mL anhydrous THF under He was cooled to 0 deg C and vigorously stirred. There was added, dropwise, 1.3 mL of 100% H2SO4, followed by the dropwise addition of a solution of 3.1 g 3,4-dimethoxy-5-ethoxy-beta-nitrostyrene in 50 mL anhydrous THF, over the course of 10 min. The mixture was stirred at 0 deg C for a while, and then brought to a reflux on the steam bath for 30 min. After cooling again, the excess hydride was destroyed with IPA in THF, followed by the addition of 20 mL 10% NaOH which was sufficient to convert the solids to a white and granular form. These were removed by filtration, the filter cake washed with IPA, the mother liquor and filtrates combined, and the solvents removed under vacuum. The residue was added to 150 mL dilute H2SO4, and the cloudy suspension washed with 2x75 mL CH2Cl2 which removed much of the color. The aqueous phase was made basic with 25% NaOH, and extracted with 3x50 mL CH2Cl2. The solvent was removed from these pooled extracts and the residue distilled at 103-116 deg C at 0.25 mm/Hg to provide 2.3 g of a colorless viscous liquid. This was dissolved in 10 mL IPA, neutralized with about 25 drops of concentrated HCl, which produced an insoluble white solid. This was diluted with 40 mL anhydrous Et2O added slowly with continuous stirring. The white crystalline 3,4-dimethoxy-5-ethoxyphenethylamine hydrochloride (ME) was isolated by filtration, washed with Et2O, and air dried, and weighed 2.4 g. It had a mp of 202-203 deg C which increased by one degree upon recrystallization from boiling IPA. Anal. (C12H20ClNO3) C,H.

 

DOSAGE: 200 - 350 mg.

 

DURATION: 8 - 12 h.

 

QUALITATIVE COMMENTS: (with 200 mg) It tasted pretty strong. However, the taste was soon gone, and an energetic feeling began to take over me. It continued to grow. The feeling was one of great camaraderie, and it was very easy to talk to people. Everyone was talking to everyone else. I found it most pleasant, energetic and at the same time relaxing, with my defenses down. This material did not seem to lead to introspection; however, it might if one took it without other people around. Heightened visual awareness was mild, but the audio awareness was quite heightened. The feeling of being with everyone was intense.

 

(with 250 mg) Initially I took 200 milligrams of metaescaline, and the experience developed for me very gradually at first, and very pleasantly. After about one half hour I became aware of a wall that seemed to shut me in, not unpleasantly. The wall slowly dissolved, but I was afraid I might get into a negative experience. I felt immediate relief (from this isolation) upon taking the additional 50 mg (at 2:23 into the experiment) as though glad of the decision. I lay down outside on a blanket. There was a marvelous feeling inside, although no imagery. I felt the wall dissolve completely, and I desired to join the group. From this point on the experience was most enjoyable, euphoric. Although not dramatic like some psychedelics, it was most rewarding for me personally. I felt a marvelous bond with everyone present, with clear-headed, excellent thinking, and excellent communication. All in all, a most rewarding and enjoyable experience. Afterwards I felt much strengthened, with good energy and good insight. I have a strong feeling that the group tailored the nature of the experience, and that I and others were most desirous of group interaction. I feel that one could do a lot of other things with it if one turned one's attention to it.

 

(with 275 mg) Onset of both physical and mental change was slow relative to other psychochemicals. Very gradual internal stirrings were felt at about the hour-and-a-half point. These were mostly feelingful rather than cognitive, and were quite pleasurable. At about the two-and-a-half hour point I grew quite thirsty, and drank a pint of beer. Almost immediately, and quite unexpectedly, I tomsoed to a much higher level and remained there for another three hours until the whole experience waned. [The verb, to tomso, means a sudden rekindling of the drug-induced altered state with a small amount of alcohol. It is explained in the recipe for TOMSO.] During the experience heights, and in fact before it reached its height, talking was easy and unimpeded. The transference feelings so characteristic of MDMA were basically not there. But for purposes of psychotherapy, there were some advantages: fluent associations, undefended positions, and general bonaise.

 

(with 400 mg) Ingested 300 milligrams at about 1:30 in the afternoon. Very quiet climb. Occasional yawns. Matter-of-fact view of the world. No rosy glow. At the end of the second hour, I seem to be stuck at a ++. Take another 100 milligrams at 3:45 PM. Still tastes awful. Feel a small head-rush fifteen minutes after taking the supplement, and within a half hour I am completely +3. For a while this was a sterner mescaline. Saw the eternal, continual making of choices, all opposites continually in motion with each other. Yin and yang everywhere, giving life to every molecule. The universe itself keeps alive by the action-reaction, the yes-no, the black-white, male-female, plus-minus. All life is a continual making of choices on all levels. Then I closed my eyes, and I found myself floating up to the very top of a temple, where there was radiant light and a sense of homecoming. Making love is a clear stream over and through rocks and canyons Q the earth and sky make love, and the rocks make love to other rocks, and the water is the teasing, fondling, living and moving actions of loving. To realize that, on some level, all existence makes love to all other existence. The Japanese Garden: a structured way of laying out a small glimpse into cosmic love-making, so that it can be read by other human souls. All loving, when direct and free and undemanding, is a touching of the Source. The hardest lesson, of course, is how to love yourself that same way. And it remains both the first lesson of Kindergarten and the Ph.D. final. I was able to drift into sleep at about 4:00 AM.

 

EXTENSIONS AND COMMENTARY: The reorientation of the single ethyl group of escaline (E) to the meta-position produces metaescaline (ME). In cats, in studies of over 50 years ago, the two compounds produced similar effects at similar dosages. In man, ME also appears to be similar to mescaline in potency. However, a subtle difference is apparent between ME and Peyote, the natural source of mescaline. With Peyote itself, the initial taste of the crude cactus is more than just foul; it might better be described as unbelievably foul. But in the middle of a Peyote experience, the taste of the cactus is truly friendly. When ME was retasted in the middle of an experience, the taste was still foul.

 

There are other distinctions from mescaline. Unlike mescaline or Peyote, there is rarely any body discomfort during the early phase of intoxication, no nausea and only an occasional comment suggesting hyperreflexia. And, also unlike mescaline, most subjective reports on ME claim that music produces little imagery, and the exaggeration of color perception is more reserved. Appetite is normal, the tastes and textures of food are unusually rewarding. No subject has ever expressed a reluctance to repeat the experience. Sleep is easy, refreshing, and the following day seems free from residue.   

 

 

 

#120 MEDA; 3-METHOXY-4,5-ETHYLENEDIOXYAMPHETAMINE

 

SYNTHESIS: To a solution of 50 g 3,4-dihydroxy-5-methoxybenzaldehyde in 100 mL distilled acetone there was added 70 g ethylene bromide and 58 g finely powdered anhydrous K2CO3. The mixture was held at reflux for 5 days. This was then poured into 1.5 L H2O and extracted with 4x100 mL CH2Cl2. Removal of the solvent from the pooled extracts gave a residue which was distilled at 19 mm/Hg. Several of the fractions taken in the 203-210 deg C range spontaneously crystallized, and they were pooled to give 18.3 g of 3-methoxy-4,5-ethylenedioxybenzaldehyde as white solids with a mp of 80-81 deg C. A small sample with an equal weight of malononitrile in EtOH treated with a few drops of triethylamine gave 3-methoxy-4,5-ethylenedioxybenzalmalononitrile as pale yellow crystals from EtOH with a mp of 153-154 deg C.

