Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Разъединители 110 кВ и выше:



Введение

Целью данного диплома – создание проекта реконструкции подстанции «Сорокино» на основе прогрессивных технических решений.

Необходимость реконструкции подстанции вызвана физически и морально устаревшим парком оборудования, при эксплуатации которого растет день ото дня риск аварий на подстанции, а значит и нарушения снабжения ее потребителей, среди которых есть и потребители І категории.

При проектировании реконструкции подстанций руководствовался действующими нормативными документами, указанными в приложении №2 в «Нормах технологического проектирования подстанций переменного тока 35–750 кВ (далее – НТП ПС)» как и самими «НТП ПС». Также использовались такие нормативные источники как Концепция технической политики ОАО «МОЭСК» (от приказа ОАО РАО «ЕЭС России» с 12.11.04 г. №660) и Техническая политика ОАО «МРСК Центра» (от приказа ОАО «ФСК ЕЭС» от 26.10.2006 г. №270 р/293 р). Все вышеперечисленные документы созданы в соответствии и утверждены компанией ОАО «ФСК ЕЭС».

При проектировании подстанции (далее ПС) должно быть обеспечено: 1. Надежное и качественное электроснабжение потребителей. 2. Внедрение передовых проектных решений, обеспечивающих соответствие всего комплекса показателей подстанций современному мировому техническому уровню. 3. Высокий уровень технологических процессов и качества строительных и монтажных работ. 4. Экономическая эффективность, обусловленная оптимальным объемом привлекаемых инвестиций и ресурсов, используемой земли и снижением эксплуатационных затрат. 5. Соблюдение требований экологической безопасности и охраны окружающей среды. 6. Ремонтопригодность применяемого оборудования и конструкций. 7. Передовые методы эксплуатации, безопасные и удобные условия труда эксплуатационного персонала.

Проект ПС выполняется на расчетный период (5 лет после ввода в эксплуатацию) с учетом перспективы ее развития на последующие не менее 5 лет.

Основные требования к ПС нового поколения: 1. Компактность, комплектность и высокая степень заводской готовности. 2. Надежность работы ПС посредством применения электрооборудования современного технического уровня. 3. Удобство проведения осмотра, технического обслуживания и ремонта; 4. Безопасность эксплуатации и обслуживания. 5. Создание ПС без обслуживающего персонала с дистанционным управлением. 6. Комплексная автоматизация, обеспечивающая создание интегрированной системы управления технологическими процессами с подсистемами релейной защиты и автоматики, коммерческого учета электроэнергии, мониторинга состояния оборудования, диагностики и управления оборудованием. 7. Обеспечение резервируемыми цифровыми каналами связи для передачи сигналов управления и информации о состоянии электрооборудования на диспетчерский пункт, в том числе, диспетчерскими голосовыми каналами. 8. Экологическая безопасность.

Устанавливаемый комплекс оборудования и устройств на ПС: – Силовое высоковольтное оборудование. – Устройства Релейной защиты и автоматики (РЗиА). – Устройства Противоаварийной автоматики (ПА). – Устройства Автоматизированной системы управления технологическими процессами (АСУ ТП). – Устройства автоматизированной информационно-измерительной системы коммерческого учета электроэнергии (АИИС КУЭ). – Устройства системы диспетчерского и технологического управления (АСДТУ). – Устройства системы диагностики и программно-технические комплексы обеспечение систем автоматической системы технического учета (АСТУ). Весь выше перечисленный комплекс оборудования и устройств должен быть аттестован в установленном ОАО «ФСК ЕЭС» порядке.

Срок службы оборудования, применяемого при новом строительстве и реконструкции подстанций, должен быть не менее 25 лет (силовых трансформаторов не менее 30 лет, аккумуляторов не менее 20 лет).

Технические требования при строительстве или реконструкции ПС.

РУ 35–220 кВ:

1. Применение закрытых РУ 35–220 кВ, в том числе, модульного контейнерного исполнения, а так же КРУЭ 110–220 кВ в крупных городах или стесненных условиях. Открытое исполнение РУ применять в остальных случаях. 2. В целях сокращения площадей ПС отдать предпочтение жесткой ошиновке. Применение гибкой ошиновки разрешаеться. 3. Самодиагностика и прогрессивные технологии обслуживания основного электрооборудования;

4. Электрическая схема РУ должна соответствовать [4].

5. Компоновка ОРУ должна предусматривать возможность перехода к более сложной схеме (при наличии перспективы расширения ПС).

Запрещаются: Схемы первичных соединений ПС 35–220 кВ с отделителями и короткозамыкателями, а также с беспортальным приемом ВЛ.

РУ 6–10 кВ:

1. Закрытое исполнение, в том числе, с ячейками модульного типа на базе вакуумных выключателей.

2. Использование сухих трансформаторов собственных нужд.

3. Гибкая архитектура ячейки с компактной и безопасной компоновкой функциональных элементов устройства.

4. Для защиты от коротких замыканий внутри шкафов КРУ должны быть предусмотрены как релейная (логическая), так и клапанная дуговые защиты, в случае недостаточной чувствительности одной из применяемых дуговых защит применяются другие типы защит (фототиристорная, с применением световодов, оптическая и т.п.).

5. Оснащение устройствами РЗиА, аппаратами телеуправления, телесигнализации и приборами для определения наличия мест междуфазных однофазных замыканий на землю в линии 6–10 кВ, установленными вне ячеек РУ (отдельная панель (набор панелей) устройств РЗиА, вынесенная в отдельное помещение или на противоположную сторону РУ), с единым микропроцессорным модулем управления, контролирующим работу устройств РЗА на всех присоединениях.

6. Схема РУ 6–20 кВ не должны предусматривать наличие более двух секций.

Обязательное к применению силовое высоковольтное оборудование ПС:

1. Силовые трансформаторы 35–220 кВ:

– Применение встроенной системы непрерывного мониторинга состояния без вывода в ремонт трансформатора.

– Применение высоковольтных вводов с твердой изоляцией (RIP). – Оснащение РПН и ее микропроцессорными блоками управления.

– Оснащение АРНТ (автоматическими регуляторами напряжения).

2. Выключатели 110 кВ и выше:

– В климатических зонах с минимумом температур ниже (– 45)0С должны использоваться элегазовые баковые выключатели с подогревом. В остальных случаях – элегазовые колонковые выключатели. – При наличии потребителей І категории ПС применять для элегазовых выключателей пружинный привод и электродвигатель постоянного тока.

Потребители ПС «Сорокино»

 

1. Каширские городские электрические сети (ГорЭС).

2. Каширские распределительные электрические сети (РЭС).

3. ООО «Каширский кирпичный завод».

4. ОАО «Каширский литейный завод – Центролит».

5. ОАО» Ожерельевский комбикормовый завод».

Рост нагрузок ПС стабильный, вследствии динамичного развития городской инфраструктуры, а также увеличения производственных мощностей подключенных предприятий. Ожидаеться в недалеком будущем и подключение новых крупных потребителей в виде предприятия компании ООО РП «Новотранс».

Выбор схемы СН ПС

Согласно [2] для обеспечения надежной работы устройств РЗиА и всей ПС рекомендуется использовать оперативного постоянного тока. Практика внедрения современных устройств РЗиА на микропроцессорной базе показала: На ПС с напряжением 35кВ и выше не обеспечивается быстродействие дифференциальной защитой силовых трансформаторов.

