Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Индексы, основанные на относительном обилии видов



Эту группу индексов называют индексами неоднородности, так как они учитывают одновременно и выравненность, и видовое богатство. Индексы, основанные на относительном обилии видов, относятся к непараметрическим, поскольку они не требуют никаких предположений о распределениях. Их применение углубляет оценки биоразнообразия по сравнению с индексами видового богатства, которые опираются лишь на один параметр.

Выделяются две категории непараметрических индексов:

1.Индексы, полученные на основе теории информации (информационно-статистические);

2.Индексы доминирования.

Индекс Шеннона - Уивера. Макартур [1955] и Маргалеф [1957] впервые применили для оценки к исследованию видовой устойчивости и разнообразия сообщества теорию информации. Теория информации основывается на изучении вероятности наступления цепи событий. Результат выражается в единицах неопределенности, или информации. Шеннон в 1949 году вывел функцию, которая стала называться индексом разнообразия Шеннона. Расчеты индекса разнообразия Шеннона предполагают, что особи попадают в выборку случайно из «неопределенно большой» (т. е. практически бесконечной совокупности) генеральной совокупности, причем в выборке представлены все виды генеральной совокупности. Неопределенность будет максимальной, когда все события (N) будут иметь одинаковую вероятность наступления (Pi = ni/N). Она уменьшается по мере того, как частота некоторых событий возрастает по сравнению с другими, вплоть до достижения минимального значения (нуля), когда остается одно событие и есть уверенность в его наступлении.


Индекс Шеннона рассчитывается по формуле:


H' = -∑ рi Lnрi,


рi = ni/N,

где:

H' – индекс Шеннона

рi – доля особей i-го вида

ni – число особей i- го вида

N – общее число особей в выборке

 

Причины ошибок в оценке разнообразия с использованием этого индекса заключаются в том, что невозможно включить в выборку все виды реального сообщества.

При расчете индекса Шеннона часто используется двоичный логарифм, но приемлемо также использовать и другие основания логарифма (десятичный, натуральный).

Индекс Шеннона обычно варьирует в пределах от 1,5 до 3,5, очень редко превышая 4,5.

Дисперсию индекса Шеннона (VarН) рассчитывают по формуле:


VarH' = ∑ pi(Lnpi)²- (∑ pi Ln pi)/N +S-1/2N² ,


где: VarH' – дисперсия Шеннона

рi – доля особей i-го вида

N – общее число особей в выборке

S - число видов


На основе индекса Шеннона можно вычислить показатель выравненности (индекс выравненности Пиелу (Е)) – отношение наблюдаемого разнообразия к максимальному, показывающий относительное распределение особей среди видов:


Е =H'/Ln S ,


где: E – показатель выравненности (причем E=1 при равном обилии всех видов)

H' – индекс Шеннона

S - число видов


Если значения индекса Шеннона рассчитать для нескольких выборок, то полученное распределение величин подчиняется нормальному закону. Это свойство дает возможность применять мощную параметрическую статистику, включая дисперсионный анализ. Применение сравнительных параметрического и дисперсионного анализа полезно при оценке разнообразия различных местообитаний, когда есть повторности.

Меры доминирования уделяют основное внимание обилию самых обычных видов, а не видовому богатству. Лучшим среди индексов доминирования считается индекс Симпсона. Его иногда называют «индекс Юла», поскольку он напоминает меру, разработанную Юлом для оценки словарного запаса.


Индекс Симпсона описывает вероятность принадлежности любых двух особей, случайно отобранных из неопределенно большого сообщества, к разным видам формулой:

D = ∑pi2, где pi - доля особей i-го вида.

Для расчета индекса используется формула, соответствующая конечному сообществу:
где ni, - число особей i-го вида, a N- общее число особей.

По мере увеличения D разнообразие уменьшается. Поэтому индекс Симпсона часто используют в форме (1- D). Эта величина носит название «вероятность межвидовых встреч» и варьирует от 0 до 1. Он очень чувствителен к присутствию в выборке наиболее обильных видов, но слабо зависит от видового богатства. Высокая или низкая величина индекса определяется типом распределения видовых обилий для случаев, когда число видов превышает 10. Многие авторы считают, что наилучшая мера - это «индекс полидоминантности».

Индекс Симсона применяется при изучении биоразнообразия обычных по численности видов. Индекс Шеннона – при изучении редких видов.

Индекс Бергера - Паркера - одна из мер доминирования. Его достоинство - простота вычисления. Индекс Бергера-Паркера выражает относительную значимость наиболее обильного вида:

d = Nmax/N,

где Nmax - число особей самого обильного вида.


Увеличение величины индекса Бергера - Паркера, как и индекса Симпсона, означает уменьшение разнообразия и увеличение степени доминирования одного вида. Поэтому обычно используется величина обратная индексу Бергера - Паркера 1/d.

Этот индекс независим от количества видов, но на него влияет объем выборки. Некоторые ученые считают этот индекс лучшей мерой разнообразия.


Поделиться:



Последнее изменение этой страницы: 2019-04-19; Просмотров: 743; Нарушение авторского права страницы


lektsia.com 2007 - 2025 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.009 с.)
Главная | Случайная страница | Обратная связь