Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Протоколы передачи данных и протоколы обмена маршрутной информацией



IP-сети

Маршрутизация в сетях IP

Маршрутизаторы объединяют отдельные сети в общую составную сеть (рисунок 1.1). Внутренняя структура каждой сети не показана, так как она не имеет значения при рассмотрении сетевого протокола. К каждому маршрутизатору могут быть присоединены несколько сетей (по крайней мере две).

Маршрут - это последовательность маршрутизаторов, которые должен пройти пакет от отправителя до пункта назначения.

Маршрутизатор выбирает маршрут на основании своего представления о текущей конфигурации сети и соответствующего критерия выбора маршрута. Обычно в качестве критерия выступает время прохождения маршрута, которое в локальных сетях совпадает с длиной маршрута, измеряемой в количестве пройденных узлов маршрутизации (в глобальных сетях принимается в расчет и время передачи пакета по каждой линии связи).

 

Функции сетевого уровня

В протоколах сетевого уровня термин "сеть" означает совокупность компьютеров, соединенных между собой в соответствии с одной из стандартных типовых топологий и использующих для передачи пакетов общую базовую сетевую технологию. Внутри сети сегменты не разделяются маршрутизаторами, иначе это была бы не одна сеть, а несколько сетей. Маршрутизатор соединят несколько сетей в интерсеть.

Заголовок сетевого уровня должен содержать адрес назначения и другую информацию, необходимую для успешного перехода пакета из сети одного типа в сеть другого типа. К такой информации может относиться, например:

номер фрагмента пакета, нужный для успешного проведения операций сборки-разборки фрагментов при соединении сетей с разными максимальными размерами кадров канального уровня,
время жизни пакета, указывающее, как долго он путешествует по интерсети, это время может использоваться для уничтожения "заблудившихся" пакетов,
информация о наличии и о состоянии связей между сетями, помогающая узлам сети и маршрутизаторам рационально выбирать межсетевые маршруты,
информация о загруженности сетей, также помогающая согласовать темп посылки пакетов в сеть конечными узлами с реальными возможностями линий связи на пути следования пакетов,
качество сервиса - критерий выбора маршрута при межсетевых передачах - например, узел-отправитель может потребовать передать пакет с максимальной надежностью, возможно в ущерб времени доставки.

В качестве адресов отправителя и получателя в составной сети используется не МАС-адрес, а пара чисел - номер сети и номер компьютера в данной сети.

Таким образом, внутри сети доставка сообщений регулируется канальным уровнем. А вот доставкой пакетов между сетями занимается сетевой уровень.

Номера узла в заголовке сетевого пакета, как правило, определяется для каждого узла нового адреса, отличного от того, который использовался на канальном уровне. Преимуществом такого подхода является его универсальность и гибкость - каков бы ни был формат адреса на канальном уровне, формат адреса узла на сетевом уровне выбирается единым. Однако, здесь имеются и некоторые неудобства, связанные с необходимостью заново нумеровать узлы, причем чаще всего вручную..

Стек протоколов TCP/IP

Стандарты TCP/IP опубликованы в серии документов, названных Request for Comment (RFC). Стек был разработан по инициативе Министерства обороны США более 20 лет назад.

Структура стека TCP/IP.

Структура протоколов TCP/IP приведена на рисунке 2.1. Протоколы TCP/IP делятся на 4 уровня.

Уровень IV соответствует физическому и канальному уровням модели OSI. Этот уровень в протоколах TCP/IP не регламентируется, но поддерживает все популярные стандарты физического и канального уровня: для локальных сетей это Ethernet, FDDI, Fast Ethernet, для глобальных сетей - протоколы соединений "точка-точка" SLIP и PPP, протоколы территориальных сетей с коммутацией пакетов X.25, frame relay. Разработана также специальная спецификация, определяющая использование технологии ATM в качестве транспорта канального уровня.

Уровень III- это уровень межсетевого взаимодействия, который занимается передачей пакетов с использованием различных транспортных технологий локальных сетей, территориальных сетей, линий специальной связи и т. п.

