Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Регулирование скорости асинхронного двигателя



Содержание

1. Асинхронные двигатели (АД) с фазным и короткозамкнутым ротором.

Конструкция, область применения.

2. Скольжение асинхронного двигателя. Частота тока в роторе.

3. Работа асинхронного двигателя при неподвижном роторе. Индукционный регулятор.

4. Приведение параметров обмотки ротора к обмотке статора. Схемы замещения АД 2

5. Потери и КПД АД 2

6. Механические и электромеханические характеристики АД 2

7. Рабочие характеристики, пуск и торможение асинхронных двигателей. 2

8. Построение круговой диаграммы АД 2

9. Однофазные АД. Включение трехфазных АД в однофазную сеть 2

10. Специальные АД, обобщение знаний по разделу АД

Асинхронный двигатель - принцип работы и устройство

8 марта 1889 года величайший русский учёный и инженер Михаил Осипович Доливо-Добровольский изобрёл трёхфазный асинхронный двигатель с короткозамкнутым ротором.

Современные трёхфазные асинхронные двигатели являются преобразователями электрической энергии в механическую. Благодаря своей простоте, низкой стоимости и высокой надёжности асинхронные двигатели получили широкое применение. Они присутствуют повсюду, это самый распространённый тип двигателей, их выпускается 90% от общего числа двигателей в мире. Асинхронный электродвигатель поистине совершил технический переворот во всей мировой промышленности.

Огромная популярность асинхронных двигателей связана с простотой их эксплуатации, дешивизной и надежностью.

Асинхронный двигатель - это асинхронная машина, предназначенная для преобразования электрической энергии переменного тока в механическую энергию.Само слово “асинхронный” означает не одновременный. При этом имеется ввиду, что у асинхронных двигателей частота вращения магнитного поля статора всегда больше частоты вращения ротора. Работают асинхронные двигатели, как понятно из определения, от сети переменного тока.

Устройство

 

На рисунке: 1 - вал, 2, 6 - подшипники, 3, 8 - подшипниковые щиты, 4 - лапы, 5 - кожух вентилятора, 7 - крыльчатка вентилятора, 9 - короткозамкнутый ротор, 10 - статор, 11 - коробка выводов.

Основными частями асинхронного двигателя являются статор (10) и ротор (9).

Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.

Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали. В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется " беличьей клеткой". В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.

Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам. С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов. Подробнее о фазном роторе можно прочитать в статье - асинхронный двигатель с фазным ротором.

Принцип работы

При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.

Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС. Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора. Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение.

Скольжение s - это величина, которая показывает, насколько синхронная частота n1 магнитного поля статора больше, чем частота вращения ротора n2, в процентном соотношении.

Скольжение это крайне важная величина. В начальный момент времени она равна единице, но по мере возрастания частоты вращения n2 ротора относительная разность частот n1-n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента. В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины sкр - критического скольжения. Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме - 1 - 8 %.

Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.

Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.

Однофазный асинхронный двигатель

Однофазный асинхронный двигатель это маломощный двигатель (до 1500 Вт) который применяется в установках, в которых практически отсутствует нагрузка на валу в момент пуска, а также в тех случаях, когда питание двигателя может быть осуществлено только от однофазной сети. Чаще всего такие двигатели, применяют в стиральных машинах, небольших вентиляторах и т.д.

Однофазный двигатель схож по строению с трехфазным асинхронным двигателем, различием является количество фазных обмоток, у однофазного не три, а две обмотки – пусковая и рабочая, причем постоянно работает только одна обмотка – рабочая.

