Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Сердечная мышечная ткань. Структурно-функциональная единица.
Структурно-функциональной единицей сердечной поперечно-полосатой мышечной ткани является кардиомиоцит. По строению и функциям кардиомиоциты подразделяются на две основные группы: 1) типичные (или сократительные) кардиомиоциты, образующие своей совокупностью миокард; 2) атипичные кардиомиоциты, составляющие проводящую систему сердца. Сократительный кардиомиоцит представляет собой почти прямоугольную клетку длиной 50 – 120 мкм, шириной 15 – 20 мкм, в центре которой локализуется обычно одно ядро. Покрыт снаружи базальной пластинкой. В саркоплазме кардиомиоцита по периферии от ядра располагаются миофибриллы, а между ними и около ядра локализуются в большом количестве митохондрии – саркосомы. В отличие от скелетной мускулатуры миофибриллы кардиомиоцитов представляют собой не отдельные цилиндрические образования, а, по существу, сеть, состоящую из анастомозирующих миофибрилл, так как некоторые миофиламенты как бы отщепляются от одной миофибриллы и наискось продолжаются в другую. Кроме того, темные и светлые диски соседних миофибрилл не всегда располагаются на одном уровне, и потому поперечная исчерченность в кардиомиоцитах практически не выражена по сравнению с поперечно-полосатой мышечной тканью. Саркоплазматическая сеть, охватывающая миофибриллы, представлена расширенными анастомозирующим канальцами. Терминальные цистерны и триады отсутствуют. Т-канальцы имеются, но они короткие, широкие и образованы не только углублениями плазмолеммы, но и базальной пластинки. Механизм сокращения в кардиомиоцитах практически не отличается от поперечно-полосатой скелетной мускулатуры. Сократительные кардиомиоциты, соединяясь встык друг с другом, образуют функциональные мышечные волокна, между которыми имеются многочисленные анастомозы. Благодаря этому из отдельных кардиомиоцитов формируется сеть (функциональный синцитий). Наличие таких щелевидных контактов между кардиомиоцитами обеспечивает одновременное и содружественное их сокращение вначале в предсердиях, а затем и в желудочках. Области контактов соседних кардиомиоцитов носят название вставочных дисков. Фактически никаких дополнительных структур между кардиомиоцитами нет. Вставочные диски – это места контактов цитолемм соседних кардиомиоцитов, включающих в себя простые, десмосомные и щелевидные контакты. Во вставочных дисках различают поперечные и продольные фрагменты. В области поперечных фрагментов имеются расширенные десмосомные соединения, к этому же месту с внутренней стороны плазмолеммы прикрепляются актиновые филаменты саркомеров. В области продольных фрагментов локализуются щелевидные контакты. Посредством вставочных дисков обеспечиваются как механическая, метаболическая, так и функциональные связи кардиомиоцитов. Сократительные кардиомиоциты предсердий и желудочко в несколько отличаются между собой по морфологии и функциям. Кардиомиоциты предсердий в саркоплазме содержат меньше миофибрилл и митохондрий, в них почти не выражены Т-канальца, а вместо них под плазмолеммой выявляются в большом количестве везикулы и кавеолы – аналоги Т-канальцев. В саркоплазме предсердных кардиомиоцитов у полюсов ядер локализуются специфические предсердные гранулы, состоящие из гликопротеиновых комплексов. Выделяясь из кардиомиоцитов в кровь предсердий, эти биологически активные вещества влияют на уровень давления в сердце и сосудах, а также препятствуют образованию внутрипредсердных тромбов. Таким образом, предсердные кардиомиоциты обладают сократительной и секреторной функциями. В желудочковых кардиомиоцитах более выражены сократительные элементы, а секреторные гранулы отсутствуют. Атипичные кардиомиоциты образуют проводящую систему сердца, которая включает в себя следующие структурные компоненты: 1) синусопредсердный узел; 2) предсердно-желудочковый узел; 3) предсердно-желудочковый пучок (пучок Гиса) – ствол, правую и левую ножки; 4) концевые разветвления ножек (волокна Пуркинье). Атипичные кардиомиоциты обеспечивают генерирование биопотенциалов, их поведение и передачу на сократительные кардиомиоциты. По морфологии атипичные кардиомиоциты отличаются от типичных: 1) они крупнее – 100 мкм, толщина – до 50 мкм; 2) в цитоплазме содержится мало миофибрилл, которые расположены неупорядоченно, почему атипичные кардиомиоциты не имеют поперечной исчерченности; 3) плазмолемма не образует Т-канальцев; 4) во вставочных дисках между этими клетками отсутствуют десмосомы и щелевидные контакты. Атипичные кардиомиоциты различных отделов проводящей системы отличаются друг от друга по структуре и функциям и подразделяются на три основные разновидности: 1) Р-клетки – пейсмейкеры – водители ритма I типа; 2) переходные – клетки II типа; 3) клетки пучка Гиса и волокон Пуркинье – клетки III типа. Клетки I типа являются основой синусопредсердного узла, а также в небольшом количестве содержатся в атриовентрикулярном узле. Эти клетки способны самостоятельно генерировать с определенной частотой