В качестве основного протокола сетевого уровня (в терминах модели OSI) в стеке используется протокол IP, который изначально проектировался как протокол передачи пакетов, состоящих из большого количества локальных сетей, объединенных как локальными, так и глобальными связями. К уровню межсетевого взаимодействия относятся и все протоколы, связанные с составлением и модификацией таблиц маршрутизации, такие как протоколы сбора маршрутной информации RIP (Routing Internet Protocol) и OSPF (Open Shortest Path First), а также протокол межсетевых управляющих сообщений ICMP (Internet Control Message Protocol). Последний протокол предназначен для обмена информацией об ошибках между маршрутизаторами сети и узлом - источником пакета

Следующий уровень (уровень II) называется основным. На этом уровне функционируют протокол управления передачей TCP (Transmission Control Protocol) и протокол дейтаграмм пользователя UDP (User Datagram Protocol). Протокол TCP обеспечивает надежную передачу сообщений между удаленными прикладными процессами за счет образования виртуальных соединений. Протокол UDP обеспечивает передачу прикладных пакетов дейтаграммным способом, как и IP.

Уровень I называется прикладным. (FTP, telnet, WWW). Протокол SNMP (Simple Network Management Protocol) используется для организации сетевого управления. Изначально протокол SNMP был разработан для удаленного контроля и управления маршрутизаторами Internet, которые традиционно часто называют также шлюзами. С ростом популярности протокол SNMP стали применять и для управления любым коммуникационным оборудованием - концентраторами, мостами, сетевыми адаптерами и т.д. и т.п

Адресация в IP-сетях

Формат пакета IP

Пакет IP состоит из заголовка и поля данных. Заголовок пакета имеет следующие поля:

0  

15

31
VERS(4бита) V 4 будет V 6 HLEN(4бита)=5 Длина заголовка в 32-битовых словах

SERVICE TYPE

(3 бита приоритетность, критерий маршрута -(задерж.,скор.,надеж.)

TOTAL LENGTH общую длину пакета с учетом заголовка и поля данн

IDENTIFICATION (16 бит)

Все фрагменты пакета должны иметь одинаковое значение Идентификатора

FLAGS(3бита) Не фрагм., промежуточный, eofragment

FRAGMENT OFFSET (13 бит)

смещения поля данных этого фрагмента от начала общего поля данных исходного пакета

TIME TO LIVE (8 бит) =30

по истечении каждой секунды вычитается единица; единица вычитается также при каждой транзитной передаче (даже если не прошла секунда). При истечении времени жизни пакет аннулируется

 

PROTOCOL (8бит)

6-TCP, 17- UDP, 1-ICMP...

HEADER CHECKSUM

SOURCE IP ADDRESS

DESTINATION IP ADDRESS

Резерв -IP OPTIONS ( длина любая кратная 32)

Данные

Данные

         

Максимальная длина поля данных пакета ограничена разрядностью поля, определяющего эту величину, и составляет 65535 байтов, однако при передаче по сетям различного типа длина пакета выбирается с учетом максимальной длины пакета протокола нижнего уровня, несущего IP-пакеты. Если это кадры Ethernet, то выбираются пакеты с максимальной длиной в 1500 байтов, умещающиеся в поле данных кадра Ethernet.

Управление фрагментацией

Протоколы транспортного уровня (протоколы TCP или UDP), пользующиеся сетевым уровнем для отправки пакетов, считают, что максимальный размер поля данных IP-пакета равен 65535, и поэтому могут передать ему сообщение такой длины для транспортировки через интерсеть. В функции уровня IP входит разбиение слишком длинного для конкретного типа составляющей сети сообщения на более короткие пакеты с созданием соответствующих служебных полей, нужных для последующей сборки фрагментов в исходное сообщение.

В большинстве типов локальных и глобальных сетей определяется такое понятие как максимальный размер поля данных кадра или пакета, в которые должен инкапсулировать свой пакет протокол IP. Эту величину обычно называют максимальной единицей транспортировки - Maximum Transfer Unit, MTU. Сети Ethernet имеют значение MTU, равное 1500 байт, сети FDDI - 4096 байт, а сети Х.25 чаще всего работают с MTU в 128 байт.

IP-маршрутизаторы не собирают фрагменты пакетов в более крупные пакеты, даже если на пути встречается сеть, допускающая такое укрупнение. Это связано с тем, что отдельные фрагменты сообщения могут перемещаться по интерсети по различным маршрутам, поэтому нет гарантии, что все фрагменты проходят через какой-либо промежуточный маршрутизатор на их пути.

