Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Мышечная ткань. Строение саркомера. Белки мышц – актин, миозин. Механизм мышечного сокращения. Источники энергии для мышечного сокращения.



В настоящее время белки мышечной ткани делят на три основные группы: саркоплазматические, миофибриллярные и белки стромы. На долю первых приходится около 35%, вторых – 45% и третьих – 20% от всего количества мышечного белка. Эти группы белков резко отличаются друг от друга по растворимости в воде и солевых средах с различной ионной силой.
     Белки, входящие в состав саркоплазмы, относятся к протеинам, растворимым в солевых средах с низкой ионной силой. Принятое ранее подразделение саркоплазматических белков на миоген, глобулин X, миоальбумин и белки-пигменты в значительной мере утратило смысл, поскольку существование глобулина X и миогена как индивидуальных белков в настоящее время отрицается. Установлено, что глобулин X представляет собой смесь различных белковых веществ со свойствами глобулинов. Термин «миоген» также является собирательным понятием. В частности, в состав белков группы миогена входит ряд протеинов, наделенных ферментативной активностью: например, ферменты гликолиза. К числу саркоплазмати-ческих белков относятся также дыхательный пигмент миоглобин и разнообразные белки-ферменты, локализованные главным образом в митохондриях и катализирующие процессы тканевого дыхания, окислительного фосфорилирования, а также многие стороны азотистого и липидного обмена. Недавно была открыта группа саркоплазматических белков – пар-вальбумины, которые способны связывать ионы Са2+. Их физиологическая роль остается еще неясной. К группе миофибриллярных белков относятся миозин, актин и актомио-зин – белки, растворимые в солевых средах с высокой ионной силой, и так называемые регуляторные белки: тропомиозин, тропонин, α- и β-актинин, образующие в мышце с актомиозином единый комплекс. Перечисленные миофибриллярные белки тесно связаны с сократительной функции                     Сокращение.
    Мышечное сокращение начинается с нервного импульса. Под воздействием ацетилхолина развивается возбуждение клеточной мембраны и резко повышается ее проницаемость для Са2+.Са2+ поступает в цитоплазму мышечной клетки (саркоплазма) из депо - цистерн цитоплазматического ретикулума. Концентрация Са2+ в саркоплазме мгновенно увеличивается в 100 раз (с 10-7М до 10-5М).                                                                                                        Кальций связывается с тропонином "С". Это приводит к конформационным изменениям молекулы тропонина, в результате устраняется пространственное препятствие в виде тропонина "I", в результате конформационных изменений тропонина "Т" молекула тропомиозина оттягивается в сторону и открывает на поверхности актина миозин-связывающие центры. Дальше мышечное сокращение идет по схем Расслабление.
Чтобы произошло расслабление мышцы, необходимы следующие условия.
      Освобождение тропонина "С" от Са2+ - для этого работает мембрано-связанный фермент Са2+-зависимая АТФаза. Этот фермент использует энергию гидролиза АТФ для переноса Са2+ обратно в цистерны против градиента их концентраций. Накоплению ионов кальция в цистернах помогает белок кальсеквестрин. Кальсеквестрин - связывает Са2+ в цистернах. Когда мышца готова к сокращению, концентрация Са2+ в цистернах велика. Не только процесс сокращения, но и процесс расслабления нуждается в АТФ, потому что если нет АТФ, то не работает Са2+-зависимая АТФаза. В этих условиях кальций связан с тропонином "С" - вся система находится в активном состоянии, нет распада актомиозинового комплекса - мышца постоянно находится в состоянии сокращения. Такая ситуация наблюдается после смерти человека в состоянии "трупного окоченения". Запасы АТФ в клетке значительны, но их хватает для обеспечения мышечной работы только в течение 0.1 секунды. Но в мышечной клетке идет очень быстрыйресинтез АТФ.





Биохимия нервной ткани. Особенности метаболизма мозга. Образование и роль производных аминокислот: серотонина, ГАМК, гистамина, других биогенных аминов. Обезвреживание аммиака в нервной ткани.