Для того чтобы ротор асинхронного двигателя пришел в движение, статорная обмотка должна создать вращающееся магнитное поле. В трехфазном двигателе, такое поле создается благодаря трехфазной обмотке. Но рабочая обмотка однофазного двигателя создает не вращающееся, а пульсирующее магнитное поле. Это поле можно разложить на два – прямое и обратное. Прямое поле вращается с синхронной скоростью n1 в направлении вращения ротора и создает основной электромагнитный момент. Скольжение ротора относительно прямого поля равно

Обратное поле, вращается против ротора, поэтому частота вращения ротора отрицательная, относительно этого поля

Каждое поле наводит ЭДС, благодаря которым по ротору начинают протекать токи. Частоты этих токов пропорциональны скольжению (fт=f·s), , а из формул выведенных выше, можно сделать вывод, что частота тока наводимого обратным полем, намного больше частоты тока прямого поля. В связи с этим, индуктивное сопротивление, которое увеличивается с ростом частоты, приобретает большое значение и становится намного больше активногосопротивления. Поэтому ток обратного поля, является практически индуктивным и оказывает размагничивающее действие на поток обратного магнитного поля. Как следствие, момент, создаваемый этим полем, невелик, и направлен против вращения ротора.

В момент, когда ротор неподвижен, ось симметрии между этими двумя полями, также неподвижна, а значит, не создается вращающего магнитного поля, и как следствие, двигатель не работает. Чтобы привести его в движение, нужно прокрутить ротор, для того чтобы ось симметрии сместилась. Но выполнять это механически не имеет смысла, поэтому для того, чтобы запустить однофазный двигатель, создали пусковую обмотку. Пусковая обмотка совместно с рабочей, создает вращающееся магнитное поле, необходимое для запуска двигателя. Для этого необходимо чтобы МДС обоих обмоток были равны, а также угол между ними составлял 90°. Кроме того, необходимо чтобы и токи в этих обмотках, были смещены на 90°. В этом случае создается так называемое, круговое магнитное поле, при котором результирующий электромагнитный момент максимален. Если же, эти условия выполнены с отклонениями, то создается эллиптическое магнитное поле, при котором момент ниже, из-за увеличенного тормозного момента обратного поля.

В реальных условиях пуск однофазного двигателя осуществляется с помощью одновременного нажатия на кнопки, подающие питание и подключающие пусковую обмотку к цепи.

Для того, чтобы создать фазовый сдвиг в 90° между токами рабочей и пусковой обмотки, используют фазосмещающие элементы (ФЭ). Это может быть активное сопротивление, катушкаили конденсатор. Большое распространение получили однофазные двигатели с активным сопротивлением в качестве фазосмещающего элемента. Увеличение сопротивления пусковой обмотки, достигается с помощью уменьшения сечения провода, а так как эта обмотка работает короткий промежуток времени в момент пуска, то это не причиняет обмотке вреда.

Но, активное сопротивление, также как и индуктивное, не создает требуемого смещения в 90°между токами, зато такое смещение создает конденсатор. Емкость этого конденсатора, подбирают таким образом, чтобы ток пусковой обмотки, опережал по фазе напряжение на некоторый угол, который необходим для того, чтобы смещение между токами стало 90°. Благодаря этому, создается круговое магнитное поле. Но, конденсаторы применяются в качестве фазосмещающего элемента реже, потому что для обеспечения смешения в 90°, нужен конденсатор, большой емкости, и как правило, относительно высокого напряжения. Кроме того, габариты этого конденсатора, велики, что также играет роль.

Если обмотка ротора замкнута, а напряжение сети близко к номинальному, то э. д. с. вызывает большой ток, подобно тому, как и в короткозамкнутом трансформаторе. Поэтому режим при неподвижном роторе называют коротким замыканием асинхронного двигателя.

При коротком замыкании обычно можно пренебречь током намагничивания, так как он относительно мал. В этом случае с учетом (3.4) м. д. с. обмоток статора и ротора равны:

Формулы приведения обмотки ротора. Обычно для удобства анализа условно заменяют действительную обмотку ротора фиктивной, имеющей то же число фаз и витков и тот же обмоточный коэффициент, что и статорная обмотка. Эту замену называют приведением обмотки ротора к статорной обмотке. Согласно (4.39, б) ток приведенной обмотки как и в трансформаторе

т. е. электродвижущая сила E'2 приведенной роторной обмотки равна э. д. с. E1.