При приходе первого фрагмента пакета узел назначения запускает таймер, который определяет максимально допустимое время ожидания прихода остальных фрагментов этого пакета. Если таймер истекает раньше прибытия последнего фрагмента, то все полученные к этому моменту фрагменты пакета отбрасываются, а в узел, пославший исходный пакет, направляется сообщение об ошибке с помощью протокола ICMP.

Фиксированная маршрутизация

Этот алгоритм применяется в сетях с простой топологией связей и основан на ручном составлении таблицы маршрутизации администратором сети. Алгоритм часто эффективно работает также для магистралей крупных сетей, так как сама магистраль может иметь простую структуру с очевидными наилучшими путями следования пакетов в подсети, присоединенные к магистрали.

Простая маршрутизация

Алгоритмы простой маршрутизации подразделяются на три подкласса:

Случайная маршрутизация - пакеты передаются в любом, случайном направлении, кроме исходного.
Лавинная маршрутизация - пакеты передаются во всех направлениях, кроме исходного (применяется в мостах для пакетов с неизвестным адресом доставки).
Маршрутизация по предыдущему опыту - таблицы маршрутов составляются на основании данных, содержащихся в проходящих через маршрутизатор пакетах. Именно так работают прозрачные мосты, собирая сведения об адресах узлов, входящих в сегменты сети. Такой способ маршрутизации обладает медленной адаптируемостью к изменениям топологии сети.

Адаптивная маршрутизация

Это основной вид алгоритмов маршрутизации, применяющихся маршрутизаторами в современных сетях со сложной топологией. Адаптивная маршрутизация основана на том, что маршрутизаторы периодически обмениваются специальной топологической информацией об имеющихся в интерсети сетях, а также о связях между маршрутизаторами. Обычно учитывается не только топология связей, но и их пропускная способность и состояние.

Формат сообщений UDP

Единица данных протокола UDP называется UDP-пакетом или пользовательской дейтаграммой (user datagram). UDP-пакет состоит из заголовка и поля данных, в котором размещается пакет прикладного уровня. Заголовок имеет простой формат и состоит из четырех двухбайтовых полей:

UDP source port - номер порта процесса-отправителя,
UDP destination port - номер порта процесса-получателя,
UDP message length - длина UDP-пакета в байтах,
UDP checksum - контрольная сумма UDP-пакета

Не все поля UDP-пакета обязательно должны быть заполнены. Если посылаемая дейтаграмма не предполагает ответа, то на месте адреса отправителя могут помещаться нули. Можно отказаться и от подсчета контрольной суммы, однако следует учесть, что протокол IP подсчитывает контрольную сумму только для заголовка IP-пакета, игнорируя поле данных.

Сегменты TCP

Единицей данных протокола TCP является сегмент. Информация, поступающая к протоколу TCP в рамках логического соединения от протоколов более высокого уровня, рассматривается протоколом TCP как неструктурированный поток байт. Поступающие данные буферизуются средствами TCP. Для передачи на сетевой уровень из буфера "вырезается" некоторая непрерывная часть данных, называемая сегментом.

В протоколе TCP предусмотрен случай, когда приложение обращается с запросом о срочной передаче данных (бит PSH в запросе установлен в 1). В этом случае протокол TCP, не ожидая заполнения буфера до уровня размера сегмента, немедленно передает указанные данные в сеть. О таких данных говорят, что они передаются вне потока - out of band.

Концепция квитирования

В рамках соединения правильность передачи каждого сегмента должна подтверждаться квитанцией получателя. Квитирование - это один из традиционных методов обеспечения надежной связи. Идея квитирования состоит в следующем.

Для того, чтобы можно было организовать повторную передачу искаженных данных отправитель нумерует отправляемые единицы передаваемых данных (далее для простоты называемые кадрами). Для каждого кадра отправитель ожидает от приемника так называемую положительную квитанцию - служебное сообщение, извещающее о том, что исходный кадр был получен и данные в нем оказались корректными. Время этого ожидания ограничено - при отправке каждого кадра передатчик запускает таймер, и если по его истечению положительная квитанция на получена, то кадр считается утерянным.

Существуют два подхода к организации процесса обмена положительными и отрицательными квитанциями: с простоями и с организацией "окна".