Практика и показывает внедрение на строящихся и реконструируемых ПС в качестве оперативного тока только постоянный (в крайних случаях выпрямленный). В итоге, выбираю постоянный оперативный ток также.

Согласно «НТП ПС», на всех ПС следует устанавливать как минимум два ТСН. Мощность одного ТСН не должна превышать 630 кВа. Предварительно примем, что СН ПС способный обеспечивать два ТСН (подробный расчет в пункте 6.9). Также согласно «НТП ПС», на ПС с постоянным оперативным током ТСН должны присоединяться через предохранители или выключатели к шинам РУ 6–35 кВ. В целях надежности срабатывания и удобства коммутаций, выбираю коммутацию через выключатель, установленной в ячейке КРУ-2–10.

Шины СН на напряжении 0,4 кВ будут секционированы автоматическим выключателем с устройством АВР. В качестве системы заземления сети 0,4 кВ принимаю систему TN-C-S (пятипроводная: три фазных провода, один провод – нулевой рабочий проводник, один провод – защитный проводник).

На рисунке 4.3.1 изображена схема соединения РУ 10 кВ и СН ПС (при предположении, что удовлетворят питание СН ПС именно два ТСН).

 


Рис. 4.3.1 Выбранная схема соединений РУ 10 кВ и СН ПС




Основные сведения

Расчет токов короткого замыкания (КЗ) необходим для выбора и проверки аппаратов и токоведущих частей ПС на термическую и динамическую стойкость, для выбора и оценки устройств РЗиА. При КЗ ток в месте повреждения резко увеличивается, а значит, происходит сверхдопустимый нагрев проводника, изоляции, что объясняет термическое разрушающее действие КЗ. Также токи КЗ опасны динамическим разрушающим действием (к примеру – сборные шины отдельных фаз). Расчётным КЗ для выбора аппаратов является трёхфазное КЗ, т. к. токи в этом случае имеют максимальные значения, а значит, и влекут за собой максимальное разрушающее действие.

При расчете токов КЗ принимаю допущения: – Расчётное напряжение каждой ступени схемы электроснабжения принимается на 5% выше номинального значения. – КЗ наступает в момент времени, при котором ударный ток КЗ будет иметь наибольшее значение. – Сопротивление места КЗ считается равным нулю (металлическое КЗ). – Не учитываю сдвиг по фазе ЭДС различных источников питания, входящих в расчётную схему. Источник питания принимаю единым в качестве системы (ЕЭС) с бесконечно большой полной мощностью SСИС = ∞. – Не учитываю ёмкости, а, следовательно, емкостные токи в воздушных и кабельных сетях. – Не учитываю токи намагничивания трансформаторов. – Напряжение системы (ЕЭС) остается неизменным. – Полная симметрия трехфазной системы. – Не учитываю увеличение суммарного тока КЗ со стороны электродвигателей более низких уровней напряжения, чем уровень напряжения точки КЗ.

Для проверки чувствительности устройств релейной защиты рассчитывается и минимально возможный ток короткого замыкания, на который защита должна быстро реагировать. Обычно, расчетным здесь является двухфазный ток короткого замыкания с учетом ремонтных режимов сети, при которых отключена часть источников питания и ветвей связи, для того чтобы этот ток КЗ через проверяемую защиту был минимальным.

Для расчета токов КЗ необходимо составить схему замещения рассматриваемой сети, то есть расчетную схему, в которой вводятся все элементы сети электроснабжения, и все электрические и магнитные связи представлены сопротивлениями. Генерирующие источники (в данном случае – система) вводятся в схему замещения соответствующими ЭДС, а пассивные элементы, по которым проходит ток КЗ, индуктивными и, при необходимости (при большой протяженности ЛЭП), активными сопротивлениями. В данном случае с длиной питающих отпаек ВЛ в 10 км можно пренебречь с достаточной для практических расчетов точностью величинами активных сопротивлений схемы замещения.

 

Расчет токов трехфазного КЗ

Расчетная схема и схема замещения для расчётов токов КЗ представлены соответственно на рис 5.1 и рис 5.2.

В качестве источника питания (системы) примем ВЛ «Каширская ГРЭС – Ожерелье», к которой присоединяется отпайки в виде ВЛ к ПС «Сорокино» с длиной LОТП=10 км. ЭДС системы принимаем равной EC= ∞, а сопротивление XC= 0. Удельное сопротивление каждой из двух питающих отпаек ХУД = 0,4 Ом/км.

На рисунке 5.2.1 изображена расчетная схема нахождения токов КЗ. На рисунке 5.2.2 – схема замещения.

Точка К1 – расчетная точка КЗ для стороны 110 кВ. Точка К2 – расчетная точка КЗ для стороны 10 кВ.

 


Рисунок 5.2.1 Расчетная схема нахождения токов КЗ

трансформатор подстанция электрический оборудование

Рисунок 5.2.2 Схема замещения для нахождения токов короткого замыкания

Расчет тока КЗ в точке К1 на стороне 110 кВ:

Система: SСИС= ∞; XСИС= 0; UНОМ.С = 115 кВ.

Воздушая линия:

 

Ом; (5.2.1)

 

В итоге, ток периодической составляющей трехфазного КЗ в точке К1 равен:


кА; (5.2.2)

 

Максимальный ударный ток КЗ в точке К1равен:

 

кА, (5.2.3)

 

Где КУ=1,92 – ударный коэффициент тока КЗ в месте РУ ВН ПС с трансформаторами средней мощности [16].

Расчет тока КЗ в точке К2 на стороне 10 кВ:

Система: SС= ∞; XС= 0; UНОМ.С= 115 кВ.

Воздушная линия:

 

 Ом, (5.2.4)

 

Где UНН.Т = 10,5 кВ – расчетное напряжение ступени КЗ в точке К2.

Трансформатор (с расщепленной низшей обмоткой):

 

 Ом; (5.2.5)

 Ом; (5.2.6)

 Ом; (5.2.7)

 Ом; (5.2.8)

 

В итоге, ток периодической составляющей трехфазного КЗ в точке К2 равен:


кА;

 

Максимальный ударный ток КЗ равен:

 

кА, (5.2.9)

 

Где КУ =1,85 – ударный коэффициент тока КЗ в месте РУ НН ПС с трансформаторами средней мощности [16].

 

Максимальные значения токов КЗ на ступенях 110 кВ и 10 кВ для выбора оборудования ПС

Точка расчета КЗ Место нахождения точки КЗ Значение периодической составляющей тока трехфазного замыкания IП.О. Ударный ток трехфазного короткого замыкания IУД
К1 На шинах 110 кВ 16.6 кА 45.07 кА
К2 На шинах 10 кВ 16.17 кА 42.31 кА

 

 






Выбор оборудования ПС

 

Для дальнейшего выбора силового оборудования, которое будет установлено на ПС, необходимо подчеркнуть экономическую целесообразность и удобство транспортировки при массовых заказах у единичных производителей. Основная часть силового оборудования будет поставляться компаниями: 1. ЗАО «ГК «Электрощит» – ТМ Самара» (г. Самара).  – Вакуумные выключатели 10 кВ и трансформаторы тока нулевой последовательности (ТТНП).

– Разъединитель горизонтально-поворотного типа 110 кВ. – Сухие ТСН и комплектные трансформаторные подстанции (КТПСН). 2. ЗАО «ЗЭТО» (г. Великие Луки). – Элегазовые выключатели колонкового типа 110 кВ – Жесткая ошиновка ОРУ-110 кВ. – Заземлитель наружной установки. – ОПН всех классов напряжения. – Разъединители внутренней установки (КРУ, КТП) 10 кВ.

