Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Философия и нейробиология
Спор между принципом Коперника и антропным принципом отражается и в нейробиологии. К примеру, некоторые ученые утверждают, что человека можно свести к совокупности атомов, молекул и нейронов и потому во Вселенной нет для человечества достойного места. Доктор Дэвид Иглмен пишет: «Тот вы, которого ваши друзья знают и любят, не может существовать, если все транзисторы, болтики и винтики в вашем мозгу на месте. Если вы в это не верите, зайдите в неврологическое отделение любой больницы. Повреждение даже небольших участков мозга может привести к ужасу утраты нужных навыков: способности называть животных, или слышать музыку, или рисковать, или различать цвета, или принимать простые решения». Представляется, что мозг не может функционировать без всех своих «винтиков и болтиков». Иглмен делает вывод: «Наша реальность зависит от того, на что способна наша биология». Итак, с одной стороны, наше место во Вселенной умаляется, если нас можно, как роботов, свести к совокупности (биологических) винтиков и болтиков. Мы – всего лишь плоть, в которой действует программа под названием сознание – ни больше ни меньше. Наши мысли, желания, надежды и стремления можно свести к электрическим импульсам, циркулирующим в некоторой области префронтальной коры. Это принцип Коперника в применении к сознанию. Но к сознанию можно применить и антропный принцип, и тогда мы придем к противоположному выводу. Он гласит, что условия во Вселенной делают сознание возможным, хотя получить разум в результате случайных событий очень сложно. Великий биолог Викторианской эпохи Томас Гексли говорил: «Как получается, что нечто столь замечательное, как состояние сознания, возникает в результате раздражения нервной ткани, столь же непостижимо, как появление джинна в результате того, что Аладдин потер лампу». Более того, большинство астрономов считает, что когда‑нибудь нам, возможно, удастся обнаружить жизнь на других планетах, но это, скорее всего, будет микрожизнь, властвовавшая в наших океанах миллиарды лет. Вместо великих городов и империй мы, возможно, увидим лишь океаны дрейфующих микроорганизмов. Когда я во время интервью спросил об этом у ныне покойного гарвардского биолога Стивена Джея Гулда, он объяснил мне, что думает так: если бы мы могли каким‑то образом получить копию Земли такой, какой она была 4,5 млрд лет назад, то что стало бы с ней через 4,5 млрд лет? Стала бы она точной копией Земли сегодняшней? Скорее всего, нет. Существует значительная вероятность, что ДНК и жизнь никогда не стали бы на ноги, и еще бóльшая вероятность того, что разумная жизнь и сознание никогда не поднялись бы из трясины. Гулд писал: «Homo sapiens – всего лишь небольшая веточка [на древе жизни]… Тем не менее наша веточка, к добру или к худу, развила в себе самое необычное новое качество в истории многоклеточной жизни, начиная с кембрийского взрыва 500 млн лет назад. Мы изобрели сознание со всеми его следствиями от Гамлета до Хиросимы». Вообще‑то в истории Земли было множество моментов, когда разумная жизнь легко могла исчезнуть. Помимо массового вымирания, стершего с лица планеты динозавров и бóльшую часть других видов, человечество переживало и собственные катастрофические периоды. Так, все люди на Земле генетически довольно близко связаны между собой – намного ближе, чем типичные животные одного вида. Люди могут выглядеть по‑разному, но наши гены и внутренняя биохимия говорят о другом. Любые два человека на планете так близкородственны друг другу генетически, что можно даже подсчитать, когда именно «генетическая Ева» или «генетический Адам» дали жизнь всему роду человеческому. Более того, можно вычислить, сколько всего людей жило на Земле в прошлом. Числа, кстати, получаются замечательные. Генетика показывает, что 70 000–100 000 лет назад на Земле жило от нескольких сотен до нескольких тысяч человек, от которых и пошел весь род человеческий. (Одна из теорий утверждает, что титанический взрыв вулкана Тоба в Индонезии около 70 000 лет назад вызвал такое похолодание, что большая часть людей вымерла, а горстка оставшихся вновь заселила Землю.) Из этой небольшой группы людей вышли искатели приключений и исследователи, которым со временем удалось колонизировать всю планету. Раз за разом в ходе истории Земли разумная жизнь на ней оказывалась в тупике. Чудо, что мы все же уцелели. Можно заключить также, что, хотя жизнь может существовать на многих планетах, сознательная жизнь, по всей видимости, развивается лишь на крохотной их части. Поэтому мы должны ценить земной разум. Это высшая форма сложности, известная во Вселенной, и, вероятно, самая редкая. Иногда, размышляя о будущей судьбе рода человеческого, я думаю и о вероятности нашего самоуничтожения. Конечно, вулканы и землетрясения опасны для человека и могут погубить его, но думается, что самую большую опасность для нас представляют рукотворные катастрофы, такие как ядерная война или микробы, созданные в лабораториях биоинженерии. Если так, то единственная, возможно, разумная жизнь в этой части Галактики может погибнуть. Мне кажется, это было бы трагедией не только для нас, но и для Вселенной. Сознание кажется нам естественным состоянием, но мы не задумываемся о длинной и непростой цепочке биологических событий, которая привела к его возникновению. Психолог Стивен Пинкер пишет: «Я сказал бы, что ничто не придает жизни большей целеустремленности, чем понимание того, что каждый момент осознания себя есть драгоценный и хрупкий дар».
