Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Изготовление ампул на полуавтоматах



Производство ампул осуществляется из стеклянных трубок (дрота медицинского) и включает следующие основные стадии: изготовление стеклодрота, мойка и сушка дрота, выделка ампул.

Стеклодрот выпускается на стекольных заводах из медицинского стекла. Качество дрота регламентируется по следующим показателям: конусность, равностенность, прямолинейность, отмываемость загрязнений. Дрот должен быть однородным (без пузырьков воздуха и механических включений), правильной формы в разрезе (круг, а не эллипс) и одинакового диаметра по всей длине.

Изготовление стеклодрота и требования к его качеству. Дрот производится из жидкой стеклянной массы на специальных линиях АТ 2-8-50 фирмы Тунгсрам (Венгрия) путем вытягивания, установленных на стекловаренных печах. Длина трубок должна составлять 1500±50 мм, наружный диаметр от 8, 0 до 27, 00 мм, что регулируется изменением количества стекломассы на формовочные устройства, изменением величины давления воздуха и скорости вытягивания.

Основными требованиями, предъявляемыми к стеклодроту согласно ТУ 64-2-5-76, являются: отсутствие различных включений (пороков), чистота наружной и внутренней поверхностей, стандартность по размеру; трубки должны быть цилиндрическими и прямолинейными.

Пороки стеклянных трубок, в основном, определяются качеством стекломассы. Стекло, которое получают в промышленных печах, всегда имеет те или иные включения, которые можно разделить на три вида: газовые, стекловидные и кристаллические.

Газовые включения характеризуются наличием в стекле различных газов, которые могут быть в виде пузырьков (видимые включения) и растворенными в стекломассе (невидимые включения). Размеры видимых невооруженным глазом пузырьков колеблются от десятых долей до нескольких миллиметров. Мельчайшие пузырьки называются «мошкой». В пузырьках могут содержаться различные газы или их смеси: О2, СО, СО2 и др. В стекле иногда образуются сильно вытянутые пузырьки, которые называются полыми капиллярами. Причинами газовых включений могут быть: неполное удаление газообразных продуктов разложения элементов шихты при ее варке, попадание воздуха в стекломассу и др. Такие компоненты стекломассы, как карбонаты, сульфаты, нитраты вызывают обменные и другие реакции с выделением газов, которые остаются внутри стекломассы.

К мерам предупреждения возникновения пузырьков газа относятся: правильный подбор материалов, использование оптимального количества стеклобоя, соблюдение технологического режима варки стекломассы.

Стеклодрот не должен содержать продавливающихся стальной иглой капилляров и пузырей, размер их допускается не более 0, 25 мм.

Кристаллические включения (камни) являются главным пороком стекломассы. Они понижают механическую прочность и термическую устойчивость изделия из стекла, ухудшают его внешний вид. Размер их колеблется в пределах нескольких миллиметров. Под действием высокой температуры они могут расплавляться, образуя стекловидные капли.

По внешнему виду эти включения представляют собой одиночные камни или пучкообразные нити в толще стекломассы. Нити придают стеклу слоистость, образуя свили. Основной причиной образования свилей являются попадание в стекломассу инородных веществ и недостаточная гомогенизация стекломассы.

На стеклянных трубках не допускается попадание шамотных камней размером свыше 2 мм (грубая ощутимая рукой свиль).

Калибровка дрота. Для получения ампул одной партии (серии) необходимо применять трубки одного диаметра и с одинаковой толщиной стенок, чтобы ампулы одной серии имели заданную вместимость. Точность калибровки определяет стандартность ампулы и имеет большое значение для механизации и автоматизации ампульного производства. С этой целью дрот калибруют по наружному диаметру на машине Н.А. Филипина (рис. 5.5).

Рис.5.5. Схема установки для калибровки дротов по наружному диаметру. Объяснение в тексте

Стеклянные трубки (7) попадая в машину, по направляющим (1) скатываются до упора (6). Откуда при помощи захватов (5) подаются на калибры (3). На вертикальной раме машины (4) укреплено пять калибров. Если диаметр трубки больше отверстия калибра, трубка поднимается выше захватами вверх на следующие калибры с большим зазором. Трубки, диаметр которых соответствует размеру калибра, по наклонным направляющим скатываются в накопитель (2), откуда поступают на мойку.