Метод с простоями требует, чтобы источник, пославший кадр, ожидал получения квитанции (положительной или отрицательной) от приемника и только после этого посылал следующий кадр (или повторял искаженный). Из рисунка 6.1 видно, что в этом случае производительность обмена данными существенно снижается - хотя передатчик и мог бы послать следующий кадр сразу же после отправки предыдущего, он обязан ждать прихода квитанции

Метод подтверждения корректности передачи кадров с простоем источника

Во втором методе для повышения коэффициента использования линии источнику разрешается передать некоторое количество кадров в непрерывном режиме, то есть в максимально возможном для источника темпе, без получения на эти кадры ответных квитанций. Количество кадров, которые разрешается передавать таким образом, называется размером окна. Рисунок 6.2 иллюстрирует данный метод для размера окна в W кадров. Обычно кадры при обмене нумеруются циклически, от 1 до W. При отправке кадра с номером 1 источнику разрешается передать еще W-1 кадров до получения квитанции на кадр 1. Если же за это время квитанция на кадр 1 так и не пришла, то процесс передачи приостанавливается, и по истечению некоторого тайм-аута кадр 1 считается утерянным (или квитанция на него утеряна) и он передается снова.

Метод "окна" - непрерывная отправка пакетов

Выбор тайм-аута

Выбор времени ожидания (тайм-аута) очередной квитанции является важной задачей, результат решения которой влияет на производительность протокола TCP.

Тайм-аут не должен быть слишком коротким, чтобы по возможности исключить избыточные повторные передачи, которые снижают полезную пропускную способность системы. Но он не должен быть и слишком большим, чтобы избежать длительных простоев, связанных с ожиданием несуществующей или "заблудившейся" квитанции.

При выборе величины тайм-аута должны учитываться скорость и надежность физических линий связи, их протяженность и многие другие подобные факторы

В качестве тайм-аута выбирается среднее время оборота, умноженное на некоторый коэффициент. Практика показывает, что значение этого коэффициента должно превышать 2. В сетях с большим разбросом времени оборота при выборе тайм-аута учитывается и дисперсия этой величины.

Реакция на перегрузку сети

Варьируя величину окна, можно повлиять на загрузку сети. Чем больше окно, тем большую порцию неподтвержденных данных можно послать в сеть. Если сеть не справляется с нагрузкой, то возникают очереди в промежуточных узлах-маршрутизаторах и в конечных узлах-компьютерах.

При переполнении приемного буфера конечного узла "перегруженный" протокол TCP, отправляя квитанцию, помещает в нее новый, уменьшенный размер окна. Если он совсем отказывается от приема, то в квитанции указывается окно нулевого размера. Однако даже после этого приложение может послать сообщение на отказавшийся от приема порт. Для этого, сообщение должно сопровождаться пометкой "срочно" (бит URG в запросе установлен в 1). В такой ситуации порт обязан принять сегмент, даже если для этого придется вытеснить из буфера уже находящиеся там данные.

После приема квитанции с нулевым значением окна протокол-отправитель время от времени делает контрольные попытки продолжить обмен данными. Если протокол-приемник уже готов принимать информацию, то в ответ на контрольный запрос он посылает квитанцию с указанием ненулевого размера окна.

Формат сообщений TCP

Сообщения протокола TCP называются сегментами и состоят из заголовка и блока данных. Заголовок сегмента имеет следующие поля:

Порт источника (SOURS PORT) занимает 2 байта, идентифицирует процесс-отправитель;
Порт назначения (DESTINATION PORT) занимает 2 байта, идентифицирует процесс-получатель;
Последовательный номер (SEQUENCE NUMBER) занимает 4 байта, указывает номер байта, который определяет смещение сегмента относительно потока отправляемых данных;
Подтвержденный номер (ACKNOWLEDGEMENT NUMBER) занимает 4 байта, содержит максимальный номер байта в полученном сегменте, увеличенный на единицу; именно это значение используется в качестве квитанции;
Длина заголовка (HLEN) занимает 4 бита, указывает длину заголовка сегмента TCP, измеренную в 32-битовых словах. Длина заголовка не фиксирована и может изменяться в зависимости от значений, устанавливаемых в поле Опции;
Резерв (RESERVED) занимает 6 битов, поле зарезервировано для последующего использования;
Кодовые биты (CODE BITS) занимают 6 битов, содержат служебную информацию о типе данного сегмента, задаваемую установкой в единицу соответствующих бит этого поля:
URG - срочное сообщение;
ACK - квитанция на принятый сегмент;
PSH - запрос на отправку сообщения без ожидания заполнения буфера;
RST - запрос на восстановление соединения;
SYN - сообщение используемое для синхронизации счетчиков переданных данных при установлении соединения;
FIN - признак достижения передающей стороной последнего байта в потоке передаваемых данных.
Окно (WINDOW) занимает 2 байта, содержит объявляемое значение размера окна в байтах;
Контрольная сумма (CHECKSUM) занимает 2 байта, рассчитывается по сегменту;
Указатель срочности (URGENT POINTER) занимает 2 байта, используется совместно с кодовым битом URG, указывает на конец данных, которые необходимо срочно принять, несмотря на переполнение буфера;
Опции (OPTIONS) - это поле имеет переменную длину и может вообще отсутствовать, максимальная величина поля 3 байта; используется для решения вспомогательных задач, например, при выборе максимального размера сегмента;

Эхо-протокол

Протокол ICMP предоставляет сетевым администраторам средства для тестирования достижимости узлов сети. Эти средства представляют собой очень простой эхо-протокол, включающий обмен двумя типами сообщений: эхо-запрос и эхо-ответ. Компьютер или маршрутизатор посылают по интерсети эхо-запрос, в котором указывают IP-адрес узла, достижимость которого нужно проверить. Узел, который получает эхо-запрос, формирует и отправляет эхо-ответ и возвращает сообщение узлу - отправителю запроса. В запросе могут содержаться некоторые данные, которые должны быть возвращены в ответе. Так как эхо-запрос и эхо-ответ передаются по сети внутри IP-пакетов, то их успешная доставка означает нормальное функционирование всей транспортной системы интерсети.

Во многих операционных системах используется утилита ping, которая предназначена для тестирования достижимости узлов. Эта утилита обычно посылает серию эхо-запросов к тестируемому узлу и предоставляет пользователю статистику об утерянных эхо-ответах и среднем времени реакции сети на запросы.

IP-сети

Маршрутизация в сетях IP

Маршрутизаторы объединяют отдельные сети в общую составную сеть (рисунок 1.1). Внутренняя структура каждой сети не показана, так как она не имеет значения при рассмотрении сетевого протокола. К каждому маршрутизатору могут быть присоединены несколько сетей (по крайней мере две).

Маршрут - это последовательность маршрутизаторов, которые должен пройти пакет от отправителя до пункта назначения.

Маршрутизатор выбирает маршрут на основании своего представления о текущей конфигурации сети и соответствующего критерия выбора маршрута. Обычно в качестве критерия выступает время прохождения маршрута, которое в локальных сетях совпадает с длиной маршрута, измеряемой в количестве пройденных узлов маршрутизации (в глобальных сетях принимается в расчет и время передачи пакета по каждой линии связи).

 

Функции сетевого уровня

В протоколах сетевого уровня термин "сеть" означает совокупность компьютеров, соединенных между собой в соответствии с одной из стандартных типовых топологий и использующих для передачи пакетов общую базовую сетевую технологию. Внутри сети сегменты не разделяются маршрутизаторами, иначе это была бы не одна сеть, а несколько сетей. Маршрутизатор соединят несколько сетей в интерсеть.

Заголовок сетевого уровня должен содержать адрес назначения и другую информацию, необходимую для успешного перехода пакета из сети одного типа в сеть другого типа. К такой информации может относиться, например:

номер фрагмента пакета, нужный для успешного проведения операций сборки-разборки фрагментов при соединении сетей с разными максимальными размерами кадров канального уровня,
время жизни пакета, указывающее, как долго он путешествует по интерсети, это время может использоваться для уничтожения "заблудившихся" пакетов,
информация о наличии и о состоянии связей между сетями, помогающая узлам сети и маршрутизаторам рационально выбирать межсетевые маршруты,
информация о загруженности сетей, также помогающая согласовать темп посылки пакетов в сеть конечными узлами с реальными возможностями линий связи на пути следования пакетов,
качество сервиса - критерий выбора маршрута при межсетевых передачах - например, узел-отправитель может потребовать передать пакет с максимальной надежностью, возможно в ущерб времени доставки.