биоэлектрические потенциалы, а также передавать их на клетки II типа с последующей передачей на клетки III типа, от которых биопотенциалы распространяются на сократительные кардиомиоциты. Гладкая мышечная ткань. Подавляющая часть гладкой мышечной ткани организма (внутренних органов и сосудов) имеет мезенхимальное происхождение. Локализуется в стенках полых органов (желудка, кишечника, дыхательных путей, органов мочеполовой системы) и в стенке кровеносных и лимфатических сосудов. Структурно-функциональной единицей является миоцит – клетка веретенообразной формы, длиной 30 – 100 мкм (в беременной матке – до 500 мкм), диаметром 8 мкм, покрытая базальной пластинкой. В центре миоцита локализуется вытянутое ядро палочковидной формы. По полюсам ядра располагаются общие органеллы: митохондрии (саркосомы), элементы зернистой эндоплазматической сети, пластинчатый комплекс, свободные рибосомы, центриоли. В цитоплазме содержатся тонкие (7 нм) и более толстые – (17 нм) филаменты. Тонкие филаменты состоят из белка актина, толстые – из миозина и располагаются в основном параллельно актиновым. Однако в совокупности актиновые и миозиновые филаменты не образуют типичных миофибрилл и саркомеров, поэтому поперечная исчерченность в миоцитах отсутствует. В саркоплазме и на внутренней поверхности сарколеммы электронно-микроскопически определяются плотные тельца, в которых заканчиваются актиновые филаменты и которые рассматриваются как аналоги Z-полосок в саркомерах миофибрилл скелетного мышечного волокна. Фиксация миозиновых компонентов к определенным структурам не установлена. Миозиновые и актиновые филаменты составляют сократительный аппарат миоцита. Благодаря взаимодействию актиновых и миозиновых филаментов актиновые нити скользят вдоль миозиновых, сближают точки их прикрепления на плотных тельцах цитолеммы и укорачивают длину миоцита. Установлено, что в миоцитах, помимо актиновых и миозиновых филаментов, содержатся также промежуточные (до 10 нм), которые прикрепляются к цитоплазматическим плотным тельцам, а другими концами – к цитолемме и передают усилия сокращения центрально расположенных сократительных филаментов на сарколемму. При сокращении миоцита контуры его становятся неровными, форма овальной, а ядро штопорообразно закручивается. Для взаимодействия актиновых и миозиновых филаментов в миоците так же, как и в скелетном мышечном волокне, необходимы энергия в форме АТФ, ионы кальция и биопотенциалы. АТФ вырабатывается в митохондриях, ионы кальция содержатся в саркоплазматической сети, которая представлена в редуцированной форме в виде везикул и тонких канальцев. Под сарколеммой содержатся небольшие полости – кавеолы, которые рассматриваются как аналоги Т-канальцев. Все эти элементы обеспечивают передачу биопотенциалов на везикулы в трубочки, выход ионов кальция, активацию АТФ, а затем и взаимодействие актиновых и миозиновых филаментов. Базальная пластинка миоцита состоит из тонких коллагеновых, ретикулиновых и эластических волокон, а также аморфного вещества, которые являются продуктом синтеза и секреции самих миоцитов. Следовательно, миоцит обладает не только сократительной, но синтетической и секреторной функцией, особенно на стадии дифференцировки. Фибриллярные компоненты базальных пластин соседних миоцитов соединяются друг с другом и тем самым объединяют отдельные миоциты в функциональные мышечные волокна и функциональные синцитии. Однако между миоцитами, помимо механической связи, имеется и функциональная связь. Она обеспечивается с помощью щелевидных контактов, которые располагаются в местах тесного соприкосновение миоцитов. В этих местах базальная пластинка отсутствует, цитолеммы соседних миоцитов сближаются и образуют щелевидные контакты, через которые осуществляется ионный обмен. Благодаря механическим и функциональным контактам обеспечивается содружественное сокращение большого числа миоцитов, входящих в состав функционального мышечного волокна, или синцития. Среди специальных гладкомышечных тканей можно выделить ткани нейрального и эпидермального происхождения. Ткани нейрального происхождения развиваются из нейроэктодермы, из краев глазного бокала, являющегося выпячиванием промежуточного мозга. Из этого источника развиваются миоциты, образующие две мышцы радужной оболочки глаза – мышцу, суживающую зрачок, и мышцу, расширяющую зрачок. По своей морфологии эти миоциты не отличаются от мезенхимальных, однако отличаются по иннервации. Каждый миоцит имеет вегетативную иннервацию. Ткани эпидермального происхождения развиваются из кожной эктодермы и представляют собой клетки звездчатой формы, располагающиеся в концевых отделах слюнных, молочных и потовых желез, снаружи от секреторных клеток. В своих отростках миоэпителиальная клетка содержит актиновые и миозиновые филаменты, благодаря воздействию которых отростки клеток сокращаются и способствуют выделению секрета из концевых отделов и мелких протоков в более крупные. |
Последнее изменение этой страницы: 2019-04-11; Просмотров: 700; Нарушение авторского права страницы