Чудо сознания
Наконец, есть критики науки, утверждающие, что понять что‑то означает сорвать с этого чего‑то покров тайны и волшебства. Наука, срывая с сознания покровы, делает его более обычным и будничным. Однако, чем больше я узнаю о сложности мозга, тем сильнее поражаюсь тому, что на плечах у нас находится самый сложный известный нам объект во Вселенной. Доктор Дэвид Иглмен говорит: «Какой все же мозг загадочный шедевр, и как же нам повезло, что мы принадлежим к поколению, у которого есть технологии и воля обратить на него свое внимание! Это самая чудесная вещь, которую мы до сих пор обнаружили во Вселенной, – и это мы». Вместо того чтобы умалять наше восхищение, новые знания о мозге лишь усиливают его. Более двух тысяч лет назад Сократ сказал: «Познай самого себя – это начало мудрости». Нам предстоит долгий путь, прежде чем мы сможем выполнить его пожелание.
Приложение
Квантовое сознание?
Несмотря на великолепные успехи в сканировании мозга и высоких технологиях, некоторые утверждают, что мы никогда не раскроем тайны сознания, поскольку сознание выходит далеко за пределы возможностей нашей жалкой техники. С их точки зрения, сознание более фундаментально, чем атомы, молекулы и нейроны, и определяет саму природу реальности. Сознание для них – фундаментальная сущность, из которой соткан материальный мир. И чтобы доказать эту точку зрения, они ссылаются на один из величайших парадоксов науки, бросающий вызов самому определению реальности: парадокс, связанный с котом Шрёдингера. Сегодня не существует общепринятой точки зрения на эту проблему, и даже нобелевские лауреаты занимают разные позиции. Но и цена вопроса велика: на кон ставится ни много ни мало природа реальности и мысли. Парадокс кота Шрёдингера лежит практически в основании квантовой механики – области науки, благодаря которой возможны лазер, МРТ‑сканер, радио и телевидение, современная электроника, GPS и телекоммуникации. От нее зависит мировая экономика. Многие из предсказаний квантовой теории проверены до точности в одну стомиллиардную долю[23]. Всю свою профессиональную жизнь я работал над квантовой теорией. Да, я понимаю, что это колосс на глиняных ногах. Очень неприятно чувствовать, что работа всей моей жизни основана на теории, фундамент которой составляет парадокс. В свое время дебаты на эту тему начал австрийский физик Эрвин Шрёдингер, один из отцов‑основателей квантовой теории. Вообще‑то он пытался объяснить странное поведение электронов, которые норовили продемонстрировать свойства то волны, то частицы. Как может электрон, точечная частица, следовать двум разным моделям поведения? Иногда электроны вели себя как частицы и оставляли хорошо заметный след в камере Вильсона. В других случаях электроны вели себя как волны, проходили сквозь крохотные отверстия и создавали волноподобные интерференционные картины, подобно волнам на поверхности пруда. В 1925 г. Шрёдингер предложил свое знаменитое волновое уравнение, которое позже было названо его именем, – одно из важнейших уравнений всех времен. Оно сразу же стало сенсацией и в 1933 г. принесло Шрёдингеру Нобелевскую премию. Уравнение Шрёдингера точно описывало волновое поведение электрона, а в приложении к атому водорода прекрасно объясняло его странные свойства. Поразительно, но приложить его можно было к любому атому, причем при помощи уравнения удавалось объяснить большую часть особенностей периодической системы Менделеева. Создавалось впечатление, что вся химия (а значит, и вся биология) является не чем иным, как решениями этого волнового уравнения. Некоторые физики даже утверждали, что вся Вселенная со всеми звездами, планетами и даже с нами не что иное, как решение этого уравнения. Но затем физики начали задавать вопрос, звучащий актуально даже сегодня: если электрон описывается волновой функцией, то что именно колеблется? В 1927 г. Вернер Гейзенберг предложил новый принцип, расколовший физическое сообщество надвое. Знаменитый принцип неопределенности