Откуда

В магнитопроводе асинхронной машины имеется большой воздушный зазор, вследствие этого величина намагничивающего тока и параметры, характеризующие ветвь намагничивания у асинхронной машины и у трансформатора, различны.

Фазорегулятор. Фазорегулятор представляет собой асинхронную-машину с фазным заторможенным ротором, которая предназначается для регулирования фазы напряжения вторичной обмотки. Первичная обмотка регулятора обычно располагается на статоре, вторичная — на ротрре. При прохождении тока по первичной трехфазной обмотке создается вращающийся магнитный поток. Если оси обмоток статора и ротора имеют одинаковое направление в пространстве, то их э. д. с. совпадают по фазе.

Если ротор повернут на некоторый угол против вращения потока, то максимум потока достигает раньше осей обмоток ротора, а затем осей статора. В результате э. д. с. ротора опережает по фазе э. д. с. статора. Если же ротор повернут в сторону вращения, то его э. д. с. отстает по фазе от э. д. с. статора. Таким образом, поворачивая ротор машины, можно плавно менять фазу вторичной обмотки.

Фазорегулятор

Первичная сторона фазорегулятора присоединяется к сети, а вторичная к сопротивлению нагрузки , как показано на рис. 12.1.

Угол b – это электрический угол поворота оси фазы обмотки ротора относительно оси фазы обмотки статора.

Статорная обмотка, включенная в сеть, создает вращающееся магнитное поле, которое индуктирует эдс в обмотках статора и ротора. Эдсстаторной обмотки уравновешивается напряжением сети , а эдс роторной обмотки подводится к нагрузке.

Фаза эдс роторной обмотки зависит от угла поворота ротора: если оси одноименных фаз статора и ротора совпадают, то эдс совпадет по фазе с эдс , так как вращающееся поле пересекает оси одноименных фаз статора и ротора одновременно.

 

Рис. 12.1. Асинхронная машина в режиме фазорегулятора: а – схема; б – векторная диаграмма напряжений

 

Если ротор повернуть в направлении вращения магнитного поля на угол b, то максимум потокосцепления и эдс в фазах ротора будет отставать отэдс фаз статора на тот же угол b (рис. 12.1, б). Таким образом, при повороте ротора фаза выходного напряжения ( ) будет плавно меняться, а действующее значение эдс будет неизменным.

Фазорегулятор представляет собой поворотный трансформатор с регулируемой фазой вторичного напряжения относительно первичного. Фазорегуляторы находят применение главным образом в лабораториях, например, при испытаниях счетчиков электрической энергии, ваттметров.

МАГНИТНЫЕ ПОЛЯ И ЭДС АСИНХРОННОГО ДВИГАТЕЛЯ

При подключении обмотки статора к сети возникают токи I1, создающие вращающийся магнитный поток Ф. Большая часть магнитного потока сцепляется с обмотками ротора и статора. Это будет основной поток обмотки статора. Некоторая часть магнитного потока рассеивается в пространстве. Назовем его потоком рассеяния Фрс. Он cцепляется только с витками собственной обмотки.

Основной магнитный поток асинхронного двигателя, вращаясь в пространстве, пересекает обмотку статора со скоростью n1 и обмотку ротора со скоростью n2, наводя в них основные ЭДС:

;

где W1k1 и W2k2 - произведения чисел витков на обмоточные коэффициенты; Е2s2S.

Потоки рассеяния Фрс1 Фрс2 наводят в обмотках ЭДС рассеяния Ер1 и Ер2, которые, как в трансформаторе, могут быть выражены через соответствующие токи I1 и I2 и индуктивные сопротивления х1 и х2s.

;

где х1 и х2s - индуктивные сопротивления рассеяния обмоток статора и ротора.

Помимо названных выше ЭДС, в обмотках статора и ротора имеют место активные падения напряжения, которые компенсируются соответствующими ЭДС Er1 и Еr2.