 

Условия выбора выключателей

1. Выбор по номинальному напряжению:


UНОМ.ВЫКЛ ≥ UНОМ.РУ, (6.4.1)

 

Где UНОМ.ВЫКЛ - номинальное напряжение выключателя.

UНОМ.РУ – номинальное напряжение РУ, в котором будет установлен данный выключатель.

2. Выбор по току максимального утяжеленного режима:

 

IНОМ.ВЫКЛ ≥ IР.MAX, (6.4.2)

 

Где IНОМ.ВЫКЛ - номинальный ток выключателя.

IР.MAX – рабочий ток в максимальном утяжеленном режиме.

Сторона 110 кВ:

 

А; (6.4.3)

А; (6.4.4)

 

Цепи ввода и секционирования РУ 10 кВ:

 

А; (6.4.5)

А; (6.4.6)

 

Цепь наиболее загруженного фидера (фидер №14 – смотри пункт 6.3):

 

IНОРМ = 427 А; (6.4.7)

А; (6.4.8)


Расчетные рабочие токи на ПС

Место расчета

Расчетные рабочие токи, А

в нормальном режиме в утяжеленном режиме
1. Сторона 110 кВ 330,66 463
2. Цепи ввода и секционирования РУ 10 кВ 1818,6 2546,11
3. Цепь наиболее загруженного фидера 427 449,5

 

3. Выбор по коммутационной способности:

 

IНОМ.ОТКЛ ≥ IП.О.Т, (6.4.9)

 

Где IНОМ.ОТКЛ - номинальный ток отключения выключателя.

IП.О.Т – периодическая составляющая тока трехфазного замыкания к моменту времени Т расхождения контактов выключателя.

 

, (6.4.10)

 

Где - коэффициент относительного содержания апериодической составляющей тока КЗ в отключаемом токе. iА,Т – апериодическая составляющая тока КЗ к моменту Т расхождения контактов выключателя.

, (6.4.11)

 

Где Та – постоянная времени затухания апериодической составляющей тока КЗ в зависимости от места КЗ [16]. tОТКЛ - полное время протекания тока КЗ до его отключения.

4. Проверка на электродинамическую стойкость:

 

IДИН.MAX ≥ IУД; (6.4.12) IДИН.ДЕЙСТВ≥ IП.О, (6.4.13)


Где IДИН.MAX - амплитудное значение тока электродинамической устойчивости выключателя. IДИН.ДЕЙСТВ – действующее значение периодической составляющей тока электродинамической стойкости выключателя.

5. Проверка на термическую стойкость:

 

; (6.4.14) , (6.4.15)

 

Где ВК – интеграл Джоуля.

IТ.СТ – предельный ток термической устойчивости выключателя. tТ.СТ – длительность протекания тока термической устойчивости.




Условия выбора

Выбор ТТ производится:

– по конструкции, роду установки.

– по номинальному напряжению UНОМ.

– по нагрузочной способности. – по номинальному току IНОМ. - по термической устойчивости. – по электродинамической устойчивости. – по предельной кратности тока при номинальной вторичной нагрузки.

Выбор ТН производится: – по конструкции, роду установки. – по номинальному напряжению UНОМ. - по нагрузочной способности.

Выбор ОЭИТ на ОРУ-110 кВ

В соответствии с [4], для схемы №110–5Н (без ремонтной перемычки) принято решение устанавливать в цепь моста с двух концов выключателя комбинированные оптоэлектронные трансформатора тока и напряжения (далее – ОЭТН). На линейных цепях – оптоэлектронные трансформаторы тока (далее – ОЭТ). Количество устанавливаемых ОЭТН – 6 штук. Количество устанавливаемых ОЭТ – 6 штук.

 

Характеристики ОЭТН типа NXVCT-115 и ОЭТ типа NXCT-115

Номинальные параметры   Расчетные величины
Наружной установки ОРУ
UНОМ =115кВ (UРАБ.MAX =121 кВ) UНОМ. РУ = 110 кВ
I1. НОМ =1кА (диапазон 100 А ÷ 4 кА) IРАБ.MAX =463 А
IТ.СТ2·tТ.СТ=632·1=3969 кА2·с B=48.223 кА2  с
IДИН.MAX=170 кА IУД=45,07 кА

Диапазон рабочих температур воздуха: от (-55)0C до 550C

Район по ветру: до V (до 45 м/с)

Класс точности: 0,2S (для измерения – функция ТТ)

Класс точности: 5Р20 (для защиты – функция ТТ)

Класс точности: 0,2 (для измерения – функция ТН)

Класс точности: 0,2 (для защиты – функция ТН)

Масса колонны: 180 кг (ОЭТН); 56 кг (ОЭТ)

Производитель: ООО «ПроЛайн» (г. Ярославль)

 

Выбор ТТ в КРУ-10 кВ

Устанавливать ТТ буду типа ТЛО-10 производства ООО «Электрощит – К0» во все ячейки КРУ-2–10. Данный тип ТТ обладает несколькими преимуществами над остальными литыми ТТ других производителей:

1. В отличие от литых ТТ других производителей (к примеру: ТОЛ-СЭЩ от ЗАО «ГК «Электрощит» – ТМ Самара») линейка номинальных токов ТЛО-10 увеличена до 3150 А. 2. ТЛО-10 обладает более компактными габаритами. 3. Максимальные односекундные токи термической стойкости среди российских аналогов.

ТТ типа ТЛО-10 будут с тремя вторичными обмотками: измерительной обмотка для целей АИИС КУЭ с классом точности 0,2S; обмотка для подключения электронных счетчиков с классом точности 0,2S; обмотка (защитная) для подключения устройств РЗ с классом точности 5Р. РЗ будет выполнена на микропроцессорной основе с максимально возможной мощностью для ТТ в SMAX.РЗ=0,5 Ва.

В качестве измерительных приборов, с помощью которых будет осуществляться контроль за режимом работы ПС, будут взяты многофункциональные трехфазные микропроцессорные счетчики «ЕвроАльфа». С помощью этих счетчиков можно измерить с погрешностью 0,2S и отобразить на ЖК-дисплее все необходимые параметры электроэнергии: ток и напряжения по фазам, активная и реактивная потребляемые энергии, частота сети, коэффициент мощности. Многотарифность (4 тарифные зоны в день, 4 типа дней недели) позволяет точно и оперативно получать информацию о параметрах потребляемой энергии в соответствии с ее тарифом в тот или иной момент времени.

На рисунке 6.6.1 изображена схема соединения счетчика «ЕвроАльфа», производящего измерения в цепях ввода на секцию. Видно, что подключается счетчик через ТТ типа ТЛО-10 (его измерительную обмотку) и через измерительную обмотку ТН (предполагаемый тип НАМИ).

Проверка нагрузочной способности ТТ типа ТЛО-10 в цепях ввода: Номинальный ток вторичных цепей и счетчиков принят за I2 =5 А.

