Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Разрешение перегрузки и наследование A



Наследование классов оказывает влияние на все аспекты разрешения перегрузки функций (см. раздел 9.2). Напомним, что эта процедура состоит из трех шагов:

1. Отбор функций-кандидатов.

2. Отбор устоявших функций.

3. Выбор наилучшей из устоявших функции.

Отбор функций-кандидатов зависит от наследования потому, что на этом шаге принимаются во внимание функции, ассоциированные с базовыми классами, – как их функции-члены, так и функции, объявленные в тех же пространствах имен, где определены базовые классы. Отбор устоявших функций также зависит от наследования, поскольку множество преобразований формальных параметров функции в фактические аргументы расширяется пользовательскими преобразованиями. Кроме того, наследование оказывает влияние на ранжирование последовательностей трансформаций аргументов, а значит, и на выбор наилучшей из устоявших функции. В данном разделе мы рассмотрим влияние наследования на эти три шага разрешения перегрузки более подробно.

Функции-кандидаты

Наследование влияет на первый шаг процедуры разрешения перегрузки функции – формирование множества кандидатов для данного вызова, причем это влияние может быть различным в зависимости от того, рассматривается ли вызов обычной функции вида

func( args );

или функции-члена с помощью операторов доступа “точка” или “стрелка”:

object.memfunc( args );

pointer-> memfunc( args );

В данном разделе мы изучим оба случая.

Если аргумент обычной функции имеет тип класса, ссылки или указателя на тип класса, и класс определен в пространстве имен, то кандидатами будут все одноименные функции, объявленные в этом пространстве, даже если они невидимы в точке вызова (подробнее об этом говорилось в разделе 15.10). Если аргумент при наследовании имеет тип класса, ссылки или указателя на тип класса, и у этого класса есть базовые, то в множество кандидатов добавляются также функции, объявленные в тех пространствах имен, где определены базовые классы. Например:

namespace NS {

class ZooAnimal { /*... */ };

void display( const ZooAnimal& );

}

 

// базовый класс Bear объявлен в пространстве имен NS

class Bear: public NS:: ZooAnimal { };

 

int main() {

Bear baloo;

 

display( baloo );

return 0;

}

Аргумент baloo имеет тип класса Bear. Кандидатами для вызова display() будут не только функции, объявления которых видимы в точке ее вызова, но также и те, что объявлены в пространствах имен, в которых объявлены класс Bear и его базовый класс ZooAnimal. Поэтому в множество кандидатов добавляется функция display(const ZooAnimal& ), объявленная в пространстве имен NS.

Если аргумент имеет тип класса и в определении этого класса объявлены функции-друзья с тем же именем, что и вызванная функция, то эти друзья также будут кандидатами, даже если их объявления не видны в точке вызова (см. раздел 15.10). Если аргумент при наследовании имеет тип класса, у которого есть базовые, то в множество кандидатов добавляются одноименные функции-друзья каждого из них. Предположим, что в предыдущем примере display() объявлена как функция-друг ZooAnimal:

namespace NS {

class ZooAnimal {

friend void display( const ZooAnimal& );

};

}

 

// базовый класс Bear объявлен в пространстве имен NS

class Bear: public NS:: ZooAnimal { };

 

int main() {

Bear baloo;

 

display( baloo );

return 0;

}

Аргумент baloo функции display() имеет тип Bear. В его базовом классе ZooAnimal функция display() объявлена другом, поэтому она является членом пространства имен NS, хотя явно в нем не объявлена. При обычном просмотре NS она не была бы найдена. Однако поскольку аргумент display() имеет тип Bear, то объявленная в ZooAnimal функция-друг добавляется в множество кандидатов.

Таким образом, если при вызове обычной функции задан аргумент, который представляет собой объект класса, ссылку или указатель на объект класса, то множество функций-кандидатов является объединением следующих множеств:

· функций, видимых в точке вызова;

· функций, объявленных в тех пространствах имен, где определен тип класса или любой из его базовых;

· функций, являющихся друзьями этого класса или любого из его базовых.

Наследование влияет также на построение множества кандидатов для вызова функции-члена с помощью операторов “точка” или “стрелка”. В разделе 18.4 мы говорили, что объявление функции-члена в производном классе не перегружает, а скрывает одноименные функции-члены в базовом, даже если их списки параметров различны:

class ZooAnimal {

public:

Time feeding_time( string );

//...

};

class Bear: public ZooAnimal {

public:

// скрывает ZooAnimal:: feeding_time( string )

Time feeding_time( int );

//...