Нервная ткань состоит из трех клеточных элементов – нейронов, неирогии – системы клеток, непосредственно окружающих нервные клеткив головном и спинном мозге; мезенхимных элементов, включающих микроглию – глиальные макрофаги. На долю головного мозга приходится 2—3% от массы тела. В то же время потребление кислорода головным мозгом в состоянии физического покоя достигает 20—25% от общего потребления его всем организмом, а у детейв возрасте до 4 лет мозг потребляет даже 50% кислорода, утилизируемого всем организмом.О размерах потребления головным мозгом из крови различных веществ, в том числе кислорода, можно судить по артериовенозной разнице. Установлено, что во время прохождения через мозг кровь теряет около 8 об.% кислорода. В 1 мин на 100 г мозговой ткани приходится 53—54 мл крови. Следовательно, 100 г мозга потребляет в 1 мин 3,7 мл кислорода, а весь головной мозг (1500 г) — 55,5 мл кислорода.Газообмен мозга значительно выше, чем газообмен других тканей, в частности он превышает газообмен мышечной ткани почти в 20 раз. Интенсивность дыхания для различных областей головного мозга неодинакова. Например, интенсивность дыхания белого вещества в 2 раза ниже, чем серого (правда, в белом веществе меньше клеток). Особенно интенсивно расходуют кислород клетки коры мозга и мозжечка. Поглощение кислорода головным мозгом значительно меньше при наркозе. Напротив, интенсивность дыхания мозга возрастает при увеличении функциональной активности.Из биогенных аминов к медиаторам воспаления относят гистамин, серотонин, адреналин и норадреналин. Гистамин Основными источниками гистамина являются базофилы и тучные клетки. Действие гистамина опосредуют Н1 и Н2-рецепторы на клетках-мишенях. H1-рецепторы активируют малые дозы гистамина. Эффекты их активации: ощущения боли, жжения, зуда, напряжения. Н2-рецепторы активируются гистамином в высокой концентрации. Эффекты их возбуждения: изменения синтеза Пг, потенцирование образования циклических нуклеотидов, повышение проницаемости стенок сосудов микроциркуляторного русла (особенно венул), активация миграции макрофагов, нейтрофилов, эозинофилов в очаг воспаления, сокращение ГМК. Промежуточные дозы гистамина активируют оба вида рецепторов. Это сопровождается значительным расширением артериол и развитием в очаге воспаления артериальной гиперемии, снижением порога возбудимости и повышением чувствительности тканей, в том числе болевой.Серотонин Источниками серотонина являются тромбоциты, тучные клетки, нейроны, энтероэндокринные клетки. В очаге воспаления серотонин повышает проницаемость стенок микрососудов, активирует сокращение ГМК венул (что способствует развитию венозной гиперемии), приводит к формированию чувства боли, активирует процессы тромбообразования. Адреналин и норадреналин Эффекты норадреналина в очаге воспаления являются в основном результатом его действия на клетки как нейромедиатора симпатической нервной системы (его прямые метаболические эффекты — в отличие от адреналина — сравнительно мало выражены). Из нейромедиаторов при развитии воспалении важную роль выполняют катехоловые амины и ацетилхолин. Адреналин. Норадреналин. Норадреналин и адреналин синтезируются из тирозина в нейронах головного мозга, симпатической нервной системы, а также в хромаффинных клетках параганглиев и мозгового вещества надпочечников. Эффекты адреналина и норадреналина реализуются через а- и/или Р-адренорецепторы. • Источники в очаге воспаления норадреналина и адреналина - Норадреналин выделяется из окончаний нейронов симпатической нервной системы. - Катехоламины надпочечникового происхождения поступают к тканям (в том числе в очаге воспаления) с кровью. • Эффекты норадреналина и адреналина - Активация гликолиза, липолиза, липопероксидации. - Увеличение транспорта Са2+ в клетки. - Сокращение ГМК стенок артериол, уменьшение просвета артериол и развитие ишемии. - Регуляция эмиграции лейкоцитов из сосудов в ткань и течения фагоцитарной реакции.

Так как аммиак является чрезвычайно токсичным соединением, то в тканях существуют несколько реакций связывания (обезвреживания) аммиака – синтез глутаминовой кислоты и глутамина, синтез аспарагина, синтез карбамоилфосфата:

· синтез глутаминовой кислоты (восстановительное аминирование) – взаимодействие α-кетоглутарата с аммиаком. Реакция по сути обратна реакции окислительного дезаминирования, однако в качестве кофермента используется НАДФН. Происходит практически во всех тканях, кроме мышечной, но имеет небольшое значение, т.к. для глутаматдегидрогеназы предпочтительным субстратом является глутаминовая кислота и равновесие реакции сдвинуто в сторону α-кетоглутарата,


Поделиться:



Последнее изменение этой страницы: 2019-04-11; Просмотров: 66; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.015 с.)
Главная | Случайная страница | Обратная связь