 

A solution of 1.50 g 3-methoxy-4,5-ethylenedioxybenzaldehyde in 6 mL acetic acid was treated with 1 mL nitroethane and 0.50 g anhydrous ammonium acetate, and held on the steam bath for 1.5 h. To the cooled mixture H2O was cautiously added until the first permanent turbidity was observed, and once crystal-lization had set in, more H2O was added at a rate that would allow the generation of additional crystals. When there was a residual turbidity from additional H2O, the addition was stopped, and the beaker held at ice temperature for several h. The product was removed by filtration and washed with a little 50% acetic acid, providing 0.93 g 1-(3-methoxy-4,5-ethylenedioxyphenyl)-2-nitropropene as dull yellow crystals with a mp of 116-119 deg C. Recrystallization of an analytical sample from MeOH gave a mp of 119-121 deg C.

 

A stirred suspension of 6.8 g LAH in 500 mL anhydrous Et2O under an inert atmosphere was brought up to a gentle reflux. A total of 9.4 g 1-(3-methoxy-4,5-ethylenedioxyphenyl)-2-nitropropene in warm Et2O was added over the course of 0.5 h. Refluxing was maintained for 6 h, and then the reaction mixture was cooled and the excess hydride destroyed by the cautious addition of 400 mL 1.5 N H2SO4. The two clear phases were separated, and the aqueous phase was brought to pH of 6 by the addition of a saturated Na2CO3 solution. This was filtered free of a small amount of insolubles, and the clear filtrate was heated to 80 deg C. To this there was added a solution of 9.2 g picric acid (90% material) in 100 mL boiling EtOH, and the clear mixture allowed to cool in an ice bath. Scratching generated yellow crystals of the picrate salt. This salt was filtered free of the aqueous environment, treated with 50 mL of 5% NaOH, and stirred until the picric acid was totally in the form of the soluble sodium salt. This was then extracted with 3x100 mL CH2Cl2, the extracts pooled, and the solvent removed under vacuum. The residue weighed 6.0 g, and was dissolved in 100 mL anhydrous Et2O, and saturated with dry HCl gas. The white solids that formed were filtered free of the Et2O, and ground up under 50 mL of slightly moist acetone, providing 4.92 g of 3-methoxy-4,5-ethylenedioxyamphetamine hydrochloride monohydrate (MEDA) as white crystals.

 

DOSAGE: greater than 200 mg.

 

DURATION: unknown.

 

EXTENSIONS AND COMMENTARY: There are times when the Gods smile in unexpectedly nice ways. Having found the activity of MMDA, the "scientific" thing to do would be to compare it against the other "psychotomimetic" amphetamine that was known at that time (this was 1962), namely TMA. Comparing their structures, the only difference of any kind was that two of the adjacent methoxyl groups of TMA were replaced with a 5-membered ring, called the methylenedioxy ring.

 

Where does one go next? Some perverse inspiration suggested increasing the size of this ring to a 6-membered ring, the ethylenedioxy (or dioxene) homologue. Well, if you thought that getting myristicinaldehyde was a difficulty, it was nothing compared to getting this 6-membered counterpart. But I huffed and I puffed, and I did make enough to taste and to evaluate. And it was here that I got the divine message! No activity!! So, rather than being condemned forever a la Sisyphus to push ever larger rings up my psyche, I gave myself permission to pursue another path. The message was: "Don't change the groups. Leave them as they are, but relocate them instead." And that led directly to TMA-2 and its story.

 

A couple of diversions may be mentioned here. Before the blessed inactivity of MEDA was established, the 7-membered ring counterpart, 3-methoxy-4,5-trimethylenedioxyamphetamine (MTMA) was prepared by essentially the same procedure. The above 3-methoxy-4,5-dihydroxybenzaldehyde with trimethylene bromide gave 3-methoxy-4,5-trimethylenedioxybenzaldehyde, white solids, with a malononitrile derivative with a mp of 134-135 deg C; the aldehyde with nitroethane gave the nitropropene with a mp of 86-87 deg C; and this with LAH gave MTDA as the hydrochloride (mp 160-161 deg C) again isolated first as the picrate. It had been tasted at up to an 8 milligram dosage (no activity, but none expected) before being abandoned. And, an initial effort was made to synthesize a five-member ring (methylenedioxy) with a methyl sticking out from it. This ethylidine homologue got as far as the aldehyde stage. The reaction between 3,4-dihydroxy-5-methoxybenzaldehyde and 1,1-dibromoethane in acetone containing anhydrous potassium carbonate gave a minuscule amount of a product that was a two-component mixture. This was resolved by dozens of separate injections into a preparatory gas chromatography system, allowing the isolation of the second of the two components in a quantity sufficient to demonstrate (by NMR spectroscopy) that it was the desired 3-methoxy-4,5-ethylidinedioxybenzaldehyde. Starting with the pre-prepared dipotassium salt or the lead salt of the catecholaldehyde gave nothing. With no activity being found with MEDA, all was abandoned.

 

There are some comments made under MDA for successful chemistry (using a different approach) alo#ng these lines when there is no methoxyl group present. These are the compounds EDA and IDA. But the pharmacology was still not that exciting.      

 

#121 MEE; 4,5-DIETHOXY-2-METHOXYAMPHETAMINE

 

SYNTHESIS: To a solution of 166 g bourbonal in 1 L MeOH there was added a solution of 66 g KOH pellets in 300 mL H2O. There was then added 120 g ethyl bromide, and the mixture was held at reflux on the steam bath for 3 h. The reaction was quenched with three volumes of H2O, and made strongly basic by the addition of 25% NaOH. This was extracted with 3x300 mL CH2Cl2, and the pooled extracts stripped of solvent under vacuum. There remained 155 g of 3,4-diethoxybenzaldehyde as a fluid oil that had an infra-red spectrum identical (except for being slightly wet) to that of a commercial sample from the Eastman Kodak Company.

 

A solution of 194 g 3,4-diethoxybenzaldehyde in 600 g glacial acetic acid was arranged in a flask that could be magnetically stirred, yet cooled as needed with an external ice bath. A total of 210 g of 40% peracetic acid in acetic acid was added at a rate such that, with ice cooling, the exothermic reaction never raised the internal temperature above 26 deg C. The reaction developed a deep red color during the 2 h needed for the addition. At the end of the reaction the mixture was quenched by the addition of three volumes of H2O, and the remaining acidity was neutralized by the addition of solid Na2CO3 (700 g was required). This aqueous phase was extracted several times with CH2Cl2, and the solvent was removed from the pooled extracts under vacuum. The residue was a mixture of the intermediate formate ester and the end product phenol. This was suspended in 800 mL 10% NaOH, and held on the steam bath for 1.5 h. After cooling, this was washed once with CH2Cl2 (discarded) and then acidified with HCl. There was the formation of an intensely hydrated complex of the product phenol, reminiscent of the problem encountered with 3-ethoxy-4-methoxyphenol. This was worked up in three parts. The entire acidified aqueous phase was extracted with Et2O (3x200 mL) which on evaporation gave 80 g of an oil. The hydrated glob was separately ground up under boiling CH2Cl2 which, on evaporation, gave an additional 30 g of oil, and the aqueous mother liquor from the glob was extracted with 2x200 mL CH2Cl2 which provided, after removal of the solvent, an additional 10 g. These crude phenol fractions were combined and distilled at 1.5 mm/Hg. Following a sizeable forerun, a fraction boiling at 158-160 deg C was the anhydrous product, 3,4-diethoxyphenol. It was a clear, amber oil, and weighed 70.0 g. The slightest exposure to H2O, even moist air, give a solid hydrate, with mp of 63-64 deg C. This phenol can be used for the synthesis of MEE (this recipe) or for the preparation of EEE (see the separate recipe). A solution of 2.0 g of this phenol in 5 mL CH2Cl2 was diluted with 15 mL hexane. This was treated with 2 g methyl isocyanate followed by a few drops of triethylamine. After about 5 min, white crystals formed of 3,4-diethoxyphenyl-N-methyl carbamate, with a mp of 90-91 deg C.