Мойка и сушка дрота. Известно несколько способов мойки дрота. Самым распространенным является камерный способ. Установка для промывки представляет собой две герметически закрывающиеся камеры, загружаемые вертикально стоящими пучками дрота. Камеры заполняются горячей водой или раствором моющего средства, после чего производится подача пара или сжатого воздуха через барботер. Затем жидкость из камеры сливается и дрот промывается душированием обессоленной водой под давлением. Для сушки внутрь камеры подается горячий фильтрованный воздух. Более эффективным является способ мойки с помощью ультразвука, используемый на ФФ «Здоровье». Установка такой мойки трубок работает следующим образом. Трубки в горизонтальном положении подаются на транспортные диски, подходят к газовым горелкам для оплавления с одной стороны и погружаются в барабан ванны, заполненной горячей водой очищенной. На дне ванны расположен ряд магнитострикционных генераторов ультразвука. Дополнительно в отверстия трубок из сопел подается струя воды. Таким образом воздействие ультразвука сочетается со струйной мойкой. Вымытые трубки подвергаются сушке в воздушных сушилках при температуре 270°С.

Значительно улучшает эффективность мойки контактно-ультразвуковой способ, так как в данном случае к специфическим воздействиям ультразвука (кавитация, давление, ветер) добавляется механическая вибрация трубок с высокой частотой.

Выделка ампул. В европейских странах и в нашей стране ампулы изготавливают на стеклоформующих автоматах роторного типа при вертикальном положении трубок и непрерывном вращении ротора. Ампула формуется на специальном автомате «Амбег».

Производительность автоматов, формующих ампулы, колеблется в пределах 2000-5000 ампул в час. Наибольшее применение имеют шестнадцати- и тридцатишпиндельные автоматы. Шестнадцатишпиндельные автоматы имеют автоматическую систему подачи трубок в рабочую зону, благодаря ему один рабочий может одновременно обслуживать две или три машины.

На отечественных заводах фармацевтической промышленности широко применяются автоматы ИО-8 «Тунгсрам» (Венгрия). Внутри станины – основания автомата расположен привод непрерывно вращающейся карусели, несущей на себе 16 пар вертикальных верхних и нижних шпинделей (патронов). На верхней плите карусели установлены накопительные барабаны для автоматической загрузки трубками верхних шпинделей, внутри карусели закреплены неподвижные горелки. Карусель охватывает совершающее качательное движение вокруг ее оси кольцо, на котором расположены направленные внутрь подвижные горелки. Кольцо несет на себе также приспособления для формирования пережима капилляра ампул и другой необходимый инструмент. В центральной зоне карусели смонтирована труба для отсоса и отвода горячих газов, образующихся при работе автомата. В нижней его части у места выхода готовых ампул могут быль расположены приспособления для резки, сортировки и набора в кассеты готовых ампул. На рис.5.6. представлена схема получения ампул на автоматах этого типа.

Рис. 5.6. Принцип работы полуавтомата для выделки ампул
1 – верхний патрон; 2 – горелка; 3 – ограничительный упор; 4 – нижний патрон;
5 – ролик; 6 – копир; 7 – горелка с острым пламенем; 8 – стеклянная трубка; 9 – готовая ампула

Трубки загружаются в накопительные барабаны и последовательно проходят 6 позиций:

I. Трубки подаются из накопительного барабана внутрь патрона и с помощью ограничительного упора устанавливается их длина. Верхний патрон сжимает трубку, оставляя ее на постоянной высоте;

II. К трубке подходят оттяжная горелка с широким пламенем и разогревает ее участок, подлежащий растяжке. В это время нижний патрон, двигаясь по копиру, поднимается вверх и зажимает нижнюю часть трубки;

III. После разогрева стекла нижний патрон опускается вниз и размягченный участок трубки растягивается, образуя капилляр ампулы;

IV и V. Далее отрезная горелка с острым пламенем отрезает уже готовую ампулу, одновременно формуя (запаивая) донышко последующей ампулы;

VI. При дальнейшем вращении ротора (карусели) раскрываются зажимы нижнего патрона и готовые ампулы сбрасываются в накопительный лоток. Трубка с запаянным донышком подходит к ограничительному упору 1-й позиции и цикл работы автомата повторяется.

Недостатком данного способа является образование внутри ампул вакуума при охлаждении их до комнатной температуры. При вскрытии капилляра образующиеся осколки и стеклянная пыль засасывается внутрь ампулы. Для решения этой проблемы на Московском химико-фармацевтическом заводе №1 было предложено наносить на капилляр ампулы кольцевую риску (надрез) с последующим покрытием ее специальным составом для удержания осколков.

Другой вариант решения задачи обеспечения вскрытия ампулы без образования стеклянной пыли предусматривает производство ампул, в свободном объеме которых находится инертный газ под небольшим давлением – в этом случае предполагается, что при вскрытии ампулы выходящий газ отбросит осколки стекла и пыль, и они не попадут в инъекционный раствор.