Максимально допустимая вторичная нагрузка обмоток SДОП = 50 Ва. Тогда найду максимально допустимое сопротивление этой нагрузки:


Ом; (6.6.1)

 

Схема соединения счетчика «ЕвроАльфа» через ТТ и ТН

 

Максимальная потребляемая мощность счетчика SMAX.СЧ =3,6 Ва. Сопротивление счетчика:

 

Ом; (6.6.1)

 

Общее сопротивление вторичной нагрузки также состоит из сопротивлений провода, соединяющего выводы обмотки ТТ с счетчиком, и сопротивления контактных соединений ZКОНТ= 0,1 Ом. Длина соединительных проводов от ТТ до приборов (в один конец) ориентировочно для РУ 6–10 кВ, кроме линий к потребителям (то есть в нашем случае), может быть принята около 40 метров.

Учитывая малое значение нагрузки электронного многофункционального счетчика SMAX.СЧ =3,6 Ва и максимально возможный ток счетчика в 10 А, примем провод алюминиевый с негорючей изоляцией марки АВВГнг и сечением SСЕЧ =2,5 мм2. Тогда сопротивление провода:

 

 Ом; (6.6.2)

 

В итоге, суммарное сопротивление вторичной нагрузки обмотки:

 

 Ом; (6.6.3)

 

Очевидно, что нагрузочная способность ТЛО-10 выполняется, то есть: ZДОП.ТТ (2 Ом) > Z2.РАСЧ (0,692 Ом).

Проверка по предельной кратности тока ТТ типа ТЛО-10 в цепях ввода:

, (6.6.4)

 

Где I1.НОМ.ТТ = 3000 А – номинальный ток первичной обмотки выбранного ТЛО-10 в цепях ввода с IР.MAX=2546,11 А. KРАСЧ – расчетное значение предельной кратности тока, где значение периодической составляющей тока КЗ в точке К2. KНОМ.ПРЕД - максимальное значение предельной кратности тока измерительной обмотки ТЛО-10.

 

Характеристики ТЛО-10 для цепей ввода и секционирования

Номинальные параметры ТЛО-10 формы М8   Расчетные величины
Внутренней установки   КРУ-2–10
UНОМ =10кВ (UРАБ.MAX =12 кВ) UНОМ. РУ = 10 кВ
Z2.НОМ=2 Ом > Z2.РАСЧ =0,692 Ом
I1. НОМ =3000 А > IР.MAX =2546.11 А
кА2с > В=32.68 кА2 с
IДИН.MAX=100 кА > IУД=42,31 кА
KПРЕД = 10 > KРАСЧ = 5,39
Число вторичных обмоток – 4 (ввод) и 3 (секц. цепи)

Класс точности – 0,2S (для измерений)

Класс точности – 5Р (для защиты)

Масса: 45 кг

Производитель: OОО «Электрощит-К»

Стоимость: 16 тысяч рублей

 

Характеристики ТЛО-10 для отходящих линий

Номинальные параметры ТЛО-10 формы М1   Расчетные величины
Внутренней установки   КРУ-2–10
UНОМ =10кВ (UРАБ.MAX =12 кВ) UНОМ. РУ = 10 кВ
Z2.НОМ=2 Ом > Z2.РАСЧ =0,3 Ом
I1. НОМ =600 А > IР.MAX =449.5 А
кА2с > В=32.68 кА2 с
IДИН.MAX=100 кА > IУД=42,31 кА
KНОМ = 30 > KРАСЧ = 26,95
Число вторичных обмоток – 3

Класс точности – 0,2S (для измерений)

Класс точности – 5Р (для защиты)

Масса: 28 кг

Производитель: OОО «Электрощит-К»

Стоимость: 13 тысяч рублей

 

В итоге, полное обозначение выбранных ТТ типа ТЛО-10: Цепи ввода и секционирования: М8АС-0,2SFS10/5P10–10/5–3000/5 УЗ 40 Отходящие линии: М1АС-0,2SFS30/5P30–10/5–600/5 УЗ 40 Расшифровка: М1 и М8 – габариты ТЛО-10. А – выводные контакты вторичных обмоток на корпусе трансформатора расположены с торца. С – наличие крышки для защиты и пломбирования измерительной обмотки. 0,2S – класс точности измерительной вторичной обмотки FS30 и FS10 – коэффициенты предельной кратности по току для измерительной обмотки. 5Р – класс точности вторичной обмотки РЗ. 30 и 10 – коэффициенты предельной кратности по току для обмотки РЗ. 5 – номинальная вторичная нагрузка измерительной обмотки (Ва). 1 – номинальная вторичная нагрузка защитной обмотки (Ва). 3000 и 600 – номинальные первичные токи (А). 5 – номинальный вторичный ток (А). У – климатическое исполнение. 3 – категория размещения. 40 – ток односекундной термической стойкости.


Выбор ТН в КРУ-10 кВ

Как уже ранее было написано, предполагаются к установке ТН типа НАМИ-10–95 УХЛ2. Установка в отдельных шкафах с ОПН на каждой секции КРУ-10 кВ. Имеет две вторичные обмотки, питаемые на линейном напряжении 100 В. К одной обмотке ТН (измерительной) подключают счетчик «ЕвроАльфа», а к другой обмотке (защитная) – органы РЗ, такие как Реле напряжения. Вторичные обмотки заземляются.

Расшифровка НАМИ-10–95 УХЛ2: Н – трансформатор напряжения; А – антирезонансный; М – с масляной изоляцией; И – контроль состояния изоляции; 10 – уровень номинального напряжения (кВ); 95 – выпускается данный тип НАМИ с 1995 года; УХЛ2 – климатическое исполнение и категория размещения (1, 2).

Класс точности данного типа НАМИ равен 0,2, что позволяет их качественно использовать вместе с электронными счетчиками в целях создания АИИС КУЭ. На рисунке 6.6.1 показана схема соединения ТН с счетчиков, осуществляющим контроль за всеми параметрами сети с SMAX.СЧ =3,6 Ва. При классе точности 0,2 – предельная мощность вторичной обмотки SДОП =105 Ва. Очевидно, что по нагрузочной способности данный тип ТН удовлетворяет.

 

Характеристики ТН на стороне 10 кВ

Номинальные параметры НАМИ-10–95 УХЛ2 Расчетные величины
Внутренней установки КРУ-2–10
UНОМ =10кВ (UРАБ.MAX =12 кВ) UНОМ. РУ = 10 кВ
SДОП=105 ВА SРАСЧ.2.Σ =3,6 ВА
Класс точности для защиты и измерения – 0,2  
Схема соединения обмоток – Y0 / Y0 / Λ  

 

Выбор ДГР

В качестве ДГР буду использовать комбинированный ДГР (то есть совмещенный с трансформатором подключения в одном баке) типа ASRC, производимый чешской компанией «EGE». Особенности данного типа ДГР: – Автоматическое определение емкостного тока сети и его плавную автоматическую компенсацию (от 10% до 100% от тока компенсации). – Комплектование цифровыми регуляторами REG-DPA с высокой чувствительности по напряжению 3U0 (в диапазоне 0,1–120 В). Регулятор обеспечивает высокое удобство эксплуатации (вычисляет емкостной ток сети; активную составляющую в токе замыкания; отображает на дисплее резонансную кривую сети и в виде засечки на ней текущую позицию реактора; обеспечивает автоматическое слежение за изменением емкости сети). – Комплектование шунтирующим низковольтным резистором, который включается во вторичную силовую обмотку реактора напряжением 500 В, что дает возможность организовать автоматический поиск присоединения с ОЗЗ. Номинальный активный ток, создаваемый шунтирующим резистором только в поврежденном фидере, составляет не менее 10% от максимального тока компенсации ДГР. Допустимое время протекания номинального тока в шунтирующем резисторе варьируется в пределах 6–90 с. – Оснащение устройствами обогрева шкафа управления и привода, что обеспечивает эксплуатацию на ОРУ ПС без дополнительной защиты при зимних температурах до -45º С. – Оснащение газовом реле Бухгольца для контроля уровня масла в ДГР и защиты от внутренних повреждений, а также электроконтактные термометры для контроля температуры масла при работе в режиме ОЗЗ.

