Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Системы очистки воздуха от газопарообразных примесей



Для очистки выбросов от жидких и твердых примесей применяют различные конструкции улавливающих аппаратов, работающих по принципу:

- инерционного осаждения путем резкого изменения направления вектора скорости движения выброса, при этом твердые частицы под действием инерционных сил будут стремиться двигаться в прежнем направлении и попадать в приемный бункер;

- осаждения под действием гравитационных сил из-за различной кривизны траекторий движения составляющих выброса (газов и частиц), вектор скорости, движения которого направлен горизонтально;

- осаждения под действием центробежных сил путем придания выбросу вращательного движения внутри циклона, при этом твердые частицы отбрасываются центробежной силой к сетке, так как центробежное ускорение в циклоне до тысячи раз больше ускорения силы тяжести, это позволяет удалить из выброса даже весьма мелкие частицы;

- механической фильтрации - фильтрации выброса через пористую перегородку (с волокнистым, гранулированным или пористым фильтрующим материалом), в процессе которой аэрозольные частицы задерживаются, а газовая составляющая полностью проходит через нее.

Системы и аппараты пылеулавливания.

Сухие пылеуловители. К сухим пылеуловителям относятся такие, в которых очистка движущегося воздуха от пыли происходит механически под действием сил гравитации и инерции. Эти системы называются инерционными, так как в них при резком изменении направления движения газового потока частицы пыли, по инерции сохраняя направление своего движения, ударяются о поверхность, теряют свою энергию и под действием сил гравитации осаждаются в специальном бункере.

Для сухой очистки газов наиболее употребительны центробежные обеспыливающие системы (циклоны) (рисунок 2).Газовый поток, попадая во внутренний корпус циклона 1 через патрубок 2, совершает вращательно-поступательное движение вдоль корпуса по направлении к бункеру 4. Под действием сил инерции частицы пыли осаждаются на стенках корпуса, а затем попадают в бункер. Очищенный газовый поток выходит из бункера через патрубок 3. Особенностью таких систем очистки является обязательная герметичность бункера, в противном случае из-за подсоса воздуха осаждаемые частицы пыли падают в выходную трубу.

Рисунок 2 - Циклон

На практике используют разные системы подачи и удаления воздуха и пылеосаждения. В зависимости от конструктивного исполнения различают циклоны:

- осевые, в корпусе которых входящие и выходящие потоки газа движутся вдоль его оси, при этом они могут двигаться в одном направлении (прямоточные) или в противоположных (противоточные);

- с тангенциальным входом, при этом входящий газ движется по касательной к окружности поперечного сечения корпуса аппарата и перпендикулярно к оси корпуса;

- с винтовым входом, при этом движение входящего потока газа приобретает винтовой характер с помощью тангенциального входного патрубка и верхней крышки с винтовой поверхностью;

- со спиральным входом, когда соединение выпускного патрубка с корпусом аппарата выполнено спиральным.

В общем случае частицы пыли выделяются в циклоне под действием центробежной силы в процессе вращения газового потока в корпусе аппарата. В промышленности используют циклоны, рассчитанные на скорость газового потока от 5 до 20 м/с. Эффективность их зависит от концентрации пыли и размеров ее частиц и резко снижается при уменьшении этих показателей. Средняя эффективность обеспыливания газов в циклонах составляет 0,98 при размере частиц пыли 30-40 мкм, 0,8 - при 10 мкм, 0,6 - при 4-5 мкм. Производительность циклонов лежит в диапазоне от нескольких сот до десятков тысяч кубических метров в час. Преимущество циклонов - простота конструкции, небольшие размеры, отсутствие движущихся частей; недостатки - затраты энергии на вращение и большой абразивный износ частей аппарата пылью.