 

A solution of 26.6 g 3,4-diethoxyphenol in 50 mL MeOH was mixed with another containing 9.6 g KOH pellets dissolved in 200 mL hot MeOH. There was then added 21.4 g methyl iodide, and the mixture was held at reflux for 2 h on the steam bath. This was then quenched in 3 volumes of water, made strongly basic with 25% NaOH, and extracted with 3x150 mL CH2Cl2. Evaporation of the solvent from the pooled extracts gave 19.3 g of 1,2-diethoxy-4-methoxybenzene (3,4-diethoxyanisole) as a clear, pale amber oil that solidified when cooled. The mp was 20-21 deg C.

 

A mixture of 32.0 g N-methyl formanilide and 36.2 g POCl3 was allowed to stand until it was a deep red color (about 0.5 h). To this there was added 18.3 g 1,2-diethoxy-4-methoxybenzene and the exothermic reaction was heated on the steam bath for 2.5 h. This was then poured over 600 mL chipped ice, and the dark oily material slowly began lightening in color and texture. A light oil was formed which, on continued stirring, became crystalline. After the conversion was complete, the solids were removed by filtration producing, after removal of as much H2O as possible by suction, 26.9 g of crude aldehyde. A small sample pressed on a porous plate had a mp of 87.5-88.5 deg C. Recrystallization of the entire damp crop from 50 mL boiling MeOH gave, after cooling, filtering, and air drying, 17.7 g of 4,5-diethoxy-2-methoxybenzaldehyde as fluffy, off-white crystals with a mp of 88-88.5 deg C. A solution of 1.0 g of this aldehyde and 0.5 g of malononitrile dissolved in warm absolute EtOH was treated with 3 drops triethylamine. There was the immediate formation of crystals which were filtered and air dried to constant weight. The product, 4,5-diethoxy-2-methoxybenzalmalononitrile, was a bright yellow crystalline material, which weighed 1.0 g and had a mp of 156-157 deg C.

 

To a solution of 14.7 g 4,5-diethoxy-2-methoxybenzaldehyde in 46 g glacial acetic acid, there was added 8.0 g nitroethane and 5.0 g anhydrous ammonium acetate. The mixture was heated on the steam bath for 2 h, becoming progressively deeper red in color. The addition of a small amount of H2O to the hot, clear solution produced a slight turbidity, and all was allowed to stand overnight at room temperature. There was deposited a crop of orange crystals that was removed by filtration and air dried. There was obtained 7.0 g 1-(4,5-diethoxy-2-methoxyphenyl)-2-nitropropene as brilliant orange crystals that had a mp of 89-90.5 deg C. This was tightened up, but not improved, by trial recrystallization from acetic acid, mp 89-90 deg C, and from hexane, mp 90-90.5 deg C. Anal. (C14H19NO5) C,H.

 

To a gently refluxing suspension of 5.0 g LAH in 400 mL anhydrous Et2O under a He atmosphere, there was added 6.5 g 1-(4,5-diethoxy-2-methoxyphenyl)-2-nitropropene by allowing the condensing Et2O to drip into a shunted Soxhlet thimble containing the nitrostyrene. This effectively added a warm saturated solution of the nitrostyrene dropwise. Refluxing was maintained for 5 h, and the reaction mixture was cooled with an external ice bath. The excess hydride was destroyed by the cautious addition of 400 mL of 1.5 N H2SO4. When the aqueous and Et2O layers were finally clear, they were separated, and 100 g of potassium sodium tartrate was dissolved in the aqueous fraction. Aqueous NaOH was then added until the pH was >9, and this was extracted with 3x200 mL CH2Cl2. Removal of the solvent under vacuum produced an off-white oil that was dissolved in anhydrous Et2O and saturated with anhydrous HCl gas. The crystals of 4,5-diethoxy-2-methoxyamphetamine hydrochloride (MEE) that formed were very fine and slow to filter, but finally were isolated as a white powder weighing 5.4 g and melting at 178.5-180 deg C. Anal. (C14H24ClNO3) C,H,N.

 

DOSAGE: greater than 4.6 mg.

 

DURATION: unknown.

 

EXTENSIONS AND COMMENTARY: There were early trials made with MEE, before it became known what direction the ethoxy substitution results would take. A number of progressive trials, up to a dosage of 4.6 milligrams, were without any central effects at all.

 

There is an instinct in structure-activity studies to think of a change as a success or a failure, depending on whether there is an increase or a decrease in the desired activity. But if one were to look at the effects of putting an ethoxy group onto TMA-2 in place of a methoxy group as a way of decreasing the effectiveness, then the 4-position becomes the worst position (MEM is equipotent to TMA-2), and the 5-position is perhaps a little less bad (MME is almost as potent) and the 2-position is the best by far (EMM is out of it, potency-wise). In other words, in the comparison of the 2- and the 5-positions, the lengthening of the 5-position gives modest loss of activity, and the lengthening of the whatever in the 2-position is the most disruptive. With this as a basis for prediction, then MEE (which differs from MEM only by a lengthening of the 5-position substituent) might be only a little less active than MEM and, as MEM is about the same as TMA-2, it is distinctly possible that MEE may show activity in the area at dosages that are not much above the 25 to 50 milligram area. Of all the diethoxy homologues, it would be the most promising one to explore.

 

Which brings to mind a quotation of a hero of mine, Mark Twain. RI like science because it gives one such a wholesome return of conjecture from such a trifling investment of fact.      

 

 

 

#122 MEM; 2,5-DIMETHOXY-4-ETHOXYAMPHETAMINE

 

SYNTHESIS: A solution of 83 g bourbonal (also called ethyl vanillin, or vanillal, or simply 3-ethoxy-4-hydroxybenzaldehyde) in 500 mL MeOH was treated with a solution of 31.5 g KOH pellets (85% material) dissolved in 250 mL H2O. There was then added 71 g methyl iodide, and the mixture was held under reflux conditions for 3 h. All was added to 3 volumes of H2O, and this was made basic with the addition of 25% NaOH. The aqueous phase was extracted with 5x200 mL CH2Cl2. The pooling of these extracts and removal of the solvent under vacuum gave a residue of 85.5 g of the product 3-ethoxy-4-methoxybenzaldehyde, with a mp of 52-53 deg C. When this product was recrystallized from hexane, its mp was 49-50 deg C. When the reaction was run with the same reactants in a reasonably anhydrous environment, with methanolic KOH, the major product was the acetal, 3-ethoxy-a,a,4-trimethoxytoluene. This was a white glistening product which crystallized readily from hexane, and had a mp of 44-45 deg C. Acid hydrolysis converted it to the correct aldehyde above. The addition of sufficient H2O in the methylation completely circumvents this by-product. A solution of 1.0 g of this aldehyde and 0.7 g malononitrile in 20 mL warm absolute EtOH, when treated with a few drops of triethylamine, gave immediate yellow color followed, in a few min by the formation of crystals. Filtration, and washing with EtOH, gave bright yellow crystals of 3-ethoxy-4-methoxybenzalmalononitrile with a mp of 141-142 deg C.