ОБЩИЕ СВЕДЕНИЯ

В учебной программе по электротехнике для факультета «Экономика, предпринимательство, экономика» отсутствует раздел специальных режимов работы асинхронных машин.

Однако широкое развитие технологии, технического творчества учащихся требует знания ряда дополнительных возможностей использования этих материалов. Рассмотрим лишь некоторые из них.

Сельсины

Представим себе два асинхронных двигателя с фазным ротором включенным последующей схеме (рис. 5.18.5.1). Обмотки статора С1, С2, С3, называемые обмотками возбуждения, включены в общую сеть трехфазного тока.

Обмотки ротора P1, P2, P3 объединены трехпроводниковой линией связи. Магнитные потоки обмоток возбуждения при q1=q2 наводят в соответствующих обмотках роторов равные и совпадающие по фазе ЭДС.

Если ротор двигателя Д1 повернуть на угол q1, а ротор Д2 оставить на месте (q2=0), то в фазных обмотках ротора двигателя Д2 будет наведена ЭДС E2> E1. В результате в линии связи потечет ток DI от большего потенциала к меньшему.

,

где 2z - сумма сопротивлений обмоток роторов и линии связи.

Этот ток, пройдя по обмоткам роторов, взаимодействуя с магнитными полями статоров, вызовет образование дополнительных вращающих моментов DM. Поскольку направление момента DМ в каждом двигателе будет свое, то в одном из них произойдет поворот ротора вправо (у двигателя Д2), а у другого - влево (у двигателя Д1).

Следовательно, оба двигателя самостоятельно (синхронно) придут в положение (q1=q2). Такая система получила название синхронно-следящей.

Практическое использование эта система получила в многоприводных механизмах (конвейерах, козловых кранах и т.п.).

В автоматике применяются так называемые сельсины. Это маломощные асинхронные машины с однофазным статором и трехфазным ротором.

Сельсины применяются для целей измерения или определения угла, на который повернулся определенный механизм.

В сельсинной передаче всегда используются две машины: сельсин-датчик и сельсин-приемник.

Обмотки возбуждения бывают обычно однофазные и располагаются на явновыраженных полюсах. Число полюсов всегда два. Обмотки синхронизации - трехфазные, размещаются в пазах ротора и оканчиваются тремя контактными кольцами (рис. 5.18.5.2).

В отличие от силовых синхронно-следящих систем, поворот ротора сельсина-датчика осуществляется принудительно, а ротор сельсина-приемника приходит в движение автоматически. Поворот ротора фиксируется индикаторной стрелкой.

При наличии однофазных обмоток возбуждения на статоре поворот ротора сельсина-датчика может осуществляться в любую сторону, т.к. пульсирующее магнитное поле статора обеспечивает для этого необходимые условия.

Помимо приведенного индикаторного режима, сельсины могут работать и в так называемом трансформаторном режиме.

В этом случае сельсин-приемник, не только показывает угол рассогласования q, но и вырабатывает электрический сигнал для управления мощным механизмом

Поворотные трансформаторы

Так называют электрические машины переменного тока, предназначенные для преобразования угла поворота q в напряжение, пропорциональное некоторым функциям угла поворота ротора sinq или cosq, а также самому углу q. Их применяют в вычислительной технике для выполнения различных математических операций. С помощью поворотных трансформаторов решают геометрические задачи, связанные с построением треугольников, преобразованием координат, разложением и построением векторов. В системах автоматического регулирования поворотные трансформаторы используют в качестве измерителей расстояния, фиксирующих отклонение системы от некоторого определенного положения.

Конструктивно поворотный трансформатор представляет собой асинхронную машину малой мощности. На статоре ее перпендикулярно размещены две обмотки: C1-C2 и С34. Первая получила название главной, а вторая - квадратурной. Обмотки статора выполняются одинаковыми, т.е. с одинаковым числом витков. На роторе может быть одна обмотка, но чаще их бывает две. На рис. 5.18.6.1. приведены схемы включения синусного, косинусного и синусно-косинусного поворотных трансформаторов.