В последнее время для получения безвакуумных ампул в момент отрезки, ампулы дополнительно нагревают специально установленной горелкой. Расширяющийся при нагреве воздух, заключенный в ампуле, прокалывает стекло в месте отпайки и вакуум в такой ампуле при ее охлаждении не образуется. Существует еще один метод: в момент отпайки ампулы нижний патрон открывается и под действием силы тяжести ампулы в месте отпайки вытягивается очень тонкая капиллярная трубочка, обламывающаяся при падении ампулы в сборник, благодаря чему вакуум не создается.

Для формования на ампулах пережима применяют приспособления с профилированными роликами.

Производительность автомата ИО-80 при изготовлении ампул вместимостью 1-10 мл при изготовлении спаренных ампул – 3500-4000 ампул в час. Конструкция автомата позволяет изготовлять одинарные ампулы, двойные ампулы и ампулы сложной конфигурации.

Среди способов изготовления ампул из трубок можно выделить технологию, применяемую на предприятиях Японии. Этот способ заключается в следующем: на специальных машинах горизонтально расположенная трубка в нескольких участках по длине одновременно разогревается горелками и затем растягивается, образуя участки с пережимами (будущими капиллярами ампул). Затем стеклянную трубку разрезают на отдельные заготовки по средней части пережимов. Каждая заготовка, в свою очередь, разрезается термическим способом на две части с одновременным формованием дна у обеих получающихся при этом ампул.

По описанному технологическому способу с использованием специального оборудования достигается производительность от 2500 шт/ч крупноемких до 3500 шт/ч мелкоемких ампул.

На указанных выше автоматах, в основном, получают герметически запаянные ампулы, у которых тут же обрезается капилляр с помощью специальных приставок. Затем ампулы устанавливаются «капилляром вверх» в металлическую тару и направляются на стадию отжига.

Американской фирмой «Корнинг Гласс» разработан новый метод изготовления ампул без промежуточного изготовления трубок. Фирмой создана серия высокопроизводительных ленточных («риббок») машин, на которых происходит струйно-выдувной процесс формования стекла, обеспечивающий высокую степень равномерности его распределения по стенкам готовых изделий. Выработка изделий на ленточных машинах требует поддержания температурного режима и регулирования давления с высокой точностью, для чего используется высокоточная измерительная аппаратура. Ленточные машины могут работать со следующей производительностью: при диаметре изделий 12, 7-43, 18 мм – до 9000 шт/час.



Подготовка ампул к наполнению

Данная стадия включает следующие операции: вскрытие капилляров, отжиг ампул, их мойка, сушка и стерилизация.

Вскрытие капилляров. В настоящее время на заводах капилляры ампул обрезают в процессе их изготовления на стеклоформующих автоматах, для чего применяют специальные приспособления (приставки), монтируемые непосредственно на автоматах или рядом с ними. На рис. 5.7. схематически изображена приставка к ампулоформирующему автомату для резки, оплавки и набора ампул в кассеты.

Рис. 5.7. Приставка к стеклоформующему автомату для резки ампул
1 – станина; 2 – вход ампул в приставку; 3 – дисковый нож; 4 – рычаг поджима ампул к ножу;
5 – горелка термоудара для отлома надрезанной части капилляра;
6 – горелка для оплавления капилляра; 7 – транспортный орган;
8 – неподвижная линейка с ячейками для ампул;
9 – бункер для сбора обрезанных и оплавленных капилляров ампул

Привод транспортирующего устройства приставки осуществляется непосредственно от автомата. В качестве режущего инструмента здесь используется дисковый стальной нож, приводимый во вращение специальным высокоскоростным электродвигателем. Ампулы, подлежащие резке, поступают из лотка автомата на транспортные линейки приставки, которые их последовательно переносят от одного рабочего узла к другому и после обработки заталкивают в питатель (бункер). С помощью рычага ампулы плавно подводятся во вращение роликом. Откол части капилляра осуществляется термоударом с помощью горелки, затем обрезанный конец оплавляется. Для непрерывной работы приставка имеет два питателя, работающих попеременно.

Для резки капилляров ампул применяют и самостоятельные автоматы, один из которых, предложенный П.И. Резепиным, изображен на рис. 5.8.

Рис.5.8. Автомат Резепина для отрезки капилляров
1 – бункер; 2 – вращающийся наборный барабан; 3 – брусок для подрезки капилляров;
4 – зубчатый резиновый диск; 5 – обламыватель; 6 – лоток

Как было сказано ранее, в момент вскрытия капилляров ампул происходит засасывание внутрь образующихся при разломе стекла частиц стеклянной пыли и окружающего воздуха с содержащимися в нем механическими частицами, что связано с явлением разрежения внутри ампулы. Для предотвращения этого в машинах для резки ампул необходимо обеспечить их предварительный подогрев, подавать в зону резки чистый профильтрованный воздух и установить в месте нанесения риски узел обмыва капилляра ампулы фильтрованной обессоленной водой. Эти мероприятия позволяют снизить загрязнение ампулы и облегчает в дальнейшем процесс их внутренней мойки. Дальнейшее развитие ампульного производства идет по пути создания специального оборудования, автоматических поточных линий ампулирования; в этих условиях целесообразно вскрытие ампул производить непосредственно в линии, так как при этом возможно сохранить практически стерильную среду внутри ампулы, полученную благодаря нагреву стекла до высокой температуры в процессе формования.