ДГР типа ASRC оснащен тремя обмотками: 1. Главная обмотка, которая изготавливается в соответствии с UНОМ.СЕТИ, QДГР и длительностью работы сети в режиме ОЗЗ. 2. Измерительная обмотка (U2.ИЗМ=100 В; I2.ИЗМ =3А) используется для автоматического управления ДГР и измерения величины напряжения на нейтрали U0. 3. Специальная обмотка (UСПЕЦ= 500 В; QСПЕЦ =0,1· QДГР в течение 90 сек) применяется для кратковременного включения шунтирующего резистора, создающего активную составляющую в токе поврежденного присоединения, что обеспечивает его селективное определение при наличии соответствующей РЗ.

Расчет мощностей ДГР:

При выборе мощностей ДГР, которые будет устанавливаться единично на каждой секции, следует подчеркнуть, что расчетный емкостной ток будет равен емкостному току каждой из двух систем шин, то есть в случае, когда секционные выключатели замкнуты (случай выхода из строя одного из двух силовых трансформаторов).

Таким образом, суммируя значения емкостных токов секций (№1 и №2) и секций (№3 и №4) из таблицы 6.8.3 – получаю расчетные значения емкостных токов для выбора ДГР:

 

IС.Σ.1 = 10,08 + 40,5 =50,58 А; (6.8.3)

IС.Σ.2 = 25,56 + 16,2 =41,76 А; (6.8.4)

 

Таким образом, нахожу мощности устанавливаемых ДГР.

Секции (№1; №3): QДГР.1 ≥1,25·5,77·IС.Σ.1=1,25·5,77·50,58 = 364,81 кВа, (6.8.5) Секции (№2; №4): QДГР.2 ≥1,25·5,77·IС.Σ.2=1,25·5,77·41,76 = 301,19 кВа, (6.8.6)

Где 1,25 – коэффициент с учетом развития сети 10 кВ. 5,77 – фазное напряжение сети 10 кВ. Из [21] выбираю ДГР одной мощности QДГР = 480 кВа. Мощность трансформатора подключения SНОМ.ТДГР ≥ QДГР и равна 500 кВа. Тогда мощность специальной обмотки для подключения резистора равна: QСПЕЦ =0,1· QДГР = 50 кВа. Диапазон токов компенсации ДГР от 8А до 83 А, то есть максимальное значение тока компенсации IL.MAX = 83 А. Номинальный активный ток резистора IR ≥ 0,1· IL.MAX и принять равным стандартному значению 10 А.

 


Характеристики ДГР

Тип ДГР ASRC
Номинальная мощность 480 кВа
Номинальное напряжение сети 10 кВ
Настройка компенсации плавная
Размещение ОРУ – 110 кВ
Диапазон изменения тока компенсации 8 – 83 А
Номинальный активный ток резистора 10 А
Тип шунтирующего резистора SR 500V / 120 A/ 60 s
Цифровой регулятор реактора REG-DPA
Привод Моторный MD1
Номинальная мощность трансформатора ТДГР 500 кВа
Схема соединения обмоток ТДГР Y0 / Δ
Производитель «EGE» (Чехия)

 

Марка кабеля, соединяющего ТДГР – АПвВнг-LS (3x16). Присоединение к секциям через КРУ серии КРУ-2–10 с выключателем типа ВВУ-СЭЩ-П-10–20/1000 У2.


Выбор ОПН

 

В качестве защиты оборудования ПС и ее изоляции от атмосферных и коммутационных перенапряжений нормативные документы разрешают использовать лишь ОПН (ограничители перенапряжения). В качестве рекомендаций [2], внешняя изоляция будет из полимерного материала. На ПС необходимо установить ОПН в количестве 32 штук: 1. На стороне 110 кВ – 8 штук. Из них 2 штуки – в нейтрали силовых трансформаторов параллельно с заземлителями. 6 штук – на тросы ввода трансформаторов. 2. На стороне 10 кВ – 24 штуки. 12 штук на каждую секцию в шкафах ТН и 12 штук на тросах выводов силовых трансформаторов. Таким образом, 12 штук ОПН будут во внутреннем исполнении, а остальные 20 штук – в открытом. Способ установки – «фаза-земля».

Для выбора типа ОПН на стороне 110 кВ необходимо найти наибольшее длительно допустимое напряжение на ОПН UНР.ОПН. Для данной ПС (не относиться к категории «особый случай» – смотри [15]) применима формула:

UНР.ОПН ≥ 1,05 ·UНОМ.Ф.СЕТИ = 1,05 ·63,51=66,69 кА, (6.9.1)

Где 1,05 – коэффициент запаса для сетей с эффективно-заземленной нейтралью. Используя сайт {5}, выбираю ОПН типа ОПН-П1–110/73/10/2 УХЛ1. Исполнение установки ОПН – на опоре линейного портала.

В качестве ОПН на стороне 10 кВ, устанавливаемые для защиты оборудования именно на ПС, компания ЗАО «ЗЭТО» предлагает ОПН типа ОПН-П1–10/12/10/2 УХЛ2. Исполнение установки ОПН – подвесное к тросам выводов трансформаторов.

Выбранные типы ОПН необходимо проверить по взрывобезопасности к максимальным токам КЗ, то есть IВЗ > IУД. Для стороны 110 кВ: IВЗ > 45,07 кА. Для стороны 10 кВ: IВЗ > 42,31 кА.

 

Характеристики ОПН ПС «Сорокино»

Тип ОПН ОПН-П1–110/73/10/2 УХЛ1 ОПН-П1–10/12/10/2 УХЛ2
Номинальное напряжение 110 кВ 10 кВ
Наибольшее длительно допустимое напряжение 73 кВ 12 кВ
Номинальный разрядный ток 10 кА 10 кА
Категория взрывобезопасности А (IВЗ = 63 кА) А (IВЗ = 63 кА)
Остающееся напряжение при импульсе тока в 10 кА за 0,1 мкс 274 кВ 44 кВ
Стоимость 35.000 рублей 2.300 рублей
Производитель: ЗАО «ЗЭТО» (г. Великие Луки)

 

Выбор ТСН

 

В таблице 6.10.1 отображены потребители собственных нужд (СН) ПС и их суммарная нагрузка с учетом коэффициента спроса. Расшифровка обозначений таблицы: P – Номинальная активная мощность единичного потребителя СН (кВт). N – Количество единичных потребителей СН (шт.). PN - Суммарная активная мощность потребителя СН (кВт). КСПР – Коэффициент спроса на потребителя СН (о.е). cosφ – Коэффициент мощности потребителя СН (о.е). SРАСЧ – Расчетная нагрузка потребителя СН (кВа). SРАСЧ.Σ – Суммарная расчетная нагрузка всех потребителей СН (кВа).