< /center

Содержание

1. Асинхронные двигатели (АД) с фазным и короткозамкнутым ротором.

Конструкция, область применения.

2. Скольжение асинхронного двигателя. Частота тока в роторе.

3. Работа асинхронного двигателя при неподвижном роторе. Индукционный регулятор.

4. Приведение параметров обмотки ротора к обмотке статора. Схемы замещения АД 2

5. Потери и КПД АД 2

6. Механические и электромеханические характеристики АД 2

7. Рабочие характеристики, пуск и торможение асинхронных двигателей. 2

8. Построение круговой диаграммы АД 2

9. Однофазные АД. Включение трехфазных АД в однофазную сеть 2

10. Специальные АД, обобщение знаний по разделу АД

Асинхронный двигатель - принцип работы и устройство

8 марта 1889 года величайший русский учёный и инженер Михаил Осипович Доливо-Добровольский изобрёл трёхфазный асинхронный двигатель с короткозамкнутым ротором.

Современные трёхфазные асинхронные двигатели являются преобразователями электрической энергии в механическую. Благодаря своей простоте, низкой стоимости и высокой надёжности асинхронные двигатели получили широкое применение. Они присутствуют повсюду, это самый распространённый тип двигателей, их выпускается 90% от общего числа двигателей в мире. Асинхронный электродвигатель поистине совершил технический переворот во всей мировой промышленности.

Огромная популярность асинхронных двигателей связана с простотой их эксплуатации, дешивизной и надежностью.

Асинхронный двигатель - это асинхронная машина, предназначенная для преобразования электрической энергии переменного тока в механическую энергию.Само слово “асинхронный” означает не одновременный. При этом имеется ввиду, что у асинхронных двигателей частота вращения магнитного поля статора всегда больше частоты вращения ротора. Работают асинхронные двигатели, как понятно из определения, от сети переменного тока.

Устройство

 

На рисунке: 1 - вал, 2, 6 - подшипники, 3, 8 - подшипниковые щиты, 4 - лапы, 5 - кожух вентилятора, 7 - крыльчатка вентилятора, 9 - короткозамкнутый ротор, 10 - статор, 11 - коробка выводов.

Основными частями асинхронного двигателя являются статор (10) и ротор (9).

Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.

Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали. В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется " беличьей клеткой". В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.

Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам. С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов. Подробнее о фазном роторе можно прочитать в статье - асинхронный двигатель с фазным ротором.

Принцип работы

При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.

Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС. Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора. Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение.

Скольжение s - это величина, которая показывает, насколько синхронная частота n1 магнитного поля статора больше, чем частота вращения ротора n2, в процентном соотношении.

Скольжение это крайне важная величина. В начальный момент времени она равна единице, но по мере возрастания частоты вращения n2 ротора относительная разность частот n1-n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента. В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины sкр - критического скольжения. Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме - 1 - 8 %.

Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.

Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.

Однофазный асинхронный двигатель

Однофазный асинхронный двигатель это маломощный двигатель (до 1500 Вт) который применяется в установках, в которых практически отсутствует нагрузка на валу в момент пуска, а также в тех случаях, когда питание двигателя может быть осуществлено только от однофазной сети. Чаще всего такие двигатели, применяют в стиральных машинах, небольших вентиляторах и т.д.

Однофазный двигатель схож по строению с трехфазным асинхронным двигателем, различием является количество фазных обмоток, у однофазного не три, а две обмотки – пусковая и рабочая, причем постоянно работает только одна обмотка – рабочая.