Отжиг ампул. Изготовленные на стеклоформующих автоматах и набранные в кассеты ампулы подвергают отжигу для снятия внутренних напряжений в стекле, образующихся из-за неравномерного распределения массы стекла и неравномерного охлаждения ампул в процессе изготовления. Напряжения, возникающие в стекле, тем больше, чем сильнее при охлаждении перепад температуры между наружным и внутренним слоями стекла. Таким образом при резком охлаждении напряжения в стремящемся сократится внешнем слое стекла могут превысить предел прочности, в стекле возникнут трещины, и изделие разрушится.

Вероятность возникновения микротрещин в стекле ампул повышается при тепловой стерилизации.

Процесс отжига состоит из следующих стадий: нагрева до температуры, близкой к размягчению стекла, выдержки при этой температуре и медленного охлаждения. Наиболее опасными для ампул являются напряжения, возникающие на границах резкого перехода тонких и толстых стенок и приводящие к растрескиванию ампул во время их хранения. Для контроля ампул на наличие напряжений в стекле используют прибор – полярископ, на экране которого места, имеющие внутреннее напряжение, окрашены в желто-оранжевый цвет. По интенсивности окраски можно приближенно судить о величине напряжений, имеющихся в стекле. Ампулы отжигают в специальных печах с газовым или электрическим нагревом.

Устройство туннельной печи Мариупольского завода технологического оборудования изображено на рис. 5.9.

Рис. 5.9. Устройство печи с газовыми горелками для отжига ампул
1 – корпус; 2 – камера нагрева; 3 – камера выдержки; 4 – камера охлаждения;
5 – стол загрузки; 6 – стол выгрузки; 7 – газовые горелки; 8 – конвейер; 9 – кассета с ампулами

Печь состоит из трех камер: нагрева, выдержки (отжига) и охлаждения ампул. На верхнем своде камеры нагрева и выдержки в тоннеле установлены газовые горелки инфракрасного излучения типа ГИИВ-2, под нижними чугунными плитами, образующими пол печи, помещены горелки инжекторного типа. Для отжига ампулы загружаются в металлические контейнеры капиллярами вверх; в одном контейнере помещается около 500 ампул вместимостью 10 мл. Кассеты в туннеле перемещаются с помощью цепного конвейера.

В камерах нагрева и выдержки ампулы нагреваются до температуры 560-580°С с выдержкой при этой температуре около 10 минут. Зона охлаждения разделена на две части: в первую часть (по ходу движения) подается противотоком воздух, прошедший вторую часть и имеющий температуру около 200°С. В первой зоне этой камеры происходит постепенное охлаждение ампул в течение 30 минут. Во второй зоне ампулы быстро охлаждаются воздухом до 60°С за 5 минут, затем до комнатной температуры и проходят к столу выгрузки.

Принятый двухступенчатый процесс охлаждения исключает возможность возникновения повторных напряжений в стекле ампул. Над верхним сводом печи установлен вентилятор подачи воздуха для охлаждения ампул. Боковые стены печи имеют смотровые окна для наблюдения за работой горелок.

На ряде заводов ампулы отжигают в специальных печах с электронагревом, устройство которых не имеет принципиальных отличий от вышеописанных печей с газовыми горелками. Отжигаемые в этой печи ампулы нагреваются с помощью электрических нагревателей, расположенных в зонах нагрева и выдержки. Для транспортирования контейнеров с ампулами печь имеет цепной конвейер, под и над которым установлены нагревательные спирали из хромоникелевой проволоки. Внутри печь выложена фасонным огнеупорным кирпичом. На выходе в печь подается воздух, движущийся в направлении противоположном движению контейнеров с ампулами.

На операции отжига ампул заканчивается первая часть технологического процесса ампульного производства.

Последующие операции обработки ампул принадлежат ко второй его части, а именно – к процессу ампулирования и выполняются на участках ампульного цеха.










Подготовка ампул к наполнению: вскрытие, мойка и сушка ампул. Наполнение и запайка ампул. Аппараты. Контроль качества запайки. Бракераж ампулированных растворов. Маркировка и упаковка ампул.

