Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Уравнение Эйлера. Теоретический и действительный напоры
Энергия, передаваемая жидкости или газу рабочим колесом центробежной машины, определяется в основном значениями абсолютной, относительной и окружной скоростей на входе и выходе из межлопастных каналов. Параллелограммы этих скоростей даны на рис. 37, где обозначено: u - окружная скорость; w - относительная скорость, т. е. скорость потока относительно вращающегося колеса; с - абсолютная скорость, или скорость жидкости относительно неподвижного корпуса машин. Характерными элементами являются также следующие углы: a - угол между векторами окружной и абсолютной скоростей и b - угол, образованный вектором относительной и обратным направлением окружной скоростей; последнее определяется формой лопастей центробежной машины и режимом ее работы. Элементы параллелограммов скоростей и геометрические размеры колеса, относящиеся ко входу и выходу межлопастных каналов, отмечаются соответственно индексами 1 и 2. В теории и расчетах центробежных машин используют также окружную и радиальную составляющие абсолютных и относительных скоростей, обозначаемые индексами u и r. Например, - окружная проекция абсолютной скорости на выходе из рабочего колеса. Применим к потоку, проходящему через рабочее колесо машины, уравнение моментов количества движения предполагая, что поток, проходящий через межлопастные каналы, - плоский, т. е. определяющийся только двумя компонентами: , и . Кроме того, будем предполагать, что влияние рабочих лопастей на поток столь существенно, что скорости во всех точках цилиндрических сечений постоянного радиуса сохраняются постоянными. Это возможно только при очень большом (условно – бесконечном) количестве тонких лопастей.
Поэтому в литературе величины, характеризующие поток через межлопастные каналы при указанном предположении, условно обозначают индексом ¥ и называют параметрами при бесконечном количестве лопастей. Если колесо пропускает расход Q жидкости или газа с плотностью r, то моменты секундных количеств движения на входе и выходе из межлопастных каналов в соответствии с рис. 37 будут: и . Импульс внешнего момента, действующего на массу жидкости, проходящей через колесо, равен изменению момента количества движения этой массы, поэтому ( - )Dt, (35) где - теоретический момент, прилагаемый к потоку в межлопастных каналах, при бесконечном количестве лопастей. Момент, подводимый к валу машины, больше вследствие механического трения в подшипниках и уплотнениях вала и гидравлического (газового) трения нерабочей стороны колес о жидкость (газ). Введем в уравнение (35) конструктивные радиусы, имея в виду, что и , тогда = rQ( . Из рис. 3-2 следует: и . Поэтому . (36) Мощность, передаваемая потоку в межлопастных каналах,
или . (37) Если обозначить величину удельной теоретической энергии (без учета потерь энергии в проточной части колеса), то теоретическая мощность насоса будет: = rQ . (38) Сопоставляя (37) и (38), получаем: = . (39) Удельная работа и напор связаны зависимостью = . Следовательно, из (39) , (40) где - теоретический напор колеса центробежного насоса, м, при бесконечном количестве лопастей. Уравнения (36), (37) и (39) являются основными уравнениями центробежных машин. При расчете момента, мощности и напора по формулам (36), (37) и (39) следует иметь в виду, что скорости и постоянны соответственно по окружностям радиусов и . Следует отметить, что в действительных условиях наблюдается некоторая неравномерность распределения абсолютных и относительных скоростей как на входе, так и на выходе из рабочего колеса. Уравнение Эйлера можно представить в другом виде, воспользовавшись параллелограммами скоростей на входе и выходе: ; . Определив отсюда произведения и и подставив их в уравнение (40), получим: . (41) Физическая величина представляет собой напор, обусловленный работой центробежной силы жидкости. Действительно, величина центробежной силы жидкости или для 1 кг жидкости . Работа силы на элементарном пути dr: . Работа силы Р'ц на пути от входа в межлопастные каналы до выхода из них . При w = const . Напор, соответствующий , будет . Члены уравнения (41) и выражают соответственно прирост напора за счет преобразования кинетических энергий относительного и абсолютного движений. Так как с1 и с2 есть абсолютные скорости на входе и выходе межлопастных каналов, то - скоростной