 

A well stirred solution of 125.4 g 3-ethoxy-4-methoxybenzaldehyde in 445 mL acetic acid was treated with 158 g 40% peracetic acid (in acetic acid) at a rate at which, with ice cooling, the internal temperature did not exceed 27 deg C. The addition required about 45 min. The reaction mixture was then quenched in some 3 L H2O. There was the generation of some crystals which were removed by filtration. The mother liquor was saved. The solid material weighed, while still wet, 70 g and was crude formate ester. A small quantity was recrystallized from cyclohexane twice, to provide a reference sample of 3-ethoxy-4-methoxyphenyl formate with a mp of 63-64 deg C. The bulk of this crude formate ester was dissolved in 200 mL concentrated HCl which gave a deep purple solution. This was quenched with water which precipitated a fluffy tan solid, which was hydrated phenolic product that weighed about 35 g, and melted in the 80-90 deg C. range. The mother liquors of the above filtration were neutralized with Na2CO3, then extracted with 3x100 ml Et2O. Removal of the solvent gave a residue of about 80 g that was impure formate (containing some unoxidized aldehyde). To this there was added 500 mL 10% NaOH, and the dark mixture heated on the steam bath for several h. After cooling, the strongly basic solution was washed with CH2Cl2, and then treated with 200 mL Et2O, which knocked out a heavy semi-solid mass that was substantially insoluble in either phase. This was, again, the crude hydrated phenol. The Et2O phase, on evaporation, gave a third crop of solids. These could actually be recrystallized from MeOH/H2O, but the mp always remained broad. When subjected to distillation conditions, the H2O was finally driven out of the hydrate, and the product 3-ethoxy-4-methoxyphenol distilled as a clear oil at 180-190 deg C at 0.8 mm/Hg. This product, 45.1 g, gave a fine NMR spectrum, and in dilute CCl4 showed a single OH band at 3620 cm-1, supporting the freedom of the OH group on the aromatic ring from adjacent oxygen. Efforts to obtain an NMR spectrum in D2O immediately formed an insoluble hydrate. This phenol can serve as the starting material for either MEM (see below) or EEM (see separate recipe).

 

To a solution of 12.3 g 3-ethoxy-4-methoxyphenol in 20 mL MeOH, there was added a solution of 4.8 g flaked KOH in 100 mL heated MeOH. To this clear solution there was then added 10.7 g methyl iodide, and the mixture held at reflux on the steam bath for 2 h. This was then quenched in 3 volumes H2O, made strongly basic with 10% NaOH, and extracted with 3x100 mL CH2Cl2. Removal of the solvent from the pooled extracts under vacuum gave 9.4 g of an amber oil which spontaneously crystallized. The mp of 1,4-dimethoxy-2-ethoxybenzene was 42-43.5 deg C, and was used, with no further purification, in the following step.

 

A mixture of 17.3 g N-methylformanilide and 19.6 g POCl3 was allowed to stand for 0.5 h, producing a deep claret color. To this there was added 9.2 g 1,4-dimethoxy-2-ethoxybenzene, and the mixture was held on the steam bath for 2 h. It was then poured into chipped ice and, with mechanical stirring, the dark oily phase slowly became increasingly crystalline. This was finally removed by filtration, providing a brown solid mat which showed a mp of 103.5-106.5 deg C. All was dissolved in 75 mL boiling MeOH which, on cooling, deposited fine crystals of 2,5-dimethoxy-4-ethoxybenzaldehyde that were colored a light tan and which, after air drying to constant weight, weighed 8.5 g and had a mp of 108-109.5 deg C. Search was made by gas chromatography for evidence of the other two theoretically possible positional isomers, but none could be found. The NMR spectrum showed the two para-protons as clean singlets, with no noise suggesting other isomers. There was a single peak by GC (for the recrystallized product) but the mother liquors showed a contamination that proved to be N-methylformanilide. A 0.3 g sample, along with 0.3 g malononitrile, was dissolved in 10 mL warm absolute EtOH, and treated with a drop of triethylamine. There was the immediate formation of a yellow color followed, in 1 min, by the deposition of fine yellow needles. Filtering and air drying gave 0.25 g of 2,5-dimethoxy-4-ethoxybenzalmalononitrile, with a mp of 171-172 deg C.

 

A solution of 7.3 g 2,5-dimethoxy-4-ethoxybenzaldehyde in 25 g glacial acetic acid was treated with 3.6 g nitroethane and 2.25 g anhydrous ammonium acetate, and heated on the steam bath. After two h, the clear solution was diluted with an equal volume of H2O, and cooled in an ice bucket. There was the formation of a heavy crop of orange crystals which were removed by filtration. The dry weight of 1-(2,5-dimethoxy-4-ethoxyphenyl)-2-nitropropene was 4.8 g and the mp was 120-124 deg C. Recrystallization of an analytical sample from MeOH gave a mp of 128-129 deg C. Anal. (C13H17NO5) C,H.

 

To a gently refluxing suspension of 3.3 g LAH in 400 mL anhydrous Et2O under a He atmosphere, there was added 4.3 g 1-(2,5-dimethoxy-4-ethoxy)-2-nitropropene by allowing the condensing Et2O to drip into a shunted Soxhlet thimble apparatus containing the nitrostyrene, thus effectively adding a warm saturated ether solution of it to the hydride mixture. The addition took 2 h. Refluxing was maintained for 5 h, and then the reaction mixture was cooled to 0 deg C with an external ice bath. The excess hydride was destroyed by the cautious addition of 300 mL of 1.5 N H2SO4. When the aqueous and Et2O layers were finally clear, they were separated, and 100 g of potassium sodium tartrate was dissolved in the aqueous fraction. Aqueous NaOH was then added until the pH was >9, and this was then extracted with 3x100 mL CH2Cl2. Evaporation of the solvent from the pooled extracts produced an almost white oil that was dissolved in 100 mL anhydrous Et2O and saturated with anhydrous HCl gas. There was deposited a white crystalline solid of 2,5-dimethoxy-4-ethoxyamphetamine hydrochloride (MEM) which weighed 3.1 g and had a mp of 171-172.5 deg C. Anal. (C13H22ClNO3) C,H,N.

 

DOSAGE: 20 - 50 mg.

 

DURATION: 10 - 14 h.

 

QUALITATIVE COMMENTS: (with 20 mg) I experienced some physical discomfort, but doesn't that tell us about the work to be done, rather than the property of the material? The breakthrough I had was the following day (and this seems to be the way MEM operates, i.e., first the energy and expansion, next day insight) was of the highest value and importance for me. I was given a methodology for dealing with my shadow parts. No small gift. And I did it all alone and the results were immediate. I am so grateful.

 

(with 20 mg, at 1.5 h following 120 mg MDMA) RThe transition was very smooth, with no obvious loss of the MDMA experience. I felt less of a need to talk, but the intimate closeness with the others was maintained. The experience continues to grow more profound and euphoric and I prayed, in the latter part of the afternoon, that it wouldn't stop. It continued until midnight with marvelous feelings, good energy, and much hilarity. And it abated very little over the next several days leaving me with the feeling of lasting change with important insights still coming to mind one week later.

 

(with 25 mg, at 2 h following 120 mg MDMA) RI found that sounds in general were distracting. No, they were out-and-out annoying. I may have been in an introspective mood, but I really wanted to be alone. No body problems at all. Felt good. I developed some color changes and some pattern movement. Not much, but then I didn't explore it much. The wine party afterwards was certainly most pleasant. The soup was a great pleasure. And that hard bread was good. The material was clearly not anorexic, or at least I overcame whatever anorexia there might have been.

