Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Реактивные двигатели (В.Р.Д., Ж.Р.Д.). Применение. Реактивная сила тяги.



Реактивный двигатель — двигатель создающий необходимую для движения силу тяги посредством преобразования потенциальной энергии топлива в кинетическую энергию(Кинети́ческая эне́ргия — энергия механической системы, зависящая от скоростей движения её точек) реактивной струи рабочего тела(в теплотехнике и термодинамике условное несменяемое материальное тело, расширяющееся при подводе к нему теплоты и сжимающееся при охлаждении и выполняющее работу по перемещению рабочего органа тепловой машины. На практике рабочим телом тепловых двигателей являются продукты сгорания углеводородного топлива (бензина, дизельного топлива и др.), или водяной пар, имеющие высокие термодинамические параметры (начальные: температура, давление, скорость и т. д.)). Рабочее тело с большой скоростью истекает из двигателя, и образуется реактивная сила, толкающая двигатель в противоположном направлении. Реактивный двигатель создаёт тяговое усилие только за счёт взаимодействия с рабочим телом, без опоры или контакта с другими телами. По этой причине чаще всего он используется для приведения в движение самолётов, ракет и космических аппаратов. Любой реактивный двигатель должен иметь по крайней мере две составные части:Камера сгорания («химический реактор») — в нем происходит освобождение химической энергии топлива и её преобразование в тепловую энергию газов.Реактивное сопло («газовый туннель») — в котором тепловая энергия газов переходит в их кинетическую энергию, когда из сопла газы вытекают наружу с большой скоростью, тем создавая реактивную тягу. Реактивная тяга — сила, возникающая в результате взаимодействия двигательной установки с истекающей из сопла струей расширяющихся жидкости или газа, обладающих кинетической энергией. В основу возникновения реактивной тяги положен закон сохранения импульса(утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.). Реактивная тяга обычно рассматривается как сила реакции отделяющихся частиц. Точкой приложения её считают центр истечения - центр среза сопла двигателя, а направление - противоположное вектору скорости истечения продуктов сгорания (или рабочего тела, в случае не химического двигателя) . То есть, реактивная тяга:приложена непосредственно к корпусу реактивного двигателя; обеспечивает передвижение реактивного двигателя и связанного с ним объекта в сторону, противоположную направлению реактивной струи. Воздушно-реактивный двигатель —тепловой реактивный двигатель, в качестве рабочего тела которого используется разогретая смесь атмосферного воздуха и продуктов горения топлива. Нагрев происходит за счёт химической реакции окисления горючего кислородом из атмосферного воздуха. Ускорение рабочего тела происходит за счет повышения давления вследствие его нагрева. В качестве окислителя в ВРД используется кислород, содержащийся в воздухе. Благодаря этому ВРД обладает преимуществом в сравнении с ракетным двигателем при полётах в атмосфере. Если летательный аппарат, оборудованный ракетным двигателем должен транспортировать как горючее, так и окислитель, масса которого больше массы горючего в 2-8 раз, в зависимости от вида горючего, то аппарат, оснащённый ВРД должен иметь на борту только запас горючего. Рабочее тело ВРД на выходе из сопла представляет собой смесь продуктов сгорания горючего с оставшимися после выгорания кислорода фракциями воздуха Жидкостный раке́тный дви́гатель (ЖРД) — химический ракетный двигатель, использующий в качестве ракетного топлива жидкости, в том числе сжиженные газы. По количеству используемых компонентов различаются одно-, двух- и трёхкомпонентные ЖРД. Ракеты-носители и двигательные установки различных космических аппаратов являются преимущественной областью применения ЖРД. К преимуществам ЖРД можно отнести следующие: Самый высокий удельный импульс(характеристика реактивного двигателя, равная отношению создаваемого им импульса (количества движения) к расходу (обычно массовому, но может соотноситься и, например, с весом или объёмом) топлива. При создании больших ракет, например, носителей, выводящих на околоземную орбиту многотонные грузы, использование ЖРД позволяет добиться весового преимущества по сравнению с твёрдотопливными двигателями (РДТТ). Во-первых, за счёт более высокого удельного импульса, а во-вторых за счёт того, что жидкое топливо на ракете содержится в отдельных баках, из которых оно подается в камеру сгорания с помощью насосов. За счет этого давление в баках существенно (в десятки раз) ниже, чем в камере сгорания, а сами баки выполняются тонкостенными и относительно лёгкими. В настоящее время для химических ракетных двигателей (в том числе и для ЖРД) достигнут предел энергетических возможностей топлива, и поэтому теоретически не предвидится возможность существенного увеличения их удельного импульса, а это ограничивает возможности ракетной техники, базирующейся на использовании химических двигателей, уже освоенными двумя направлениями: Космические полёты в околоземном пространстве (как пилотируемые, так и беспилотные). Исследование космоса в пределах Солнечной системы с помощью автоматических аппаратов.


Поделиться:



Последнее изменение этой страницы: 2019-04-11; Просмотров: 286; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.013 с.)
Главная | Случайная страница | Обратная связь