Подготовка ампул к наполнению

Данная стадия включает следующие операции: вскрытие капилляров, отжиг ампул, их мойка, сушка и стерилизация.

Вскрытие капилляров. В настоящее время на заводах капилляры ампул обрезают в процессе их изготовления на стеклоформующих автоматах, для чего применяют специальные приспособления (приставки), монтируемые непосредственно на автоматах или рядом с ними. На рис. 5.7. схематически изображена приставка к ампулоформирующему автомату для резки, оплавки и набора ампул в кассеты.

Рис. 5.7. Приставка к стеклоформующему автомату для резки ампул
1 – станина; 2 – вход ампул в приставку; 3 – дисковый нож; 4 – рычаг поджима ампул к ножу;
5 – горелка термоудара для отлома надрезанной части капилляра;
6 – горелка для оплавления капилляра; 7 – транспортный орган;
8 – неподвижная линейка с ячейками для ампул;
9 – бункер для сбора обрезанных и оплавленных капилляров ампул

Привод транспортирующего устройства приставки осуществляется непосредственно от автомата. В качестве режущего инструмента здесь используется дисковый стальной нож, приводимый во вращение специальным высокоскоростным электродвигателем. Ампулы, подлежащие резке, поступают из лотка автомата на транспортные линейки приставки, которые их последовательно переносят от одного рабочего узла к другому и после обработки заталкивают в питатель (бункер). С помощью рычага ампулы плавно подводятся во вращение роликом. Откол части капилляра осуществляется термоударом с помощью горелки, затем обрезанный конец оплавляется. Для непрерывной работы приставка имеет два питателя, работающих попеременно.

Для резки капилляров ампул применяют и самостоятельные автоматы, один из которых, предложенный П.И. Резепиным, изображен на рис. 5.8.

Рис.5.8. Автомат Резепина для отрезки капилляров
1 – бункер; 2 – вращающийся наборный барабан; 3 – брусок для подрезки капилляров;
4 – зубчатый резиновый диск; 5 – обламыватель; 6 – лоток

Как было сказано ранее, в момент вскрытия капилляров ампул происходит засасывание внутрь образующихся при разломе стекла частиц стеклянной пыли и окружающего воздуха с содержащимися в нем механическими частицами, что связано с явлением разрежения внутри ампулы. Для предотвращения этого в машинах для резки ампул необходимо обеспечить их предварительный подогрев, подавать в зону резки чистый профильтрованный воздух и установить в месте нанесения риски узел обмыва капилляра ампулы фильтрованной обессоленной водой. Эти мероприятия позволяют снизить загрязнение ампулы и облегчает в дальнейшем процесс их внутренней мойки. Дальнейшее развитие ампульного производства идет по пути создания специального оборудования, автоматических поточных линий ампулирования; в этих условиях целесообразно вскрытие ампул производить непосредственно в линии, так как при этом возможно сохранить практически стерильную среду внутри ампулы, полученную благодаря нагреву стекла до высокой температуры в процессе формования.








Способы мойки ампул

После отжига ампулы в металлических контейнерах поступают в цех ампулирования на участок набора ампул в кассеты. Этот процесс предшествует мойке ампул.

Крупноемкие ампулы в кассеты набираются вручную. Набор мелкоемких ампул (1; 2; 3; 4 и 5 мл) выполняют на автоматах (машинах Резепина), выпускаемых серийно Мариупольским заводом технологического оборудования. Автомат (рис. 5.10) набирает ампулы в перфорированные кассеты, изготовленные из нержавеющей стали. В верхней части автомата расположен подвижный бункер, в который загружаются ампулы. При перемещении бункера ампулы сначала укладываются в ячейки поворотной рамки, которая, поворачиваясь в вертикальное положение, направляет их в отверстия кассеты, расположенные в шахматном порядке. Число открытых желобков поворотной рамки при каждом рабочем цикле регулируется шторками.

Рис. 5.10. Схема автомата для набора ампул в кассеты (модель Ц564М)
1 – стол; 2 – бункер; 3 – левая шторка; 4 – правая шторка; 5 – рамка поворотная; 6 – главный вал;
7 – основной привод; 8 – станина; 9 – привод возвратного стола

После укладки очередного ряда стол с кассетой перемещается на один шаг и цикл повторяется. При укладке последнего ряда кассеты машина останавливается конечным выключателем и стол возвращается в исходное положение. Кассеты, наполненные ампулами, снимают вручную и передают на следующие операции согласно технологическому процессу: мойку, сушку, наполнение.

Мойка ампул является одной из самых ответственных стадий ампульного производства. Она складывается из наружной и внутренней мойки.