 

Нагрузочные данные потребителей собственных нужд ПС

Потребители собственных нужд Р (кВт) N (шт.) РN (кВт) КСПР cosφ   SРАСЧ (кВа)
Освещение ОРУ-110кВ   5   -   5   0,5   1   2,5  
Отопление, освещение, вентиляция ЗРУ-10 кВ   7   -   7   0,7   1   4,9  
Отопление, освещение, вентиляция ОПУ   100   -   100   0.7   1   70  
Отопление и освещение склада 5,5   -   5,5   0,2   1   1,1  
Двигатели системы охлаждения силового трансформатора 4 2 8 0,85 0,85 8
Устройство РПН 1 2 2 0,8 0,9 1,78
Отопление шкафа КРУ 1 39 39 1 1 39
Электроподогрев элегазового выключателя и его привода 5 3 15 1 1 15
Электроподогрев привода разъединителя 110 кВ 0,6 8 4,8 1 1 4,8
Электропитание телемеханики и аппаратуры связи 2 - 2 1 1 2
Электроподогрев шкафа РЗ 1 12 12 1 1 12
Электропитание системы пожаротушения 15 - 15 1 1 15
Зарядно-подзарядное устройство 35 2 70 0,12 1 8,4
ИТОГО: SРАСЧ.Σ = 184,48 кВа

 

В соответствии с [1], очевидно, что на ПС будет достаточна установка двух ТСН. Их эксплуатацию можно осуществить следующими способами:

1. Один из двух ТСН питает всю нагрузку СН, а второй находится в автоматическом резерве.

2. Два ТСН работают совместно с загрузкой 50–70% от номинальной мощности ТСН. При этом секции шин 0,4 кВ питают нагрузку раздельно.

К установке принимаю второй вариант эксплуатации ТСН.

На реконструируемой ПС будет отсутствовать постоянный оперативный персонал, поэтому формула для выбора номинальной мощности ТСН такова:

 

SНОМ.ТСН ≥ SРАСЧ.Σ; (6.10.1) SНОМ.ТСН ≥ 184,48 кВа, (6.10.2)

 

Где SНОМ.ТСН – номинальная мощность ТСН. SРАСЧ.Σ =184,48 кВа – Суммарная расчетная нагрузка всех потребителей СН.

Таким образом, ближайшая стандартная мощность трансформатора равна 250 кВа. В соответствии с [2], ТСН будут с сухой изоляцией обмоток с установкой в комплектной двухтрансформаторной ПС СН.

 

Паспортные данные ТСН

ТСЗ-СЭЩ-250/10-УЗ ПБВ – 5 ступеней (±5%)
SНОМ = 250 кВа
UВН = 10 кВ
UНН = 0,4 кВ Масса: 1185 кг
UK% = 4% Производитель: ЗАО «ГК «Электрощит» – ТМ Самара» (г. Самара)
Δ / Y0 -11 Стоимость: 600 тысяч рублей

 


Марка кабеля, соединяющего ТСН – АПвВнг-LS (3x16). Присоединение к секциям через КРУ серии КРУ-2–10 с выключателем типа ВВУ-СЭЩ-П-10–20/1000 У2.

 

Технические характеристики комплектной ПС СН

Наименование 2КТП-СЭЩ-СН-250/10/0,4 – УЗ
Мощность ТСН 250 кВа
Уровень изоляции [ГОСТ 1516.3–96] Облегченная изоляция
Ток термической стойкости на стороне 10 кВ в течение 1 с 20 кА
Ток динамической стойкости на стороне 10 кВ 51 кА
Тип атмосферы II [ГОСТ 15150–69]
Сейсмостойкость 9 баллов на 0 м по шкале MSK 64
Габариты:  
Длина 13,5 метра
Ширина 12 метров
Высота 22,7 метра

 

5.11 Выбор аккумуляторной батареи

 

В соответствии с [1], для получения постоянного оперативного тока на ПС 110 кВ и выше будут установлены две одинаковые аккумуляторные батареи (АБ) стационарной установки закрытого типа с жидким и экологически чистым диэлектриком, исключающими выделение водорода в режиме зарядки и исключающие содержание ядовитых ПХБ (полихлорированные бифенилы).

В соответствии с [2], на ПС будут установлены АБ типа Groe. Каждая из двух АБ будет находиться в отдельных блоках ОПУ. Емкость каждой из двух АБ сможет обеспечивать питанием всех потребителей СН в течение не менее 3 часов при отключенном зарядно-подзарядном устройстве (ЗПУ).

Для выбора модели АБ типа Groe, отличающееся между собой номинальной емкостью, необходимо рассчитать максимальное значение тока с низшей стороны ТСН. В случае отказа обоих ТСН, именно этот ток (ток суммарной нагрузки всех потребителей СН) каждая из двух АБ обязана генерировать своей емкостью даже без подзарядки от ЗПУ. Рассчитаем максимальный ток низшей стороны ТСН:

 

А; (6.11.1)

 

Выбираю АБ типа Groe модели SGL 31D с номинальной емкостью СНОМ =400 (А· час). Через 3 часа разряда емкость снизиться до 373 (А· час), таким образом, обеспечив требования [2].

 

Таблица 6.11.1 Технические характеристики АБ

Тип АБ Groe (серия SGL-SGH)
Модель АБ SGL 33D
Обозначение по стандарту DIN 40738 16_GroE 400
Номинальная емкость при 20 °С 400 А· час
Номинальное напряжение АБ 220 В
Количество элементов в АБ 110 шт.
Номинальное напряжение на одном элементе 2 В
Рекомендуемое напряжение на одном элементе в режиме постоянного подзаряда АБ 2,23 В
Электролит Раствор серной кислоты
Производитель: «FIAMM» (Италия)

 


Выбор шинных конструкций

Заключение

В данном дипломном проекте представлен проект реконструкции подстанции «Сорокино», отвечающий всем последним требованиям ряда нормативных документов, а также соответствует рекомендациям, указанным в Концепциях по технической политики таких компаний, как ОАО «ФСК ЕЭС», ОАО «МОЭСК», ОАО «МРСК Центр».

Анализируя суточные графики нагрузок по сезонам с учетом темпов развития роста электропотребления в регион, было решено увеличить номинальную суммарную мощность подстанции с 80 МВа до 126 МВа.

Изменению подлежал и режим нейтрали стороны 10 кВ вследствие установки дугогасящих реакторов на каждую секцию с целью компенсации емкостного тока.

Особым инженерном решением было внедрение оптоэлектронных измерительных трансформаторов на стороне 110 кВ. Данная технология сертифицирована и в ряде документов носит рекомендательный характер к установке на энергообъектах. В проекте произведено исследование оптоэлектронных трансформаторов тока и напряжения, с помощью которого был сделан вывод о целесообразности их внедрения при реконструкции на подстанцию «Сорокино».

На основе анализа опасных и производственных факторов, которые могут возникнуть при эксплуатации подстанции, были предложены основные мероприятия, направленные на устранения или уменьшения их влияния.

В экономической части проекта рассчитаны ремонтные циклы электрооборудования подстанции.

 

 


Список используемых источников информации

 

1. Нормы технологического проектирования подстанций переменного тока с высшим напряжением 35–750 кВ (НТП ПС) – Стандарт организации ОАО «ФСК ЕЭС» (СТО 56947007 – 29.240.10.028–2009).