 

(with 30 mg) I was aware of this in thirty minutes and it slowly developed from there to an almost +++ in the following hour. There were visual phenomena, with some color enhancement and especially a considerable enhancement of brights and darks. The first signs of decline were at about six hours, but there was something still working there after another six hours had passed. A slow decline, certainly.

 

(with 50 mg) I came into the experience knowing that yesterday had been a very fatiguing and tense day. I felt this material within the first ten minutes which is the fastest that I have ever felt anything. The ascent was rapid and for the first hour I tended to an inward fantasying with a distinct sensual tinge. There was a persistent queasiness that never left me, and it contrasted oddly with a good feeling of outward articulation and lucidity which succeeded in coming to the fore after the introverted first hour. Sleep was difficult, but the next day was calm and clear.

 

(with 50 mg) Lots of energy, best directed into activity. Clear imaging, thinking. Intense yet serene. Good feeling of pleasantness and some euphoria. I felt the need to keep moving. Hard to stay still.

 

(with 70 mg, in two parts) RThe effects of the 40 milligrams were muted by another drug experiment yesterday morning, and I never got much over a plus 1. There is an erotic nature, tactile sensitivity perhaps not as delicate as with 2C-B, but it is there. At the 2 hour point, an additional 30 milligrams increased the body impact (a distinct tremor and sensitivity) but somehow not a lot more mental. I have been compromised by yesterday.

 

EXTENSIONS AND COMMENTARY: MEM was both a valuable and dramatic compound, as well as a drug that played a watershed role. The completion of all the possible trimethoxyamphetamines (the TMA's) showed that only two of them combined the values of dependability of positive psychedelic effects with a reasonably high potency. Both TMA-2 and TMA-6 are treasures, both active in similar dosages, and both offer methoxyl groups that are begging to be replaced by other things. The first focus was on TMA-2, partly because the needed synthetic chemistry was better known, and partly because I had discovered its activity earlier. But there were three entirely different and distinct methoxyl groups to work on, in TMA-2. There is one at the 2-position, one at the 4-position, and one at the 5-position. The most obvious thing to do, it seemed, was to make each of them one carbon longer. Replace a methoxy with an ethoxy. And a logical naming pattern could follow the use of M for methoxy, and E for ethoxy, in sequence right around the ring from the 2- to the 4- to the 5-positions. The first group to be compared, then, would be EMM, MEM, and MME. And of these three, it was only MEM that was right up there in drama and in potency. But, by the time that became apparent, I had already completed the diethoxy possibilities (EEM, EME, and MEE) as well as the triethoxy homologue, EEE. With the discovery that the 4-position was the magic leverage point, and that the homologues at positions 2- and 5- were clearly less interesting, all emphasis was directed at this target, and this has led to the many 4-substituted families that are now known to be highly potent and felt by many to be personally valuable.

 

Why put such emphasis on potency, I am frequently asked? Why should it matter how much of a compound you take, as long as the effective level is much lower than its toxic level? Well, in a sense, that is the very reason. There are no guides as to what the toxic levels of any of these many compounds might really be in man. There is simply no way of determining this. Only a few have been explored in animals in the pursuit of an LD-50 level. Most of them are similar to one-another, in that they are, in mice, of relatively low toxicity and, in rat, of relatively high toxicity. But this toxicity appears not to be related to potency in man. So, if one might extrapolate that they are of more or less the same risk to man (from the toxic point of view) then the lower the dosage, the greater the safety. Maybe. In the absence of anything factual, it makes a reasonable operating hypothesis.

 

Many of the reports of MEM effects have been with experiments in which an effective dose of MDMA had been taken shortly earlier. There has developed a concept, embraced by a number of researchers, that the ease and quietness usually seen with the development of the MDMA experience can mitigate some of the physically disturbing symptoms sometimes seen with other psychedelics. This may be partly due to a familiar entry into a altered place, and partly due to a lessening of dosage usually required for full effects. MEM seems to have had more trials using this combination than many of the other psychedelic drugs.     

 

 

 

#123 MEPEA; 3-METHOXY-4-ETHOXYPHENETHYLAMINE

 

SYNTHESIS: A solution of 10.0 g 3-methoxy-4-ethoxybenzaldehyde in 150 mL nitromethane was treated with 1.7 g anhydrous ammonium acetate, and heated on the steam bath for 1 h. The excess nitromethane was removed under vacuum, yielding a loose, yellow crystalline mass that was filtered and modestly washed with cold MeOH. The 8.0 g of damp yellow crystals thus obtained were dissolved in 50 mL of vigorously boiling CH3CN, decanted from a small amount of insolubles (probably ammonium acetate residues) and cooled in an ice bath. The crystals so obtained were removed by filtration, washed with 2x5 mL cold CH3CN, and air dried to constant weight. The yield of 4-ethoxy-3-methoxy-beta-nitrostyrene was 6.3 g of beautiful yellow crystals.

 

A solution of 2.3 g LAH in 70 mL anhydrous THF was cooled, under He to 0 deg C with an external ice bath. With good stirring there was added 2.3 mL 100% H2SO4 dropwise, to minimize charring. This was followed by the addition of 6.2 g 3-ethoxy-4-methoxy-beta-nitrostyrene in anhydrous THF. After a few min further stirring, the temperature was brought up to a gentle reflux on the steam bath, and then all was cooled again to 0 deg C. The excess hydride was destroyed by the cautious addition of IPA followed by sufficent 10% NaOH to give a white granular character to the oxides, and to assure that the reaction mixture was basic. The reaction mixture was filtered and the filter cake well washed with THF. The filtrate and washes were combined and stripped of solvent under vacuum. The residue was dissolved in dilute H2SO4. This was washed with 2x75 mL CH2Cl2, which removed the residual yellow color. The remaining aqueous phase was made basic with NaOH, and extracted with 3x75 mL CH2Cl2. These extracts were combined and the solvent removed under vacuum. The residue was distilled at 108-115 deg C at 0.4 mm/Hg to give 4.2 g of a mobile, colorless liquid. This was dissolved in 12 mL IPA, neutralized with 60 drops concentrated HCl, and diluted with 100 mL anhydrous Et2O. There was deposited a fine white crystalline product which, after removal by filtration, ether washing, and air drying, yielded 3.8 g of 3-methoxy-4-ethoxyphenethylamine hydrochloride (MEPEA).

 

DOSAGE: 300 mg or greater.

 

DURATION: short.

 

QUALITATIVE COMMENTS: (with 120 mg) I am at perhaps a +1, a very slight effect of lightness, without any body awareness at all. And then in another hour, I was completely baseline again.

 

(with 300 mg) Whatever changes took place were complete at the end of an hour. The effects were very quiet, very pleasant, and very light. There was nothing psychedelic here, but rather a gentle lifting of spirits. No sensory enhancement or other expected changes.

 

EXTENSIONS AND COMMENTARY: This is one of the very few phenethylamines with only two substituents that shows even a hint of central activity. And there is an interesting story attached. I got a call out of absolutely nowhere, from a Stanislov Wistupkin, that he had discovered a number of new psychedelic drugs which he would like to share with me. Two of them were simple phenethylamines, one with an ethoxy group at the 4-position, and one with an allyloxy group there. Both, he said, were mood elevators active between 100 and 300 milligrams. One of them was this material, here called MEPEA, and the other one was 3-methoxy-4-allyloxyphenethylamine, or MAPEA. When I did meet him in person, he gave me a most remarkable publication which had been authored some ten years earlier, by a person named Leminger, now dead. It was all in Czech, but quite unmistakably, right there on the third page, were the structures of MEPEA and MAPEA, and the statement that they were active at between 100 and 300 milligrams. I have not yet made the allyloxy compound, but I feel that it too might be a gentle mood elevator similar to the ethoxy.