Для наружной мойки ампул применяется полуавтомат типа АП-2М2 Мариупольского завода технологического оборудования. Полуавтомат представляет собой аппарат с крышкой, в который на свободно вращающуюся подставку устанавливается кассета с ампулами. Над кассетой расположено душирующее устройство, с помощью которого на ампулы подается фильтрованная горячая вода. Под воздействием струй воды кассета приходит во вращение, чем достигается равномерная обмывка ампул. Производительность автомата по обработке ампул вместимостью 1-2 мл достигает 30 тыс. ампул в час.

Внутренняя мойка ампул может осуществляться следующими способами: вакуумным, ультразвуковым и виброультразвуковым, термическим и шприцевым.

Наиболее распространен в отечественной технологии вакуумный способ мойки. Сущность этого способа заключается в том, что кассету с ампулами помещают в герметично закрытый аппарат так, чтобы капилляры после наполнения аппарата водой были погружены в воду, затем в нем создают и резко сбрасывают вакуум. При создании вакуума воздух, находящийся в ампулах, отсасывается и пузырьками проходит через водный слой. В момент сброса вакуума вода с силой устремляется внутрь ампул, омывая ее внутреннюю поверхность, затем при повторном создании вакуума вода со взвешенными в ней механическими примесями, ранее находившимися на стенках ампул, отсасывается и сливается из аппарата. Цикл повторяется многократно.

Простой вакуумный способ мойки, сущность которого была описана выше, мало эффективен, т.к. не может обеспечить требуемой чистоты ампул. Для отделения частиц механических включений от стенок ампулы воздействие только одного, даже весьма сильного турбулентного потока воды, недостаточно. Наиболее ответственным моментом в процессе мойки является скорость удаления воды из ампул со взвешенными в ней частицами. Естественно, чем выше эта скорость, тем эффективнее мойка. По мере отсоса внутри ампулы создается разрежение, процесс эвакуации воды замедляется, и в конце процесса при уравнивании давления скорость удаления воды практически близка к нулю. Следовательно, самая важная часть процесса протекает неинтенсивно.

Определенное влияние на вынос частиц, взвешенных в моющей среде, оказывает форма ампул. Как показал производственный опыт, эвакуация частиц из ампул с пережимом капилляра протекает хуже, чем из ампул с плавным переходом пульки в капилляр. В первом случае брак по механическим примесям увеличивается на 10-15%, что объясняется завихрением потока воды в пережиме, при отсосе ее из ампулы, и, как следствие, удержанием частиц в ампуле.

В связи с вышеизложенным, в последнее время процесс вакуумной мойки были значительно усовершенствованы – введено ступенчатое вакуумирование, позволившее добиться более полного удаления воды из ампул, интенсифицирован процесс за счет более резкого сброса вакуума, автоматизированы операции управления аппаратом.

Разновидностями вакуумных способов мойки являются: турбовакуумный, вихревой и пароконденсационный.

Турбовакуумный способ характеризуется более эффективной мойкой за счет резкого мгновенного гашения разрежения и ступенчатого вакуумирования. Процесс проводится в турбовакуумном аппарате с автоматическим управлением по заданным параметрам.

Внутрь аппарата помещаются кассеты с ампулами капиллярами вниз, закрывается крышка и создается разрежение. Рабочая емкость аппарата заполняется горячей деминерализованной водой так, чтобы капилляры были погружены в нее. Разрежение повышается примерно в 2 раза и внутри ампулы также создается вакуум. Затем быстро открывается воздушный электромагнитный клапан большого диаметра и в аппарат мгновенно поступает профильтрованный стерильный воздух. Это создает резкий перепад давлений и вода устремляется внутрь ампул в виде турбулентного фонтанирующего потока, отделяя от поверхности загрязнения и переводя их во взвешенное состояние. Далее воздушный клапан закрывается, аппарат соединяется с вакуумной линией, разрежение вновь повышается и вода со взвешенными частицами с большой скоростью удаляется из ампул и из рабочей емкости аппарата. Высокая скорость удаления воды препятствует задержке механических частиц на стенках ампул. Затем вакуум вновь приводится к первоначальному состоянию в рабочую емкость подается чистая вода и цикл мойки повторяется от 4 до 8 раз (в зависимости от степени загрязнения ампул). Брак при этом способе высок и составляет 10-20%.

Для повышения эффективности турбовакуумной мойки ампул на Таллиннском химико-фармацевтическом заводе (Эстония) разработан вихревой способ. В отличии от турбовакуумной мойки перепад давлений здесь после очередного гидроудара ступенчато возрастает за счет увеличения разряжения в аппарате. Вакуум гасится фильтрованным воздухом через 0, 2-0, 3 с.