2. Концепция технической политики ОАО «МОЭСК» от приказа ОАО РАО «ЕЭС России» с 12.11.04 г. №660. 3. Техническая политика ОАО «МРСК Центра» от приказа ОАО «ФСК ЕЭС» от 26.10.2006 г. №270 р/293 р. 4. Схемы принципиальные электрические распределительных устройств подстанций напряжением 35–750 кВ. Типовые решения – Стандарт организации ОАО «ФСК ЕЭС» 2007 г. 5. ГОСТ Р 52736–2007 – «Методы расчета электродинамического и термического действия короткого замыкания». 6. ГОСТ 14209–1997 – «Руководство по нагрузке силовых масляных трансформаторов». 7. Правила устройства электроустановок – 7-е изд. – М.: Изд-во НЦ ЭНАС, 2003 год. 8. Злобина И.Г., Казакова Е.Ю., Шестакова Л.А. – Электрические станции и подстанции: Учебное пособие к выполнению курсового проекта. – ЧГУ, Чебоксары, 2008 год. 9. Леньков Ю.А., Хожин Г.Х. – Выбор коммутационных аппаратов и токоведущих частей распределительных устройств электрических станций и подстанций: Учебное пособие. 10. Костин В.Н. – Электропитающие системы и электрические сети. Учебно-методический комплекс: Учебное пособие. – Санкт-Петербург, 2007.

11. Иванов А.В., Колчин Т.В. – Методическое пособие по расчету систем оперативного тока, собственных нужд, заземляющих устройств и молниезащиты подстанций 35 кВ и выше. – Н. Новгород, 2000.

12. Гайсаров Р.В-Выбор электрической аппаратуры, токоведущих частей и изоляторов: Учебное пособие к курсовому и дипломному проектированию. – Челябинск, 2002.

13. Положение о технической политике ОАО «ФСК ЕЭС» от приказа ОАО «ФСК ЕЭС» от 04.08.2010 г. №110 п. 8.

14. Неклепаев Б.Н., Крючков И.П. – Электрическая часть электростанций и подстанций: Справочные материалы для курсового и дипломного проектирования. М.: Энергоатомиздат, 1989.

15. ГОСТ Р 52725–2007 – «Ограничители перенапряжений нелинейные для электроустановок переменного тока напряжением от 3 до 750 кВ».

16. ГОСТ Р 52735–2007 – «Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением свыше 1 кВ». 17. Правила технической эксплуатации электрических станций и сетей Российской Федерации. – М.: СПО ОРГРЭС, 2003.

18. Руководство по эксплуатации: Шкаф микропроцессорной защиты и автоматики трансформатора 110–220 кВ типа «Бреслер ШТ. 2108.***».

19. «13Б Руководящих указаний по релейной защите». – М.: 1985 год.

20. Руководство пользователю компании ABB – Кабельные системы с изоляцией из сшитого полиэтилена.

21. Дугогасящие реакторы 6–35 кВ. Техническая информация от компании ООО «Энерган» (г. Санкт-Петербург)

22. Синягин Н.Н. – Система планово-предупредительного ремонта оборудования и сетей промышленной энергетики. – М.: Энергоатомиздат, 1984.

23. Презентация компании «ПроЛайн» – «Применение оптических высоковольтных измерительных трансформаторов на сетевых объектах 110–750 кВ». 24. Гуртовцев А. – статья из журнала «Новости Электротехники» №5 (59) 2009 год: «Оптические трансформаторы и преобразователи тока. Принципы работы, устройство, характеристики».

25. Кушкова Е.И – Расчет заземляющих устройств в установках с эффективно-заземленной нейтралью.: Методические указания к курсовому и дипломному проектированию. – ВятГТУ, Киров, 2000 год.

26. Власов М., Сердцев А. – статья из журнала «ЭнергоРынок» №10 (2006): «Высоковольтные оптические преобразователи для систем измерения и анализакачества электрической энергии».

27. Власов М., Сердцев А. – статья из журнала «Энергоэксперт» №1 (2007): «Оптические трансформаторы: Первый опыт».

28. Власов М., Воронков М. – статья из журнала «Релейщик» №1 (2008):

«Построение систем РЗиА и АИИСКУЭ на базе оптических трансформаторов тока и напряжения с цифровым интерфейсом».

 


Введение

Целью данного диплома – создание проекта реконструкции подстанции «Сорокино» на основе прогрессивных технических решений.

Необходимость реконструкции подстанции вызвана физически и морально устаревшим парком оборудования, при эксплуатации которого растет день ото дня риск аварий на подстанции, а значит и нарушения снабжения ее потребителей, среди которых есть и потребители І категории.

При проектировании реконструкции подстанций руководствовался действующими нормативными документами, указанными в приложении №2 в «Нормах технологического проектирования подстанций переменного тока 35–750 кВ (далее – НТП ПС)» как и самими «НТП ПС». Также использовались такие нормативные источники как Концепция технической политики ОАО «МОЭСК» (от приказа ОАО РАО «ЕЭС России» с 12.11.04 г. №660) и Техническая политика ОАО «МРСК Центра» (от приказа ОАО «ФСК ЕЭС» от 26.10.2006 г. №270 р/293 р). Все вышеперечисленные документы созданы в соответствии и утверждены компанией ОАО «ФСК ЕЭС».

При проектировании подстанции (далее ПС) должно быть обеспечено: 1. Надежное и качественное электроснабжение потребителей. 2. Внедрение передовых проектных решений, обеспечивающих соответствие всего комплекса показателей подстанций современному мировому техническому уровню. 3. Высокий уровень технологических процессов и качества строительных и монтажных работ. 4. Экономическая эффективность, обусловленная оптимальным объемом привлекаемых инвестиций и ресурсов, используемой земли и снижением эксплуатационных затрат. 5. Соблюдение требований экологической безопасности и охраны окружающей среды. 6. Ремонтопригодность применяемого оборудования и конструкций. 7. Передовые методы эксплуатации, безопасные и удобные условия труда эксплуатационного персонала.

Проект ПС выполняется на расчетный период (5 лет после ввода в эксплуатацию) с учетом перспективы ее развития на последующие не менее 5 лет.

Основные требования к ПС нового поколения: 1. Компактность, комплектность и высокая степень заводской готовности. 2. Надежность работы ПС посредством применения электрооборудования современного технического уровня. 3. Удобство проведения осмотра, технического обслуживания и ремонта; 4. Безопасность эксплуатации и обслуживания. 5. Создание ПС без обслуживающего персонала с дистанционным управлением. 6. Комплексная автоматизация, обеспечивающая создание интегрированной системы управления технологическими процессами с подсистемами релейной защиты и автоматики, коммерческого учета электроэнергии, мониторинга состояния оборудования, диагностики и управления оборудованием. 7. Обеспечение резервируемыми цифровыми каналами связи для передачи сигналов управления и информации о состоянии электрооборудования на диспетчерский пункт, в том числе, диспетчерскими голосовыми каналами. 8. Экологическая безопасность.

Устанавливаемый комплекс оборудования и устройств на ПС: – Силовое высоковольтное оборудование. – Устройства Релейной защиты и автоматики (РЗиА). – Устройства Противоаварийной автоматики (ПА). – Устройства Автоматизированной системы управления технологическими процессами (АСУ ТП). – Устройства автоматизированной информационно-измерительной системы коммерческого учета электроэнергии (АИИС КУЭ). – Устройства системы диспетчерского и технологического управления (АСДТУ). – Устройства системы диагностики и программно-технические комплексы обеспечение систем автоматической системы технического учета (АСТУ). Весь выше перечисленный комплекс оборудования и устройств должен быть аттестован в установленном ОАО «ФСК ЕЭС» порядке.

Срок службы оборудования, применяемого при новом строительстве и реконструкции подстанций, должен быть не менее 25 лет (силовых трансформаторов не менее 30 лет, аккумуляторов не менее 20 лет).