Для того чтобы ротор асинхронного двигателя пришел в движение, статорная обмотка должна создать вращающееся магнитное поле. В трехфазном двигателе, такое поле создается благодаря трехфазной обмотке. Но рабочая обмотка однофазного двигателя создает не вращающееся, а пульсирующее магнитное поле. Это поле можно разложить на два – прямое и обратное. Прямое поле вращается с синхронной скоростью n1 в направлении вращения ротора и создает основной электромагнитный момент. Скольжение ротора относительно прямого поля равно

Обратное поле, вращается против ротора, поэтому частота вращения ротора отрицательная, относительно этого поля

Каждое поле наводит ЭДС, благодаря которым по ротору начинают протекать токи. Частоты этих токов пропорциональны скольжению (fт=f·s), , а из формул выведенных выше, можно сделать вывод, что частота тока наводимого обратным полем, намного больше частоты тока прямого поля. В связи с этим, индуктивное сопротивление, которое увеличивается с ростом частоты, приобретает большое значение и становится намного больше активногосопротивления. Поэтому ток обратного поля, является практически индуктивным и оказывает размагничивающее действие на поток обратного магнитного поля. Как следствие, момент, создаваемый этим полем, невелик, и направлен против вращения ротора.

В момент, когда ротор неподвижен, ось симметрии между этими двумя полями, также неподвижна, а значит, не создается вращающего магнитного поля, и как следствие, двигатель не работает. Чтобы привести его в движение, нужно прокрутить ротор, для того чтобы ось симметрии сместилась. Но выполнять это механически не имеет смысла, поэтому для того, чтобы запустить однофазный двигатель, создали пусковую обмотку. Пусковая обмотка совместно с рабочей, создает вращающееся магнитное поле, необходимое для запуска двигателя. Для этого необходимо чтобы МДС обоих обмоток были равны, а также угол между ними составлял 90°. Кроме того, необходимо чтобы и токи в этих обмотках, были смещены на 90°. В этом случае создается так называемое, круговое магнитное поле, при котором результирующий электромагнитный момент максимален. Если же, эти условия выполнены с отклонениями, то создается эллиптическое магнитное поле, при котором момент ниже, из-за увеличенного тормозного момента обратного поля.

В реальных условиях пуск однофазного двигателя осуществляется с помощью одновременного нажатия на кнопки, подающие питание и подключающие пусковую обмотку к цепи.

Для того, чтобы создать фазовый сдвиг в 90° между токами рабочей и пусковой обмотки, используют фазосмещающие элементы (ФЭ). Это может быть активное сопротивление, катушкаили конденсатор. Большое распространение получили однофазные двигатели с активным сопротивлением в качестве фазосмещающего элемента. Увеличение сопротивления пусковой обмотки, достигается с помощью уменьшения сечения провода, а так как эта обмотка работает короткий промежуток времени в момент пуска, то это не причиняет обмотке вреда.

Но, активное сопротивление, также как и индуктивное, не создает требуемого смещения в 90°между токами, зато такое смещение создает конденсатор. Емкость этого конденсатора, подбирают таким образом, чтобы ток пусковой обмотки, опережал по фазе напряжение на некоторый угол, который необходим для того, чтобы смещение между токами стало 90°. Благодаря этому, создается круговое магнитное поле. Но, конденсаторы применяются в качестве фазосмещающего элемента реже, потому что для обеспечения смешения в 90°, нужен конденсатор, большой емкости, и как правило, относительно высокого напряжения. Кроме того, габариты этого конденсатора, велики, что также играет роль.

Регулирование скорости асинхронного двигателя

Долгое время в промышленности использовались нерегулируемые электроприводы на базе АД, но, в последнее время возникла надобность в регулировании скорости асинхронных двигателей.

Частота вращения ротора равна

При этом, синхронная частота вращения зависит от частоты напряжения и числа пар полюсов

Исходя из этого, можно сделать вывод, что регулировать скорость АД можно с помощью изменения скольжения, частоты и числа пар полюсов.

Рассмотрим основные способы регулировки.


Поделиться:



Последнее изменение этой страницы: 2019-04-19; Просмотров: 595; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.101 с.)
Главная | Случайная страница | Обратная связь