В отечественной промышленности последнее время нашел широкое применение пароконденсационный способ мойки ампул. Сущность этого способа заключается в том, что кассету с ампулами помещают в герметический аппарат, затем из аппарата и ампул паром выдавливают атмосферный воздух и аппарат наполняют горячей водой (температура 80–90°С). Далее пар, находящийся в ампулах, конденсируют, в результате чего последние почти целиком заполняются турбулентным потоком воды. Под воздействием возникающего вакуума вода ампулах вскипает и мгновенно выбрасывается их них. Цикл повторяют несколько раз, меняя воду.

Благодаря применению горячей воды, пара и высокоскоростной циркуляции жидкости, этот способ значительно повышает качество очистки, а проводимая обработка ампул паром в известной степени стерилизует пустые ампулы. После данного способа мойки горячие ампулы, из которых полностью удалена вода, не нуждаются в сушке перед их наполнением. Данный способ не требует использования в производстве вакуумных насосов, являющихся весьма водоэнергоемким оборудованием.

Пароконденсационный способ мойки применяется в работе полуавтомата АП-30 и автоматических линий АП25М, АП2М2 и АП3М2.

Аппарат для пароконденсационной мойки ампул АП25М (рис. 5.11) предназначен для мойки внутренней поверхности ампул, при этом ампулы обрабатываются в специальных дисковых кассетах.

Рис. 5.11. Схема аппарата для пароконденсационной мойки ампул АП25М
1 – сливной бачок; 2, 16 – обратные клапаны; 3 – промежуточный бачок; 4 – рабочая емкость;
5 – станина; 6 – крышка емкости; 7 – направляющие; 8 – ампула; 9 – кассета; 10 – пульт управления;
11 – пневмоцилиндр; 12 – блок управления пневмоцилиндром; 13 –электрошкаф;
14 – конденсационный бачок; 15, 17 – клапаны

Кассета с ампулами, набранными капиллярами вниз, помещается в рабочую емкость аппарата, в которой создается вакуум. Затем подаются вода и пар, за счет конденсации которого внутри ампул создается вакуум. После чего происходит заполнение ампул водой температурой 80-90°С. Эффект высококачественной мойки достигается за счет интенсивного вскипания воды, находящейся в ампулах. При мгновенном вскипании вода выбрасывается из ампул с большой скоростью, отделяя от стенок ампул и увлекая за собой механические частицы.

Для работы к аппарату необходимо подключать фильтрованный пар давлением до 3 кгс/см2, водопровод холодной обессоленной воды, моющей воды температурой 80-90°С, а также пневмопровод с давлением сжатого воздуха не менее 3 кгс/см2.

Управление процессом осуществляется автоматически. Производительность аппарата составляет 22-30 кассет в час.

Особенностью процесса пароконденсационной мойки ампул является вскипание моющей жидкости в ампуле в момент подачи в холодильник холодной воды при пониженной температуре кипения за счет создавшегося разрежения и последующее интенсивное вытеснение моющей жидкости образовавшимся внутри ампулы паром. При разрежении 0, 2-0, 3 атм. вода вскипает в диапазоне температур 90-95°С. Поэтому особенно важно обеспечить строгий контроль температурного режима подаваемой в аппарат воды. Заполнение ампул с использованием эффекта гидравлического удара моющей жидкости о стенки и мгновенное вскипание всего объема жидкости обеспечивают интенсивную обработку стенок ампул с отслоением частиц от них, а бурное вытеснение жидкости – вывод в ней механических частиц.

Вибрационный способ мойки ампул. Как указывалось ранее, большую часть механических загрязнений, прилипших к поверхности ампул составляют частицы стекла. С целью удаления их из растворов авторы данного метода использовали принцип осаждения взвешенных в жидкости частиц по закону Стокса. Ампулы с водой устанавливают капиллярами вниз на подставку, жестко соединенную с вибратором; при этом концы капилляров погружены в жидкость. Ампулы подвергают вибрации, в результате чего взвешенные в растворе частицы осаждаются в зону капилляров и покидают ампулы. Во время вибрации ампул на границе концов капилляров с жидкостью возникает «волновой барьер», препятствующий попаданию загрязнений из жидкости в ампулы. При этом объем жидкости в ампулах остается неизменным, что позволяет таким путем освобождать от примесей непосредственно растворы лекарственных веществ в момент вакуумного заполнения или ампул. Вибраторы применяют с 50-100 Гц и амплитудой до 1 см.

С целью интенсификации процесса очистки ампул широкое применение в различных аппаратах и устройствах нашел ультразвуковой способ обработки. Прохождение ультразвука в жидкости сопровождается чередующимися сжатиями, разрежениями и большими переменными ускорениями. В жидкости образуются разрывы, называемые кавитационными полостями, которые в момент сжатия захлопываются. В это время давление в пузырьках может достигать нескольких тысяч атмосфер. Кавитационные полости образуются за счет присутствия в жидкости мельчайших пузырьков газа и пара или твердых частиц. Пульсирующие кавитационные пузырьки отслаивают частицы загрязнений. Оптимальными параметрами данного процесса является частота ультразвука – 18-22 кГц и температура моющей воды 30-60°С.