Кроме циклонов, применяются и другие типы сухих пылеуловителей, например ротационные, вихревые, радиальные. При общих принципах действия они различаются системами пылеулавливания и способами подачи воздуха. К наиболее эффективным следует отнести ротационный пылеуловитель. Основной частью здесь является вентиляционное колесо 1, при работе которого частицы пыли под действием центробежных сил отбрасываются к стенке кожуха 2 и, оседая на стенках, попадают в пылеприемник 3, а чистый воздух выходит через патрубок 4. Благодаря активному действию такие системы имеют эффективность 0,95...0,97.

Мокрые пылеуловители. Особенностью этих систем очистки является высокая эффективность очистки от мелкодисперсной пыли (менее 1,0 мкм). Эти системы обеспечивают возможность очистки от пыли горячих и взрывоопасных газов. Эти системы работают по принципу осаждения частиц пыли на поверхность капель (или пленки) жидкости под действием сил инерции и броуновского движения. Конструктивно мокрые пылеуловители разделяют на форсуночные скрубберы и скрубберы Вентури, а также аппараты ударно-инерционного и барботажного и других типов (рисунок 3).

Рисунок 3 - Классификация мокрых пылеуловителей

Наибольшее практическое применение находят скрубберы Вентури, (аппарат для промывки жидкостью газов в целях извлечения из них отдельных компонентов) которые работают следующим образом. Через патрубок 4 газ подается в устройство 2, которое называется соплом Вентури. Сопло Вентури имеет конфузор (сужение), в который через форсунки 1 подается вода на орошение. В этой части сопла скорость газа увеличивается, достигая максимума в самом узком сечении (с 10...20 до 100...150 м/с).

Увеличение скорости способствует осаждению частиц пыли на каплях воды. В диффузорной части сопла Вентури скорость потока мокрых газов уменьшается до 10...20 м/с. Этот поток подается в корпус 3, где под действием сил гравитации происходит осаждение загрязненных пылью капель. В верхнюю часть корпуса выходит очищенный газ, а в нижнюю попадает шлам. Эффективность скрубберов Вентури 0,97...0,98. Расход воды составляет 0,4...0,6 л/м3.

Полый скруббер представляет собой колонну круглого сечения. В нее подается жидкость через систему форсунок, число которых может достигать 14...16 по сечению колонны. В насадочном скруббере используется система поперечного орошения с наклонно установленной насадкой. Эффективность таких систем достигает 0,9.

Среди систем мокрой пылеочистки высокая эффективность отмечена в скрубберах ударно-инерционного действия.

В этих аппаратах контакт газов с жидкостью осуществляется при ударе газового потока о поверхность жидкости с последующим пропусканием газожидкостной взвеси через отверстия различной конфигурации или непосредственным отводом газожидкостной взвеси в сепаратор жидкой фазы. Один из вариантов такого скруббера состоит из цилиндрического кожуха, сливного конического бункера, корпуса и выхлопной трубы для вывода очищенного воздуха (газа).

Запыленный воздух поступает через воздуховод в вертикальный стояк. Перед поворотом на 180° воздух ударяется о поверхность воды, вследствие чего сепарируются крупные частицы пыли. Далее воздух проходит через решетку с отверстиями. На нее же через трубу подается вода, излишки которой сливаются через трубу и частично через отверстия решетки. Между решеткой и уровнем образуется водяная пена, которая затем распространяется в объеме, заполненном короткими фарфоровыми цилиндрами. Мелкие частицы пыли последовательно улавливаются в пене, а затем в объеме.

Электрофильтры. Их работа основана на одном из наиболее эффективных видов очистки газов от пыли - электрическом. Следует отметить, что электрофильтры также используются и для очистки тумана. Основной принцип работы - ударная ионизация газа в неоднородном электрическом поле, которое создается в зазоре между коронирующим 1 и осадительным 2 электродами (рисунок 4).

Рисунок 4 - Схема расположения электродов в электрофильтре

Напряжение к электродам подается от выпрямителя 4. Силовые линии 3 направлены от осадительного электрода к коронирующему.