В качестве адресов отправителя и получателя в составной сети используется не МАС-адрес, а пара чисел - номер сети и номер компьютера в данной сети.

Таким образом, внутри сети доставка сообщений регулируется канальным уровнем. А вот доставкой пакетов между сетями занимается сетевой уровень.

Номера узла в заголовке сетевого пакета, как правило, определяется для каждого узла нового адреса, отличного от того, который использовался на канальном уровне. Преимуществом такого подхода является его универсальность и гибкость - каков бы ни был формат адреса на канальном уровне, формат адреса узла на сетевом уровне выбирается единым. Однако, здесь имеются и некоторые неудобства, связанные с необходимостью заново нумеровать узлы, причем чаще всего вручную..

Протоколы передачи данных и протоколы обмена маршрутной информацией

Для того, чтобы иметь информацию о текущей конфигурации сети, маршрутизаторы обмениваются маршрутной информацией между собой по специальному протоколу. Протоколы этого типа называются протоколами обмена маршрутной информацией (или протоколами маршрутизации).

С помощью протоколов обмена маршрутной информацией маршрутизаторы составляют карту межсетевых связей той или иной степени подробности и принимают решение о том, какому следующему маршрутизатору нужно передать пакет для образования рационального пути.

На сетевом уровне работают протоколы еще одного типа, которые отвечают за отображение адреса узла, используемого на сетевом уровне, в локальный адрес сети. Такие протоколы часто называют протоколами разрешения адресов - Address Resolution Protocol, ARP.

Стек протоколов TCP/IP

Стандарты TCP/IP опубликованы в серии документов, названных Request for Comment (RFC). Стек был разработан по инициативе Министерства обороны США более 20 лет назад.

Структура стека TCP/IP.

Структура протоколов TCP/IP приведена на рисунке 2.1. Протоколы TCP/IP делятся на 4 уровня.

Уровень IV соответствует физическому и канальному уровням модели OSI. Этот уровень в протоколах TCP/IP не регламентируется, но поддерживает все популярные стандарты физического и канального уровня: для локальных сетей это Ethernet, FDDI, Fast Ethernet, для глобальных сетей - протоколы соединений "точка-точка" SLIP и PPP, протоколы территориальных сетей с коммутацией пакетов X.25, frame relay. Разработана также специальная спецификация, определяющая использование технологии ATM в качестве транспорта канального уровня.

Уровень III- это уровень межсетевого взаимодействия, который занимается передачей пакетов с использованием различных транспортных технологий локальных сетей, территориальных сетей, линий специальной связи и т. п.

В качестве основного протокола сетевого уровня (в терминах модели OSI) в стеке используется протокол IP, который изначально проектировался как протокол передачи пакетов, состоящих из большого количества локальных сетей, объединенных как локальными, так и глобальными связями. К уровню межсетевого взаимодействия относятся и все протоколы, связанные с составлением и модификацией таблиц маршрутизации, такие как протоколы сбора маршрутной информации RIP (Routing Internet Protocol) и OSPF (Open Shortest Path First), а также протокол межсетевых управляющих сообщений ICMP (Internet Control Message Protocol). Последний протокол предназначен для обмена информацией об ошибках между маршрутизаторами сети и узлом - источником пакета

Следующий уровень (уровень II) называется основным. На этом уровне функционируют протокол управления передачей TCP (Transmission Control Protocol) и протокол дейтаграмм пользователя UDP (User Datagram Protocol). Протокол TCP обеспечивает надежную передачу сообщений между удаленными прикладными процессами за счет образования виртуальных соединений. Протокол UDP обеспечивает передачу прикладных пакетов дейтаграммным способом, как и IP.

Уровень I называется прикладным. (FTP, telnet, WWW). Протокол SNMP (Simple Network Management Protocol) используется для организации сетевого управления. Изначально протокол SNMP был разработан для удаленного контроля и управления маршрутизаторами Internet, которые традиционно часто называют также шлюзами. С ростом популярности протокол SNMP стали применять и для управления любым коммуникационным оборудованием - концентраторами, мостами, сетевыми адаптерами и т.д. и т.п

Адресация в IP-сетях


Поделиться:



Последнее изменение этой страницы: 2019-04-10; Просмотров: 246; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.054 с.)
Главная | Случайная страница | Обратная связь