Преимуществом данного способа перед другими, кроме высокой эффективности удаления прочно удерживаемых загрязнений (главным образом, частиц стекла), является возможность отбраковки ампул с микротрещинами, которые под действием ультразвука разрушаются. Положительным является также бактерицидной действие ультразвуковых колебаний.

В качестве источника ультразвука применяют магнитострикционные генераторы, которые обычно крепятся на крышке или дне вакуум-моечного аппарата.

Мойка ампул ультразвуковым способом происходит следующим образом. Ампулы в кассетах заполняют горячей обессоленной водой вакуумным путем в аппарате вакуум-моечного полуавтомата, расположив их капилляры над магнитострикционными преобразователями. Расстояние капилляров, погруженных в воду от излучателей – 10 мм. Затем подачей фильтрованного воздуха гасится вакуум, и вода в виде турбулентного потока моет ампулы и заполняет их. В это время на 30 с автоматически включается генератор ультразвука и при озвучивании происходит быстрое и полное удаление воды с загрязнениями из ампулы. В зависимости от загрязненности циклы повторяются несколько раз.

Несмотря на эффективность ультразвукового способа мойки (брак составляет 5-10%), проблема эвакуации жидкости и выноса из полости ампулы взвешенных в ней частиц остается по-прежнему актуальной.

По состоянию развития техники на сегодня наиболее приемлемым техническим решением высококачественной очистки ампул является сочетание ультразвуковой обработки с пароконденсационным или вибрационным способами.

На рис. 5.12 изображено устройство аппарата виброультразвуковой мойки ампул в турбовакуумном аппарате, на дне которого укрепляется генератор ультразвука (5). Кассета с ампулами (3) помещается на подкассетник (2) и в аппарате выполняются все операции ультразвукового способа совместно с механической вибрацией. Брак способа достаточно низкий – 3-5%.

Рис. 5.12. Устройство аппарата виброультразвуковой мойки ампул
1 – корпус аппарат; 2 – подкассетник; 3 – кассета; 4 – ампулы;
5 – магнитостриктор; 6 – датчик уровня воды; 7 – датчик вакуума;
8 – исполнительный механизм; 9, 10, 11, 12 – клапаны

Термический способ. Предложен В.Я. Тихомировой и Ф.А. Коневым (1970). Сущность его заключается в следующем. Предварительно ампулы моют вакуумным способом, заполняют водой дистиллированной с температурой 60-80°С и помещают капиллярами вниз в зону интенсивного нагрева (300-400°С). При этом тепловой поток, передающийся от стенки ампул к жидкости, вызывает конвективные токи, движение жидкости при кипении становится интенсивны. Механические частицы отслаиваются от стенок и вместе с водой удаляются из ампул за счет создавшегося в них избыточного давления пара над жидкостью. Скорость удаления воды из ампул зависит, в основном, от двух факторов – исходной температуры воды и температуры в зоне нагрева. Время одного цикла 5 минут. Недостатками способа являются относительно низкая скорость удаления воды из ампул и сложное аппаратурное оформление.

Широко применяемая за рубежом технология шприцевой мойки ампул также не обеспечивает высокого качества их очистки, хотя в нашей стране метод не потерял своего значения, в частности, для промывки крупноемких ампул.

Сущность шприцевой мойки заключается в том, что в ампулу, ориентированную капилляром вниз, вводят полую иглу (шприц), через которую под давлением подают воду. Турбулентная струя воды из шприца отмывает внутреннюю поверхность ампулы и удаляется через зазор между шприцем и отверстием капилляра. Очевидно, что интенсивность мойки во многом зависит от скорости циркуляции жидкости внутри ампулы, т.е. от скорости ее поступления и вытеснения. Однако, шприцевая игла, введенная в отверстие капилляра, уменьшает его свободное сечение, необходимое для эвакуации воды. Кроме того, большое количество шприцев усложняет конструкцию машин, усложняет требования к форме и размерам ампул. Производительность данного способа невелика. С целью повышения эффективности его сочетают с ультразвуковым. Для проверки качества мойки при проведении загрузки моечного аппарата в каждую кассету с ампулами в нескольких местах помещают контрольные ампулы со специально нанесенными внутри окрашенными загрязнениями. После мойки эти ампулы должны быть чистыми.


Поделиться:



Последнее изменение этой страницы: 2019-04-09; Просмотров: 595; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.073 с.)
Главная | Случайная страница | Обратная связь