напор, создаваемый лопастями рабочего колеса: . (42) Поэтому теоретический статический напор (удельная потенциальная энергия): = = + . (43) В большинстве случаев поток, входящий в межлопастные каналы, приведен во вращательное движение благодаря непосредственному соприкосновению с валом и втулкой колеса и вследствие импульсивного обмена между массами жидкости (газа), уже вошедшими в межлопастные каналы, и массами, находящимися еще вне их. Это явление называют закручиванием потока на входе. Интенсивность закручивания потока на входе характеризуется величиной (м/с), или в относительных единицах, . Из уравнения Эйлера (40) следует, что теоретический напор Нт зависит от окружной проекции скорости на входе в межлопастные каналы . Однако сказанное справедливо только в том случае, если закручивание потока перед колесом вызвано специальными направляющими аппаратами. Если же закручивание потока вызвано воздействием самого рабочего колеса, то оно сопровождается увеличением теоретического напора. , Поэтому при закручивании потока самим рабочим колесом . Следовательно, при определении теоретических характеристик машины без входного направляющего устройства (или входного патрубка специальной формы, обеспечивающей закручивание потока перед рабочим колесом) основные уравнения представляются в виде: (44) Это - уравнения центробежной машины с радиальным входом в межлопастные каналы. Если =0, то из треугольника скоростей на входе следует:
Поэтому из уравнения (41) для этого случая получим: ; (45) (46) Действительный напор, создаваемый колесом, меньше теоретического при бесконечном количестве лопастей H < . Во-первых, это объясняется тем, что часть энергии, получаемой жидкостью в рабочем колесе, затрачивается на преодоление гидравлических сопротивлений в проточной части машины. Эти потери учитываются гидравлическим к. п. д. . Во-вторых, указанное неравенство обусловлено отклонением действительной картины течения от предполагаемой струйной при бесконечном количестве лопастей. Это учитывается введением поправочного коэффициента m на конечное количество лопастей . Гидравлический к. п. д. современных центробежных машин оценивает гидравлическое совершенство проточной части их и лежит в пределах 0,80-0,96. Поправочный коэффициент m<1 определяется по полуэмпирическим формулам Стодолы и Пфлейдерера. По методу Стодолы . Эта формула хорошо согласуется с практикой. , где - опытный коэффициент, зависящий от ; S - статический момент средней линии тока по лопасти.
Радиальные вентиляторы
Рационально сконструированный вентилятор характеризуется возможно меньшими массой, металлоемкостью и габаритами, высокой экономичностью и надежностью, а также технологичностью конструкции и наименьшими возможными эксплуатационными расходами. Особые требования предъявляются к конструкции корпуса и рабочего колеса. Рабочее колесо должно быть тщательно отбалансировано. Прочность и жесткость колеса зависят от конструкции и материала, из которого оно выполнено. С увеличением ширины колеса прочность и жесткость его снижаются. Конструктивные исполнения рабочих колес представлены на рис. 38. Лопатки барабанных колес (рис. 38, а) загнуты вперед, ширина колес достигает 0,5D. Окружная скорость колес допускается до 30-40 м/с. Ширина кольцевых колес (рис. 38, б) находится в пределах (0,2-0,4)D. Их окружная скорость допускается до 60 м/с. Большой прочностью и жесткостью обладают колеса с коническим передним диском (рис. 38, е). Их окружная скорость допускается до 85 м/с. Трехдисковые колеса (рис. 38, г) применяются в вентиляторах двустороннего всасывания. Достоинством колес такой конструкции является отсутствие осевого давления. Однодисковые колеса (рис. 38, д ) применяются, например, в пылевых вентиляторах и в вентиляторах высокого давления. Лопатки у этих колес присоединяются к диску и ступице. Бездисковые колеса (рис. 38, е) с лопатками, присоединяемыми непосредственно к ступице, находят применение в пылевых вентиляторах. Жесткость и прочность рабочего колеса во многом определяются способом соединения лопаток с дисками. Наибольшее распространение получили клепаные колеса, которые более трудоемки при изготовлении, но отличаются большой прочностью. Соединение на шипах менее трудоемко при изготовлении и позволяет механизировать сборку колес. Наиболее жесткая и прочная конструкция колеса получается при сварном соединении лопаток с дисками.