 

A most appealing extension of these materials would be the amphetamine derivatives, things with a 3-methoxy group, and something small and terse on the 4-position. The immediate analogies of MEPEA and MAPEA would be 3-methoxy-4-ethoxy- (and 3-methoxy-4-allyloxy)-amphetamine. And equally interesting would be the 4-hydroxy analogue. This would be an easily made compound from vanillin, one of our most enjoyable spices in the kitchen cabinet, and it would be directly related to the essential oils, eugenol and isoeugenol. This amphetamine compound has already been synthesized, but it is still unexplored in man.

 

Some years ago a report appeared in the forensic literature of Italy, of the seizure of a small semitransparent capsule containing 141 milligrams of a white powder that was stated to be a new hallucinogenic drug. This was shown to contain an analogue of DOM, 3-methoxy-4-methylamphetamine, or MMA. The Italian authorities made no mention of the net weight contained in each dosage unit, but it has been found that the active level of MMA in man is in the area of 40-60 milligrams. The compound can apparently be quite dysphoric, and long lived.

 

In the Czechoslovakian publication that presented MEPEA and MAPEA. there were descriptions of escaline (E), proscaline (P), and the allyloxy analogue (AL). These are all active in man, and have been entered elsewhere. This is the only published material dealing with psychedelic drugs I have ever been able to find, from the laboratory of Otakar Leminger. What sort of man was this chemist? He worked for years in industry, and only at the time of his retirement did he publish this little gem. He lived at Usti, directly north of Praha, on the Labe river (which is called by the better known name, the Elbe, as soon as it enters Germany). Might there be other treasures that he had discovered, and never published? Was young Wistupkin a student of his? Are there unrecognized notes of Otakar Leminger sitting in some farm house attic in Northern Czechoslovakia? I extend my heartfelt salute to an almost unknown explorer in the psychedelic drug area.      

 

 

 

#124 META-DOB; 5-BROMO-2,4-DIMETHOXYAMPHETAMINE

 

SYNTHESIS: The reaction of 2,4-dimethoxyamphetamine (2,4-DMA) with elemental bromine proceeded directly to the formation of 5-bromo-2,4-dimethoxyamphetamine which was isolated as the hydrobromide salt with a melting point of 204.5-205.5 deg C and in a 67% yield. A mp of 180-181 deg C has also been published.

 

DOSAGE: 50 - 100 mg.

 

DURATION: 5 - 6 h.

 

EXTENSIONS AND COMMENTARY: There is very little synthetic information available, and some of it is contradictory. The initial human report in the medical literature says only that a dosage of about 100 milligrams produced effects that were similar to those produced by MDA. Both the quality of the experience and the potency of the compound have been modified in more recent publications by the originators of this compound. A 40 milligram dose, after an induction period of an hour, produced a vague uneasiness that was interpreted originally as a threshold psychedelic effect. At doses in the 60 to 90 milligram range, there were produced feelings of anxiety and paranoid fantasies, and distinct toxic signs such as flushing, palpitations, and occasional nausea, vomiting and diarrhea. Any psychedelic effects seem to have been blurred by the more obvious toxic actions of the drug. I have been told that their final conclusion was that the drug appears toxic in the 50 to 60 milligram range. I have not personally explored this positional isomer of DOB.

 

The positional isomer of DOB with the bromine in the ortho-position is 4,5-dimethoxy-2-bromoamphetamine and is called, not surprisingly, ORTHO-DOB. It has been made by the condensation of 2-bromo-4,5-dimethoxybenzaldehyde with nitroethane to give 1-(2-bromo-4,5-dimethoxyphenyl)-2-nitropropene with a mp of 105-106 deg C. Reduction to the amphetamine had to be conducted at a low temperature and using only an equimolar amount of lithium aluminum hydride, to minimize reductive removal of the bromo group. The hydrochloride salt of 2-bromo-4,5-dimethoxyamphetamine (ORTHO-DOB) had a mp of 214-215.5 deg C, and the hydrobromide salt a melting point of 196-197 deg C or of 210 deg C. Both have been reported. The yield from the direct bromination of 3,4-DMA was apparently very bad. I do not think that the compound has ever gone into man.

 

There are three other dimethoxyamphetamine isomers known, and each has been explored chemically as to its reactivity with elemental bromine. With 2,3-DMA, a mixture of the 5-Br-2,3-DMA and 6-Br-2,3-DMA was formed; with 2,6-DMA, 3-Br-2,6-DMA was formed; and with 3,5-DMA, a mixture of 2-Br-3,5-DMA and the 2,6-dibromo product was produced. The bromination of 2,5-DMA is, of course, the preferred procedure for the synthesis of 4-Br-2,5- DMA, or DOB, q.v. None of these positional isomers has evear been put into man, but 3-Br-2,6-DMA and the iodo-counterpart have been explored as potential radio-fluorine carriers into the brain. This is all discussed in the 3,4-DMA recipe.

 

 

 

#125 META-DOT; 2,4-DIMETHOXY-5-METHYLTHIOAMPHETAMINE

 

SYNTHESIS: To 27 g 1,3-dimethoxybenzene that was being well stirred, there was added, dropwise, 29 g concentrated H2SO4 over a period of 15 min. Stirring was continued for 1 hour, and then the mixture was poured slowly into 250 mL of saturated aqueous K2CO3. The precipitate that formed was removed by filtration, and dried at 125 deg C to give 59.6 g crude potassium 2,4-dimethoxybenzenesulfonate. This was finely ground, and 30 g of it was treated with 35 g of POCl3 and the mixture heated on the steam bath for 2 h. This was cooled to room temperature, and then poured over 300 mL crushed ice. When all had thawed, this was extracted with 2x150 mL Et2O. The extracts were pooled, washed with saturated brine, and the solvent removed under vacuum to give a residue which solidified. There was thus obtained 14.2 g 2,4-dimethoxybenzenesulfonyl chloride as white solids with a mp of 69-72 deg C. Heating of a small portion with concentrated ammonium hydroxide gave the corresponding sulfonamide which, on recrystallization from EtOH, produced white needles with a mp of 165.5-166.5 deg C.

 

To a stirred and gently refluxing suspension of 11 g LAH in 750 mL anhydrous Et2O, there was added 13.2 g 2,4-dimethoxybenzenesulfonyl chloride in an Et2O solution. The refluxing was maintained for 48 h then, after cooling externally with ice water, the excess hydride was destroyed by the slow addition of 600 mL of 10% H2SO4. The phases were separated, and the aqueous phase extracted with 2x200 Et2O. The organics were pooled, washed once with 200 mL H2O, and the solvent removed under vacuum. The residue was dried azeotropically through the addition and subsequent removal of CH2Cl2. Distillation of the residue provided 8.0 g 2,4-dimethoxythiophenol as a colorless oil, boiling at 89-92 deg C at 0.5 mm/Hg.

 

To a solution of 7.8 g 2,4-dimethoxythiophenol in 40 mL absolute EtOH there was added a solution of 4 g 85% KOH in 65 mL EtOH. This was followed by the addition of 5 mL methyl iodide, and the mixture was held at reflux for 30 min. This was poured into 200 mL H2O, and extracted with 3x50 mL Et2O. The pooled extracts were washed once with aqueous sodium hydrosulfite, then the organic solvent was removed under vacuum. The residue was distilled to give 8.0 g of 2,4-dimethoxythioanisole as a colorless oil with a bp of 100-103 deg C at 0.6 mm/Hg.