Гейзенберга гласит, что одновременно точно знать и положение электрона, и его импульс невозможно. Причем такая неопределенность не зависит от того, насколько грубы ваши инструменты, а изначально заложена в самой физике. Даже Бог или другое какое‑нибудь небесное существо не в состоянии знать точное расположение и импульс электрона. Так что волновая функция Шрёдингера на самом деле описывает вероятность нахождения электрона в данной точке. Ученые тысячи лет пытались устранить всякие случайности и вероятности из своей работы, а теперь вдруг Гейзенбергу вздумалось впустить их с черного хода. Новую философию можно подытожить примерно таким образом: электрон – точечная частица, но вероятность его нахождения в данной точке задается волновой функцией. А волна эта подчиняется уравнению Шрёдингера и порождает принцип неопределенности. Физическое сообщество раскололось. С одной стороны, собрались такие физики, как Нильс Бор и Вернер Гейзенберг, и большинство атомных физиков с готовностью приняли новую формулировку. Почти ежедневно они объявляли о новых прорывах в исследовании свойств вещества. Нобелевские премии вручались, как «Оскары», и одна за другой доставались специалистам по квантовой физике. Квантовая механика потихоньку переходила в разряд руководства к действию. Не нужно было быть великим физиком, чтобы внести поистине звездный вклад: чтобы делать поразительные открытия, достаточно было просто следовать рецептам квантовой механики. С другой стороны, нобелевские лауреаты старшего поколения, такие как Альберт Эйнштейн, Эрвин Шрёдингер и Луи де Бройль, поднимали философские вопросы. Шрёдингер, с работ которого, собственно, и начался процесс, жаловался: знай он, что его уравнение впустит в физику вероятности, никогда бы не стал вводить его. Физики затеяли спор, который продлился 80 лет и продолжается до сих пор. С одной стороны, Эйнштейн заявил, что «Бог не играет в кости с миром». С другой стороны, Нильс Бор, как рассказывали, ответил: «Перестаньте указывать Богу, что он должен делать». В 1935 г. Шрёдингер, пытаясь раз и навсегда покончить с квантовой физикой, предложил свой знаменитый мысленный эксперимент с котом. Помещаем кота в запечатанный ящик вместе с контейнером, содержащим ядовитый газ. Там же, в ящике, находится крохотный кусочек урана. Атом урана нестабилен и при распаде испускает частицы, которые можно зарегистрировать счетчиком Гейгера. Счетчик включает механизм, который опускает молоток на стеклянный контейнер с газом; стекло разбивается, газ выходит и убивает кота. Как при этом можно описать кота? Специалист по квантовой физике сказал бы, что атом урана описывается волновой функцией, которая может распасться или не распасться. Поэтому нам следует сложить две волны. Если атом урана сработает, кот умрет; этот случай описывается одной волновой функцией. Если уран не сработает, кот будет жить, и этот случай тоже описывается функцией. Таким образом, чтобы описать кота, вам придется сложить волновые функции живого и мертвого кота. Это означает, что кот и не жив, и не мертв! Он находится в промежуточном состоянии между жизнью и смертью и представляет собой сумму волновой функции, описывающей мертвого кота, и волновой функции, описывающей живого. В этом суть проблемы, почти век гремевшей всюду, где есть физики. Как разрешить этот парадокс? Существует по крайней мере три способа (и сотни их вариантов). Первая – это оригинальная копенгагенская интерпретация, предложенная Бором и Гейзенбергом; именно ее обычно излагают в учебниках. (Я тоже начинаю с нее, когда преподаю квантовую механику.) В ней утверждается: чтобы определить состояние кота, вы должны открыть ящик и произвести измерение. Волновая функция кота (сумма функций живого и мертвого кота) в этот момент схлопывается в единственную волновую функцию, и становится известно, жив кот в данный момент или мертв. Таким образом, наблюдение определяет существование и состояние кота. Именно процесс измерения отвечает за то, что