Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Типовой расчёт по теории вероятностей
Вариант 8 1. В группе спортсменов 18 лыжников, 8 велосипедистов и 4 бегуна. Вероятность выполнить квалифицированную норму такова: для лыжника – 0,9; для велосипедиста – 0,8; для бегуна – 0,75. Найдите вероятность того, что спортсмен, выбранный наудачу, выполнит норму. Если спортсмен выполнил квалифицированную норму, то какова вероятность того, что этим спортсменом будет: а) лыжник; б) велосипедист; в) бегун? 2. Найдите вероятность того, что среди 200 изделий окажется более трех бракованных, если в среднем бракованные изделия составляют 1%. 3. Вероятность выигрыша по одному билету равна 1/3. Какова вероятность того, что лицо, имеющее шесть билетов: выиграет по двум билетам; выиграет по трем билетам; не выиграет по двум билетам? 4. По данным длительной проверки качества выпускаемых запчастей определенного вида брак составляет 13%. Определите вероятность того, что в непроверенной партии из 150 запчастей пригодных будет 128 штук. 5. Вероятность изготовления детали с номинальными размерами равна 0,7. Вычислите вероятность того, что среди 300 деталей номинальными будут от 200 до 250. 6. Производится тестирование 5 больших интегральных схем (БИС). Вероятность того, что БИС неисправна, равна 0,6. Х – число неисправных БИС. Составьте закон распределения дискретной случайной величины Х, вычислите ее математическое ожидание, дисперсию, среднее квадратическое отклонение, а также начертите ее многоугольник распределения и график функции распределения. 7. Случайная величина Х задана функцией плотности распределения Найдите: 1) функцию распределения и необходимые константы; 2) математическое ожидание, дисперсию и среднее квадратическое отклонение; 3) вероятность попадания случайной величины Х в интервал . Постройте графики функций распределения и плотности распределения .
Типовой расчёт по теории вероятностей Вариант 9 1. На фабрике станки 1, 2 и 3 производят соответственно 20%, 35% и 45% всех деталей. В их продукции брак составляет соответственно 6%, 4%, 2%. Какова вероятность того, что случайно выбранное изделие оказалось дефектным? Какова вероятность того, что оно было произведено: а) станком 1; б) станком 2; в) станком 3? 2. Устройство состоит из 1600 элементов, работающих независимо один от другого. Вероятность отказа любого элемента в течение времени t равна 0,001. Найдите вероятность того, что за время t откажут не более 4 элементов. 3. Всхожесть семян некоторого растения составляет 70%. Какова вероятность того, что из 10 посеянных семян взойдут: 8; по крайней мере 8; не менее 8? 4. Производство электронно–лучевых трубок для телевизоров дает в среднем 12% брака. Найдите вероятность наличия 215 годных трубок в партии из 250 штук. 5. Из большой партии продукции, содержащей 70% изделий первого сорта, наугад отбирают 100 изделий. Вычислите вероятность того, что среди отобранных будет не менее 50 и не более 90 изделий первого сорта. 6. Пусть Х – число очков, выпавших при бросании двух игральных костей. Составьте закон распределения дискретной случайной величины Х, вычислите ее математическое ожидание, дисперсию, среднее квадратическое отклонение, а также начертите ее многоугольник распределения и график функции распределения. 7. Случайная величина Х задана функцией плотности распределения Найдите: 1) функцию распределения и необходимые константы; 2) математическое ожидание, дисперсию и среднее квадратическое отклонение; 3) вероятность попадания случайной величины Х в интервал . Постройте графики функций распределения и плотности распределения .
|
Последнее изменение этой страницы: 2019-03-31; Просмотров: 830; Нарушение авторского права страницы