 

To a mixture of 15 g POCl3 and 14 g N-methylformanilide that had been warmed briefly on the steam bath there was added 7.8 g of 2,4-dimethoxythioanisole. The reaction was heated on the steam bath for an additional 20 min and then poured into 200 mL H2O. Stirring was continued until the insolubles had become completely loose and granular. These were removed by filtration, washed with H2O, sucked as dry as possible, and then recrystallized from boiling MeOH. The product, 2,4-dimethoxy-5-(methylthio)benzaldehyde, was an off-white solid weighing 8.6 g. It could be obtained in either of two polymorphic forms, depending on the concentration of aldehyde in MeOH at the time of crystal appearance. One melted at 109-110 deg C and had a fingerprint IR spectrum including peaks at 691, 734, 819 and 994 cm-1. The other melted at 124.5-125.5 deg C and had major fingerprint peaks at 694, 731, 839 and 897 cm-1. Anal. (C10H12O3S) C,H.

 

A solution of 8.2 g 2,4-dimethoxy-5-(methylthio)benzaldehyde in 30 mL nitroethane was treated with 1.8 g anhydrous ammonium acetate and heated on the steam bath for 4 h. Removal of the excess nitroethane under vacuum gave a colored residue which crystallized when diluted with MeOH. Recrystallization of the crude product from boiling EtOH gave, after filtration, washing and air drying to constant weight, 8.3 g 1-(2,4-dimethoxy-5-methylthiophenyl)-2-nitropropene with a mp of 112-113 deg C. Anal. (C12H15NO4S) C,H,N.

 

A suspension of 6.5 g LAH in 250 mL anhydrous THF was placed under a N2 atmosphere and stirred magnetically and brought to reflux. There was added, dropwise, 8.0 g of 1-(2,4-dimethoxy-5-methylthiophenyl)-2-nitropropene in 50 mL THF. The reaction mixture was maintained at reflux for 18 h. After being brought to room temperature, the excess hydride was destroyed by the addition of 6.5 mL H2O in 30 mL THF. There was then added 6.5 mL of 3N NaOH, followed by an additional 20 mL H2O. The loose, white, inorganic salts were removed by filtration, and the filter cake washed with an additional 50 mL THF. The combined filtrate and washes were stripped of solvent under vacuum yielding a residue that was distilled. The free base boiled at 125-128 deg C at 0.1 mm/Hg and was a white oil which solidified on standing. It weighed 5.1 g and had a mp of 47-48.5 deg C. This was dissolved in 50 mL IPA, neutralized with concentrated HCl (until dampened universal pH paper showed a deep red color) and diluted with anhydrous Et2O to the point of turbidity. There was a spontaneous crystallization providing, after filtering, washing with Et2O, and air drying, 2,4-dimethoxy-5-methylthioamphetamine hydrochloride (META-DOT) with a mp of 140.5-142 deg C. Anal. (C12H20ClNO2S) C,H,N.

 

DOSAGE: greater than 35 mg.

 

DURATION: unknown.

 

QUALITATIVE COMMENTS: (with 35 mg) There was a vague awareness of something all afternoon, something that might be called a thinness. Possibly some brief cardiovascular stimulation, but nothing completely believable. This is a threshold level at the very most.

 

EXTENSIONS AND COMMENTARY: Again, as with the studies with ORTHO-DOT, it is apparent that the activity of META-DOT is going to be way down from the most interesting of these isomers, PARA-DOT (ALEPH-1, or just ALEPH). In the rectal hyperthermia assay (which calculates the psychedelic potential of compounds by seeing how they influence the body temperature of experimental animals in comparison to known psychedelics) the three DOT's were compared with DOM. And the results fell into line in keeping with the activities (or loss of activities) found in man. PARA-DOT was about half as active as DOM, but both ORTHO-DOT and the compound described here, META-DOT, were down by factors of 50x and 30x respectively. These animal studies certainly seem to give results that are reasonable with a view to other known psychedelic drugs, in that mescaline was down from DOM by a factor of more than 1000x, and LSD was some 33x more potent than DOM.

 

I have a somewhat jaundiced view of this rabbit rectal hyperthermia business. One is presumably able to tell whether a compound is a stimulant or a psychedelic drug by the profile of the temperature rise, and how potent it will be by the extent of the temperature rise. But the concept of pushing thermocouples into the rear ends of restrained rabbits somehow does not appeal to me. I would rather determine both of these parameters from human studies.

 

#126 METHYL-DMA; DMMA; 2,5-DIMETHOXY-N-METHYLAMPHETAMINE

 

SYNTHESIS: To a stirred solution of 28.6 g methylamine hydrochloride in 120 mL MeOH there was added 7.8 g 2,5-dimethoxyphenylacetone followed by 2.6 g sodium cyanoborohydride. HCL was added as needed to maintain the pH at about 6. The reaction was complete in 24 h, but was allowed to stir for another 3 days. The reaction mixture was poured into 600 mL H2O, acidified with HCl (HCN evolution, caution) and washed with 3x100 mL CH2Cl2. Aqueous NaOH was added, making the solution strongly alkaline, and this was then extracted with 3x100 mL CH2Cl2. Removal of the solvent from the pooled extracts under vacuum gave 8.3 g of a clear, off-white oil that distilled at 95-105 deg C. at 0.25 mm/Hg. The 6.5 g of colorless distillate was dissolved in 25 mL IPA, neutralized with concentrated HCl, and then diluted with anhydrous Et2O to the point of cloudiness. As crystals formed, additional Et2O was added in small increments, allowing clearing crystallization between each addition. In all, 200 mL Et2O was used. After filtering,Et2O washing, and air drying, there was obtained 6.2 g of 2,5-dimethoxy-N-methylamphetamine hydrochloride (METHYL-DMA) as fine white crystals with a mp of 117-118 deg C. The mixed mp with 2,5-DMA (114-116 deg C) was depressed to 96-105 deg C. An alternate synthesis gave the same overall yield of an identical product, but started with 2,5-DMA. It required two synthetic steps. The free base amine was converted to the crystalline formamide with formic acid in benzene using a Dean Stark trap, and this intermediate was reduced to METHYL-MDA with LAH.

 

DOSAGE: above 250 mg.

 

DURATION: unknown.

 

QUALITATIVE COMMENTS: (with 250 mg) There is a slight paresthesia at about 45 minutes, an awareness on the surface of the skin as if I had been touched by a cold draft of air. But nothing more. At three hours, I am completely out, if I was ever in. In the evening I assayed 120 milligrams of MDMA, and it barely produced a threshold effect, so the two materials might be seeing one another.

 

EXTENSIONS AND COMMENTARY: This is a difficult compound to pin down in the anthology of drugs. For some reason it has intrigued several independent, quiet researchers, and I have accumulated a number of interesting reports over the years. One person told me that he had felt nothing at up to 60 milligrams. Another had found a threshold at 50 milligrams, and had complete and thorough experiences at both 150 and 200 milligrams. Yet another person described two incidents involving separate individuals, with intravenous administrations of 0.2 mg/Kg, which would be maybe 15 or 20 milligrams. Both claimed a real awareness in a matter of minutes, one with a tingling in the genitalia and the other with a strange presence in the spine. Both subjects reported increases in body temperature and in blood pressure. Apparently the effects were felt to persist for many hours.