Технические требования при строительстве или реконструкции ПС.

РУ 35–220 кВ:

1. Применение закрытых РУ 35–220 кВ, в том числе, модульного контейнерного исполнения, а так же КРУЭ 110–220 кВ в крупных городах или стесненных условиях. Открытое исполнение РУ применять в остальных случаях. 2. В целях сокращения площадей ПС отдать предпочтение жесткой ошиновке. Применение гибкой ошиновки разрешаеться. 3. Самодиагностика и прогрессивные технологии обслуживания основного электрооборудования;

4. Электрическая схема РУ должна соответствовать [4].

5. Компоновка ОРУ должна предусматривать возможность перехода к более сложной схеме (при наличии перспективы расширения ПС).

Запрещаются: Схемы первичных соединений ПС 35–220 кВ с отделителями и короткозамыкателями, а также с беспортальным приемом ВЛ.

РУ 6–10 кВ:

1. Закрытое исполнение, в том числе, с ячейками модульного типа на базе вакуумных выключателей.

2. Использование сухих трансформаторов собственных нужд.

3. Гибкая архитектура ячейки с компактной и безопасной компоновкой функциональных элементов устройства.

4. Для защиты от коротких замыканий внутри шкафов КРУ должны быть предусмотрены как релейная (логическая), так и клапанная дуговые защиты, в случае недостаточной чувствительности одной из применяемых дуговых защит применяются другие типы защит (фототиристорная, с применением световодов, оптическая и т.п.).

5. Оснащение устройствами РЗиА, аппаратами телеуправления, телесигнализации и приборами для определения наличия мест междуфазных однофазных замыканий на землю в линии 6–10 кВ, установленными вне ячеек РУ (отдельная панель (набор панелей) устройств РЗиА, вынесенная в отдельное помещение или на противоположную сторону РУ), с единым микропроцессорным модулем управления, контролирующим работу устройств РЗА на всех присоединениях.

6. Схема РУ 6–20 кВ не должны предусматривать наличие более двух секций.

Обязательное к применению силовое высоковольтное оборудование ПС:

1. Силовые трансформаторы 35–220 кВ:

– Применение встроенной системы непрерывного мониторинга состояния без вывода в ремонт трансформатора.

– Применение высоковольтных вводов с твердой изоляцией (RIP). – Оснащение РПН и ее микропроцессорными блоками управления.

– Оснащение АРНТ (автоматическими регуляторами напряжения).

2. Выключатели 110 кВ и выше:

– В климатических зонах с минимумом температур ниже (– 45)0С должны использоваться элегазовые баковые выключатели с подогревом. В остальных случаях – элегазовые колонковые выключатели. – При наличии потребителей І категории ПС применять для элегазовых выключателей пружинный привод и электродвигатель постоянного тока.

Разъединители 110 кВ и выше:

– Применять разъединители горизонтального – поворотного типа с электроприводом рабочих и заземляющих ножей с наличием защитной блокировки между ними.

– Комплектование высокопрочными фарфоровыми или полимерными опорными изоляторами.

– Применение стойкого антикоррозионного покрытия стальных деталей на основе горячей или холодной оцинковки.

Запрещаются: Разъединители типа РЛНД на всех уровнях напряжения.

4. Выключатели 6–10 кВ:

– Использовать на всех уровнях РУ 6–10 кВ выключатели одного производителя с линейкой параметров до IНОМ = 3150 А. – Совместимость с микропроцессорными устройствами РЗиА различных производителей. Не рекомендуются к применению: Электромагнитные, пневматические и гидравлические приводы для высоковольтных выключателей. Запрещаются: Воздушные и масляные выключатели на всех уровнях напряжения.

5. Измерительные трансформаторы тока (ТТ) и напряжения (ТН):

– Пожаро- и взрывобезопасность.

– ТТ должны иметь не менее трех вторичных обмоток. Три обмотки для защит отходящих линий, а четыре – для защит вводов трансформатора.

– Классы точности измерительных обмоток 0,2 и 0,2S для коммерческого учета.

– ТТ на напряжениях до 35 кВ (включительно) должны быть литыми. – Антирезонансные ТН на всех уровнях напряжения РУ.

6. Дугогасящий реактор (ДГР) для компенсации емкостных токов:

– Масляные или сухие (ПС закрытого типа) только с плавной регулировкой тока настройки.

– Рекомендуется использование комбинированных ДГР с подключаемым специальным трансформатором (ТДГР) в одном корпусе. – Оснащение системой автоматической настройки тока компенсации и устройством.

– Установка ДГР на каждой секции РУ 6–10 кВ.

– За схему соединения обмоток ТДГР принять Y0 /Δ -11.

7. Ограничители перенапряжения (ОПН): – Устанавливать ОПН с датчиком тока импульсов срабатывания и возможностью измерения токов утечки под рабочим напряжением в сетях напряжением 35110 кВ. – Применять ОПН на основе оксидно-цинковых варисторов, с полимерной изоляцией, взрывобезопасного исполнения категории А. Запрещаются: Трубчатые и вентильные разрядники на всех уровнях напряжения.

8. Трансформатор собственных нужд (ТСН): – Использовать сухие ТСН. При соответствующем обосновании – масляные герметичные ТСН марки ТМГ, ТМГСУ. При этом вводы трансформаторы не должны быть маслонаполненными. – Наличие автоматических устройств защиты масла. – Установка ТСН в комплектном виде двухтрансформаторной ПС (обозначение – 2КТП). – За схему соединения обмоток ТСН принять . – В РУ 0,4 кВ прокладывать только изолированные проводники, а защиту обеспечивать автоматическими выключатели. Запрещаются: Мачтовые и КТП шкафного типа с вертикальной компоновкой оборудования. Масляные трансформаторы марки ТМ.

Опорно-стержневая изоляция ПС: С целью предотвращения поломки опорно-стержневых изоляторов (ОСИ) разъединителей и ошиновки (шинных мостов) устанавливать полимерные изоляторы вместо фарфоровых. Запрещаются: полимерные изоляторы – серии ЛП и ЛПИС с оболочкой полиолефиновой композиции.

Воздушная линия (ВЛ) 110 кВ и выше для питания ПС: – В качестве провода ВЛ использовать марку АС или термостойкие провода марок АССС (АССR), AERO-Z. – Создание необслуживаемых воздушных линий путем применения эффективных систем защиты ВЛ от гололедных и ветровых воздействий, грозовых перенапряжений, вибрации и пляски проводов (тросов). – Применение грозозащитных тросов (ГТ) с антикоррозийным покрытием сечением не менее 70 мм2. – Монтаж волоконно-оптического кабеля (ВОК). Рекомендуется исполнение ОКГТ – оптический кабель, встроенный в грозозащитный трос.

Кабельные линии (КЛ) от РУ НН ПС: – Прокладывать кабель с изоляцией только из сшитого полиэтилена (далее – кабель из СПЭ-изоляцией), не распространяющего горение, низким выделением токсичных газов «Внг-LS». – Экранирование из медных проволок с заземлением с двух сторон. – Для защиты КЛ, проложенных в земле, от механических повреждений применять полимерную плиту марок ПКЗ 24х48 и ПКЗ 36х48.

 

 


Поделиться:



Последнее изменение этой страницы: 2019-04-10; Просмотров: 356; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.27 с.)
Главная | Случайная страница | Обратная связь