};

 

Bear Winnie;

 

// ошибка: ZooAnimal:: feeding_time( string ) скрыта

Winnie.feeding_time( " Winnie" );

Функция-член feeding_time(int), объявленная в классе Bear, скрывает feeding_time(string), объявленную в ZooAnimal, базовом для Bear. Поскольку функция-член вызывается через объект Winnie типа Bear, то при поиске кандидатов для этого вызова просматривается только область видимости класса Bear, и единственным кандидатом будет feeding_time(int). Так как других кандидатов нет, вызов считается ошибочным.

Чтобы исправить ситуацию и заставить компилятор считать одноименные функции-члены базового и производного классов перегруженными, разработчик производного класса может ввести функции-члены базового класса в область видимости производного с помощью using-объявлений:

class Bear: public ZooAnimal {

public:

// feeding_time( int ) перегружает экземпляр из класса ZooAnimal

using ZooAnimal:: feeding_time;

Time feeding_time( int );

//...

};

Теперь обе функции feeding_time() находятся в области видимости класса Bear и, следовательно, войдут в множество кандидатов:

// правильно: вызывается ZooAnimal:: feeding_time( string )

Winnie.feeding_time( " Winnie" );

В такой ситуации вызывается функция-член feeding_time( string ).

В случае множественного наследования при формировании совокупности кандидатов объявления функций-членов должны быть найдены в одном и том же базовом классе, иначе вызов считается ошибочным. Например:

class Endangered {

public:

ostream& print( ostream& );

//...

{;

 

class Bear: public( ZooAnimal ) {

public:

void print( );

using ZooAnimal:: feeding_time;

Time feeding_time( int );

//...

};

 

class Panda: public Bear, public Endangered {

public:

//...

};

 

int main()

{

Panda yin_yang;

 

// ошибка: неоднозначность: одна из

//    Bear:: print()

//    Endangered:: print( ostream& )

yin_yang.print( cout );

 

// правильно: вызывается Bear:: feeding_time()

yin_yang.feeding_time( 56 );

}

При поиске объявления функции-члена print() в области видимости класса Panda будут найдены как Bear:: print(), так и Endangered:: print(). Поскольку они не находятся в одном и том же базовом классе, то даже при разных списках параметров этих функций множество кандидатов оказывается пустым и вызов считается ошибочным. Для исправления ошибки в классе Panda следует определить собственную функцию print(). При поиске объявления функции-члена feeding_time() в области видимости Panda будут найдены ZooAnimal:: feeding_time() и Bear:: feeding_time() – они расположены в области видимости класса Bear. Так как эти объявления найдены в одном и том же базовом классе, множество кандидатов для данного вызова включает обе функции, а выбирается Bear:: feeding_time().

19.3.2. Устоявшие функции и последовательности пользовательских преобразований

Наследование оказывает влияние и на второй шаг разрешения перегрузки функции: отбор устоявших из множества кандидатов. Устоявшей называется функция, для которой существуют приведения типа каждого фактического аргумента к типу соответственного формального параметра.

В разделе 15.9 мы показали, как разработчик класса может предоставить пользовательские преобразования для объектов этого класса, которые неявно вызываются компилятором для трансформации фактического аргумента функции в тип соответственного формального параметра. Пользовательские преобразования бывают двух видов: конвертер или конструктор с одним параметром без ключевого слова explicit. При наследовании на втором шаге разрешения перегрузки рассматривается более широкое множество таких преобразований.

Конвертеры наследуются, как и любые другие функции-члены класса. Например, мы можем написать следующий конвертер для ZooAnimal:

class ZooAnimal {

public:

 

// конвертер: ZooAnimal ==> const char*

operator const char*();

 

//...

};

Производный класс Bear наследует его от своего базового ZooAnimal. Если значение типа Bear используется в контексте, где ожидается const char*, то неявно вызывается конвертер для преобразования Bear в const char*:

extern void display( const char* );

 

Bear yogi;

 

// правильно: yogi ==> const char*

display( yogi );

Конструкторы с одним аргументом без ключевого слова explicit образуют другое множество неявных преобразований: из типа параметра в тип своего класса. Определим такой конструктор для ZooAnimal:

class ZooAnimal {

public:

// преобразование: int ==> ZooAnimal

ZooAnimal( int );

 

//...

};

Его можно использовать для приведения значения типа int к типу ZooAnimal. Однако конструкторы не наследуются. Конструктор ZooAnimal нельзя применять для преобразования объекта в случае, когда целевым является тип производного класса:

const int cageNumber = 8788l

 

void mumble( const Bear & );

 

// ошибка: ZooAnimal( int ) не используется

mumble( cageNumber );

Поскольку целевым типом является Bear – тип параметра функции mumble(), то рассматриваются только его конструкторы.


Поделиться:



Последнее изменение этой страницы: 2019-04-09; Просмотров: 305; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.031 с.)
Главная | Случайная страница | Обратная связь