 

There is an interesting, and potentially informative, convergence of the metabolite of one drug with the structure of another. Under 4-MA, mention was made of a bronchodilator that has been widely used in the treatment of asthma and other allergenic conditions. This compound, 2-methoxy-N-methylamphetamine is known by the generic name of methoxyphenamine, and a variety of trade names with Orthoxine (Upjohn) being the best known. The typical dosage of methoxyphenamine is perhaps 100 milligrams, and it may be used several times a day. It apparently produces no changes in blood pressure and only a slight cardiac stimulation. And one of the major metabolites of it in man is the analogue with a hydroxyl group at the 5-position of the molecule. This phenolic amine, 5-hydroxy-2-methoxy-N-methylamphetamine is just a methyl group away from METHYL-DMA; it could either be methylated to complete the synthesis, or METHYL-DMA could be demethylated to form this phenol. There is plentiful precedent for both of these reactions occuring in the body. It is always intriguing when drugs which show distinctly different actions can, in principle, intersect metabolically at a single structure. One wonders just what the pharmacology of that common intermediate might be.

 

Three additional N-methylated homologues of known psychedelics warrant mention, but do not really deserve separate recipes. This is because they have had only the most cursory assaying, which I have learned about by personal correspondence. All three were synthesized by the reduction of the formamide of the parent primary amine with LAH. METHYL-TMA (or N-methyl-3,4,5-trimethoxyamphetamine) had been run up in several trials to a maximum of 240 milligrams, with some mental disturbances mentioned only at this highest level. METHYL-TMA-2 (or N-methyl-2,4,5-trimethoxyamphetamine) had been tried at up to 120 milligrams without any effects. METHYL-TMA-6 (or N-methyl-2,4,6- trimethoxyamphetamine) had been tried at up to 30 milligrams and it, too, was apparently without effects. These are reports that I have heard from others, but I have had no personal experience with them. Those that I can describe from personal experience are entered separately as recipes of their own. And there are many, many other N-methyl homologues which have been prepared and characterized in the literature, and have yet to be tasted. So far, however, the only consistent thing seen is that, with N-methylation, the potency of the psychedelics is decreased, but the potency of the stimulants appears to be pretty much maintained.

 

 

 

#127 METHYL-DOB; 4-BROMO-2,5-DIMETHOXY-N-METHYLAMPHETAMINE

 

SYNTHESIS: To a solution of 6.0 g of the free base of 2,5-dimethoxy-N-methyl-amphetamine (see recipe under METHYL-DMA) in 30 mL glacial acetic acid there was added, dropwise and with good stirring, a solution of 5.5 g bromine in 15 mL acetic acid. The reaction became quite warm, and turned very dark. After stirring an additional 45 min, the mixture was poured into 200 mL H2O and treated with a little sodium hydrosulfite which lightened the color of the reaction. There was added 20 mL concentrated HCl, and the reaction mixture was washed with 2x100 mL CH2Cl2 which removed most of the color. The aqueous. phase was made basic with 25% NaOH, and extracted with 3x100 mL CH2Cl2. The removal of the solvent from the pooled extracts under vacuum gave 1.8 g of an oil which was dissolved in 10 mL IPA, neutralized with concentrated HCl, and diluted with 100 mL anhydrous Et2O. No crystals were obtained, but rather an oily and somewhat granular insoluble lower phase. The Et2O was decanted, and the residue washed by grinding up under 3x100 mL Et2O. The original decanted material was combined with the three washes, and allowed to stand for several h. The product 4-bromo-2,5-dimethoxy-N-methylamphetamine hydrochloride (METHYL-DOB) separated as fine white crystals which weighed, after filtering and air drying, 0.3 g and had a mp of 149-150 deg C. The Et2O-insoluble residue finally set up to a pale pink mass which was finely ground under a few mL acetone. Filtration and air drying gave a second crop of product as 0.9 g of pale lavender solids, with a mp of 143-145 deg C.

 

DOSAGE: greater than 8 mg.

 

DURATION: probably rather long.

 

QUALITATIVE COMMENTS: (with 8.0 mg) At an hour and twenty minutes, I was suddenly quite light headed. An hour later I must say that the effects are real, and generally good. I am spacey Q nothing tangible. And a couple of hours yet later I am still aware. My teeth are somewhat rubby, and as things have been pretty steady for the last three hours, this will prove to be long lasting. There are a lot of physical effects that may be kidding me into providing myself some of the mental. At the sixth hour, I find that this is almost entirely physical. My teeth are tight, there is a general physical tenseness, my reflexes seem exaggerated, and my eyes are quite dilated. All of these signs are lessened by the eighth hour, and do not interfere with sleep at the twelfth hour. There is no desire to proceed any further, at least at the present time. Mental (+) physical (++). Next day, slight impression of persistence of toxicity.

 

(with 10 mg) Nothing psychedelic, but awfully hard on the bod. The next day (24 hours later) I had a severe response to 5 milligrams of psilocybin.

 

EXTENSIONS AND COMMENTARY: The mention above, of the 10 milligrams of METHYL-DOB followed by 5 milligrams of psilocybin, leads to some interesting speculation. The usual pattern that is seen when two psychedelic drugs are taken too closely together is that the second experience is less effective than would have been expected. This is the property that is called tolerance, and it is frequently seen in pharmacology. The two exposures may be to a single drug, or they may be to two different drugs which usually have some properties in common. It is as if the spirit of the receptor site had become a little tired and needed a while to rest up and recuperate. When there is a demand for a repeat of full effectiveness, the user will customarily increase the dosage of the drug that is used. It is one of the built-in protections, in the area of psychedelics that, after one experience, you must wait for a period of time to lose the refractoriness that has set in.

 

The measure of the degree of tolerance that can be shared between different drugs, called cross-tolerance, can be used as an estimate of the similarities of their mechanisms of action. In other words, if A and B are somehow seen by the body as being similar, then a normally effective dose of A will make a next-day's normally effective dose of B weaker than expected. Or not active at all. And B will do the same job on A. If two drugs are different in their ways of doing things in the body, there is most often no cross-tolerance seen. This was described for MDMA and MDA, and is the basis of the argument that they act by distinctly separate mechanisms. A person who used what would be held as an active dose of MDMA for several days lost all response to the drug. He was tolerant to its effects. But an exposure to an effective dose of MDA at the time that tolerance to MDMA was complete, provided a normal response to the MDA. The drugs are not cross-tolerant and the body recognizes them as distinct individuals.

 

But for one drug to promote, or to exaggerate, the effect of another is called potentiation, and can be a clue to the dynamics going on in the brain or body. Here, admittedly in only a single report, METHYL-DOB had somehow sensitized the subject to a rather light dosage of psilocybin. But there have been other reports like this that I have heard of, from here and there. I have been told of an experiment with the dextro-isomer of DOM (this is the inactive optical isomer) at a level that was, not surprisingly, without any effects. The researcher had a severe reaction the following day with what was referred to as "poor" hashish. A similar form of potentiation has been commented upon under the recipe for TOMSO, where an inactive drug, and a most modest amount of alcohol, add together to create an unexpectedly intense intoxication. But note that in each of these cases, it is a phenethylamine interacting with a non-phenethylamine (psilocybin is an indole, hashish is a non-alkaloid terpene thing, and alcohol is, well, alcohol).

 

The bottom line with METHYL-DOB is, as with the other N-methylated psychedelics, that it is way down in potency, and probably not worth pursuing.      

 

#128 METHYL-J; MBDB; EDEN;

2-METHYLAMINO-1-(3,4-METHYLENEDIOXYPHENYL)BUTANE;


Поделиться:



Последнее изменение этой страницы: 2019-03-30; Просмотров: 283; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.325 с.)
Главная | Случайная страница | Обратная связь