две функции волшебным образом растворяются и превращаются в одну. Эйнштейну это очень не понравилось. Столетиями ученые боролись с позицией, известной как «солипсизм» или «субъективный идеализм», согласно которой объекты не могут существовать, если вокруг нет никого, кто мог бы наблюдать их. Лишь сознание реально – материальный мир существует только в сознании в виде идей. Так, говорят солипсисты (к примеру, епископ Джордж Беркли), если дерево упадет в лесу, но никого не окажется рядом, чтобы это увидеть, то, может, дерево и не упадет. Эйнштейн, считавший подобные рассуждения чистой чепухой, выступал с противоположной позиции так называемой «объективной реальности», согласно которой Вселенная существует в уникальном и вполне определенном состоянии, которое не зависит ни от каких человеческих наблюдений. Именно эту точку зрения подсказывает большинству людей здравый смысл. Объективная реальность восходит к Исааку Ньютону. В этом сценарии атом и субатомные частицы похожи на крохотные стальные шарики, существующие в определенных точках пространства и времени. Нет никакой двойственности, никакой вероятности в определении положения этих шариков, движения которых определяются соответствующими физическими законами. Объективная реальность замечательно описывала движение планет, звезд и галактик. Если добавить относительность, она может описывать также черные дыры и расширяющуюся Вселенную. Но есть одно место, где она отказывает, и это место – внутри атома. Классические физики вроде Ньютона и Эйнштейна считали, что объективная реальность окончательно изгнала солипсизм из физики. Журналист Уолтер Липпман так описал ситуацию: «Радикальная новизна современной физики заключается именно в отрицании веры… в то, что силы, движущие звездами и атомами, согласуются в предпочтениями человеческого сердца». Но квантовая механика впустила в физику новую форму солипсизма. В этой картине дерево до наблюдения может существовать в любом возможном состоянии (живом, сгоревшем, спиленном, сгнившем, в виде зубочисток и т. п.). Но если вы посмотрите на него, его волновая функция внезапно схлопнется и дерево станет деревом. Прежние солипсисты говорили о деревьях, которые то ли падают, то ли нет. Новые квантовые солипсисты ввели в рассмотрение все возможные состояния дерева. Для Эйнштейна это было слишком. Он нередко задавал своим гостям вопрос: «Неужели Луна существует потому, что на нее смотрит мышь?» Для квантового физика ответ в определенном смысле может быть «да». Эйнштейн и его коллеги нападали на Бора с вопросом: как может квантовый микромир (где коты бывают одновременно живыми и мертвыми) сосуществовать с миром здравого смысла, который все мы видим вокруг? Ответ был такой: наш мир от мира атомов отделяет «стена». По одну сторону стены правит здравый смысл. По другую – квантовая теория. Стену при желании можно передвинуть, но результат будет тот же. Эту интерпретацию, какой бы странной она ни казалась, специалистам по квантовой физике преподавали 80 лет. Не так давно в отношении копенгагенской интерпретации возникли некоторые сомнения. Сегодня у нас есть нанотехнологии, при которых мы манипулируем отдельными атомами. На экране сканирующего туннельного микроскопа атомы похожи на пушистые теннисные мячики. (Во время съемок сюжета для BBC‑TV мне довелось попасть в лабораторию Almaden фирмы IBM в Сан‑Хосе (штат Калифорния) и даже подвигать отдельные атомы при помощи крохотного зонда. Сегодня мы можем играть с атомами, а ведь когда‑то считалось, что они настолько малы, что даже увидеть их человеку никогда не удастся.) Как мы уже говорили, век кремния медленно подходит к концу, и кое‑кто считает, что на смену кремниевым транзисторам придут молекулярные. Если так, то парадоксы квантовой теории лягут в фундамент каждого компьютера будущего. Когда‑нибудь на них, возможно, будет основана мировая экономика.
|
Последнее изменение этой страницы: 2019-03-31; Просмотров: 311; Нарушение авторского права страницы