Однако, несмотря на простоту и дешевизну такого соединения по сравнению с клепаным, цельносварная конструкция колеса рациональна в случаях одинакового срока службы лопаток и дисков. Если же наблюдается интенсивный износ лопаток тяжелонагруженных колес, работающих при больших окружных скоростях, целесообразнее увеличить долговечность дорогостоящих дисков. В этих случаях оправдано применение колес клепаной конструкции, допускающей многократную замену лопаток путем переклепки с последующей балансировкой колеса. Спиральный корпус, как правило, представляет собой конструкцию, сваренную из листового металла. Очень крупные вентиляторы имеют корпуса, состоящие из двух или трех частей, скрепленных на фланцах болтами. Боковые стенки корпуса, если не придать им дополнительной жесткости, могут вибрировать. Для устранения вибрации стенки оребряют металлическими полосами. В современных аэродинамических вентиляторах предусматриваются входные патрубки достаточно сложных конфигураций, вследствие чего для их изготовления требуются сложные штампы и мощные прессы. Для серийных вентиляторов, например Ц4-70, эти патрубки могут быть изготовлены из полосы, свернутой в конус. Дополнительную добавочную жесткость патрубку придает кольцо, одновременно предназначенное для ликвидации разрывов аэродинамической характеристики р-L. Величина зазора между входным патрубком и передним диском колеса оказывает существенное влияние на КПД вентилятора. С увеличением зазора количество воздуха, перетекающего через него со стороны нагнетания на сторону всасывания, возрастает и подача вентилятора уменьшается. Вентиляторы изготавливают одностороннего и двустороннего всасывания правого и левого вращения. Если смотреть со стороны входа воздуха, то вентилятор, рабочее колесо которого вращается по часовой стрелке, называется вентилятором правого вращения, против часовой стрелки - левого вращения. На вентилятор двустороннего всасывания следует смотреть со стороны всасывания, свободной от привода. Для вентиляторов общего назначения существует семь положений корпуса, определяемых углом поворота относительно исходного нулевого положения. Углы поворота корпуса отсчитывают по направлению вращения рабочего колеса в соответствии с рис. 39. Положения корпуса Пр 225° и Л 225° отсутствуют, что объясняется трудностью присоединения сети к такому вентилятору. Корпуса мельничных вентиляторов могут устанавливаться в 24-х положениях (0-345° через 15°). Дутьевые вентиляторы и дымососы имеют 18 положений корпуса (0-255° через 15°).
Рис. 39. Положение корпуса радиальных вентиляторов правого (а) и левого (б) вращения
Вентиляторы соединяются с электродвигателями одним из следующих способов: - рабочее колесо вентилятора закреплено непосредственно на валу электродвигателя; с помощью эластичной муфты; - клиноременной передачей с постоянным передаточным отношением; - регулируемой бесступенчатой передачей через гидравлические или индукторные (электрические) муфты скольжения. ГОСТ 5976—73 с изм. предусматривает семь конструктивных схем соединения вентилятора с приводом (рис. 40). Исполнение 1 (так называемый электровентилятор) применяется для вентиляторов небольших размеров. При этом достигаются компактность установки, ее надежность, относительная бесшумность, а также экономичность благодаря отсутствию потерь в передаче. Исполнения 2 и 4 широкого применения не получили, так как передняя опора и подшипник, установленные во входном отверстии, затрудняют вход воздуха в вентилятор.
Исполнение 3 рекомендуется при совпадении частот вращения электродвигателя и вентилятора, имеющего рабочее колесо большого диаметра или большой массы. Исполнения 5 и 7 применяются для вентиляторов двустороннего всасывания. При этом обеспечивается большая жесткость конструкции (рабочее колесо расположено между подшипниками), но определенные сложности вызывает присоединение к вентилятору всасывающих воздуховодов. Поэтому эти схемы исполнения чаще всего применяются при воздухозаборе непосредственно из помещения или при установке вентилятора в открытой камере. Исполнение 6 нашло широкое применение, что объясняется простотой присоединения вентилятора к сети и тем, что в случае необходимости можно легко и быстро проводить замену приводных ремней. Помимо рассмотренных можно отметить еще две схемы исполнения, применяемые для так называемых крышных вентиляторов (рис. 41). Отличительными конструктивными особенностями этих вентиляторов являются горизон-