Загрязненные газы, попав между электродами, способны проводить электрический ток вследствие имеющейся частичной ионизации. При увеличении напряжения электрического тока число ионов растет, пока не наступит предельное насыщение, и все ионы не окажутся вовлеченными в движение от одного электрода к другому. Отрицательно заряженные частицы движутся к осадительному электроду, а положительно заряженные оседают на коронирующем электроде. Так как большинство частиц пыли получают отрицательный заряд, основная масса пыли осаждается на положительном осадительном электроде, с которого пыль легко удаляется.

Эффективность очистки газов электрофильтрами достигает 0,9-0,99, производительность их составляет до 1 млн. м3/ч.

Фильтры. Широко используются для тонкой очистки промышленных выбросов. Работа их основана на фильтровании воздуха через пористую перегородку, в процессе которой твердые частицы примесей задерживаются на ней. В общем случае в корпусе 1 фильтра расположена воздухопроницаемая перегородка 2, на которой осаждаются улавливаемые частицы 3 (рисунок 5).

Рисунок 5 - Схема процесса фильтрации

В фильтрах применяются перегородки различных типов:

1) в виде зернистых слоев, например гравия (неподвижные свободно насыпанные материалы);

2) гибкие пористые (ткани, войлоки, губчатая резина, пенополиуретан);

3) полужесткие пористые (вязаные сетки, прессованные спирали и стружка);

4) жесткие пористые (пористая керамика, пористые металлы).

Фильтры 1-го типа (из гравия) используются для очистки от пылей механического происхождения (дробилок, грохота, мельниц); они дешевы, просты в эксплуатации, эффективность 0,99.

Фильтры 2-го типа широко используются для тонкой очистки газов от примесей; их основные недостатки - малая термостойкость, низкая прочность.

Фильтры 3-го типа, изготавливаемые из различных сталей, меди, бронзы, никеля и других металлов, могут работать в широком диапазоне частот до 1000 К, в агрессивных средах.

Фильтры 4-го типа, изготавливаемые из пористой керамики и пористых металлов, обладают высокой прочностью, коррозионной стойкостью, жаростойкостью; они технологичны, находят широкое применение для очистки горючих газов и жидкостей, выбросов дыма, туманов, кислот, масел.

В промышленности наиболее употребительны тканевые рукавные фильтры. В корпусе фильтра устанавливается необходимое число рукавов, на которые подается загрязненный воздух, при этом очищенный воздух выходит через патрубок. Частицы загрязнений оседают на фильтре. Насыщенные загрязненными частицами рукава продувают и встряхивают для удаления осажденных частиц пыли. Эффективность таких фильтров достигает 0,99 для частиц размером более 0,5 мкм.

Туманоуловители. Для очистки воздуха от туманов, кислот, щелочей, масел и других жидкостей используются волокнистые фильтры, принцип действия которых основан на осаждении капель на поверхности пор с последующим их стеканием под действием гравитационных сил. В пространстве между двумя цилиндрами, изготовленными из сеток, размещается волокнистый фильтрующий материал. Жидкость, оседающая на фильтрующем материале, стекает через гидрозатвор в приемное устройство. Крепление к корпусу туманоуловителя осуществляется фланцами.

В качестве материала фильтрующего элемента используется войлок, лавсан, полипропилен и другие материалы толщиной 5...15 см. Эффективность туманоуловителей для размеров частиц менее 3 мкм может достигать 0,99.

Для улавливания кислотных туманов применяются также сухие электрофильтры.

В настоящее время в целом по промышленности улавливается около 90 % пыли, образующейся на различных стадиях производства, и только 10 % различных аэрозолей выбрасывается в атмосферный воздух. Такого нельзя сказать о газо- и парообразных примесях вредных веществ, содержащихся в газовоздушных выбросах промышленного производства. Несмотря на то, что эти примеси представляют собой большую опасность для окружающей среды, их улавливается или обезвреживается только около 10 %, а более 90 % вредных газов и паров поступает в воздушный бассейн.


Поделиться:



Последнее изменение этой страницы: 2019-04-10; Просмотров: 309; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.027 с.)
Главная | Случайная страница | Обратная связь