тальное расположение рабочего колеса 1 и корпуса 3, в котором выходное отверстие имеет кольцевую форму, и вертикальное расположение электродвигателя 2. Эти вентиляторы широко применяются для решения простейших вентиляционных задач. Имея простую и легкую конструкцию, крышные вентиляторы легко монтируются на крышах зданий, т. е. не занимают полезной производственной площади. Они имеют сравнительно невысокий уровень шума и применяются для вентиляции складов, цехов, заводских помещений, жилых зданий, сельскохозяйственных объектов и т. д. Поскольку эти вентиляторы работают практически без сети, их рабочий режим соответствует нулевому или небольшому коэффициенту статического давления и коэффициенту подачи, близкому к максимальному. Крышные вентиляторы следует располагать на расстояниях между любой парой вытяжных отверстий с диаметрами и не меньших 2,5( + ). Область экономически эффективного использования крышных вентиляторов соответствует теплонапряженности помещений q=30 Вт/м3; при q>30 Вт/м3 более эффективно применение вытяжных аэрационных фонарей. Единая общепринятая классификация радиальных вентиляторов до сих пор не разработана. Однако вентиляторы можно классифицировать по отдельным признакам: назначению, создаваемому давлению, быстроходности, компоновке и т. д. Радиальные вентиляторы, применяемые практически во всех отраслях народного хозяйства, можно разделить на две большие группы: вентиляторы общего назначения и вентиляторы специального назначения. Вентиляторы общего назначения предназначены для перемещения воздуха и других газовых смесей, агрессивность которых по отношению к углеродистым сталям обыкновенного качества не выше агрессивности воздуха с температурой до 80 °С, не содержащих пыли и других твердых примесей в количестве более 100 мг/м3, а также липких веществ и волокнистых материалов. Для вентиляторов двухстороннего всасывания с расположением ременной передачи в перемещаемой среде температура перемещаемой среды не должна превышать 60°С. Вентиляторы применяют в системах вентиляции и воздушного отопления производственных, общественных и жилых зданий, а также для других санитарно-технических и производственных целей. Серийно выпускают вентиляторы номеров от 2,5 до 20. В соответствии с ГОСТ 5976—73 с изм. вентиляторы общего назначения имеют обозначение типа, состоящее из буквы Ц (центробежный), пятикратного значения коэффициента полного давления и значений быстроходности при режиме , округленных до целых чисел. К этому обозначению добавляют номер вентилятора, численно равный диаметру колеса в дециметрах. Так, вентилятор с диаметром рабочего колеса d = 0,4 м, имеющий при режиме коэффициент полного давления y = 0,86 и быстроходность = 70,3, обозначают Ц4-70 № 4. Такое обозначение удобно тем, что позволяет по назначению оценить аэродинамические параметры вентиляторов. Вентиляторы Ц4-70 № 2,5; 3,15 (3,2); 4; 5; 6,3; 8; 10 и 12,5 изготовляют по конструктивной схеме исполнения 1 с рабочим колесом, непосредственно установленным на валу электродвигателя. Вентиляторы Ц4-70 № 8; 10; 12,5 и 16 изготовляют по конструктивной схеме исполнения 6 со шкивом для привода посредством клиноременной передачи. Вентиляторы № 2,5; 3,15 (3,2); 4; 5; 6,3; 8; 10 и 12,5 выпускаются с промежуточными диаметрами рабочего колеса, что позволяет, не меняя корпус, менять его характеристику, устанавливая одно из колес: для № 5 и 8-90; 95; 100 или 105 % номинального диаметра; для вентиляторов № 2,5; 3,15; 4 и 6,3-95; 100 или 105% номинального диаметра и для вентиляторов № 10 и 12,5-90; 95 и 100 % номинального диаметра. Вентиляторы специального назначения применяются для работы в системах пневмотранспорта; для перемещения среды, содержащей агрессивные вещества, газов с высокой температурой, газопаровоздушных взрывоопасных смесей и т. д. Эти вентиляторы, в свою очередь можно, разделить на пылевые, коррозионно-стойкие, искрозащищенные, тягодутьевые, малогабаритные, судовые, шахтные, мельничные и т. д. Вентиляторы, предназначенные для перемещения воздуха с различными механическими примесями, называются пылевыми. В обозначении этих вентиляторов добавлена буква П. Пылевые вентиляторы типа ЦП7-40 предназначены для перемещения невзрывоопасных неабразивных пылегазовоздушных смесей, агрессивность которых по отношению к углеродистой стали обыкновенного качества не выше агрессивности воздуха, с температурой не выше 80°С, не содержащих липких веществ и волокнистых материалов и с содержанием механических примесей в перемещаемой среде до 1 кг/м3. Пылевые вентиляторы применяются для удаления древесных стружек, металлической пыли от станков, а также в системах пневмотранспорта зерна и для других целей. Чтобы транспортируемые материалы не застревали в рабочем колесе и корпусе, число лопаток колеса должно быть небольшим. Передний диск колеса всегда отсутствует, а передние участки лопаток имеют форму, обеспечивающую сбрасывание попавших в колесо материалов под действием центробежных сил. Большой зазор между входным патрубком и колесом является причиной того, что пылевые вентиляторы имеют более низкий КПД, чем вентиляторы общего назначения. Номенклатура серийных пылевых вентиляторов невелика: ЦП7-40, ЦП6-46 и ЦП6-45. Пылевые вентиляторы серии ЦП7-40 имеют сварные бездисковые колеса с шестью лопастями, загнутыми вперед. Боковые стенки корпуса имеют одинаковую конструкцию. Симметричная конструкция рабочего колеса и корпуса позволяет собирать из одних и тех же узлов вентиляторы левого и правого вращения. Рабочее колесо пылевого вентилятора серии ЦП7-40 выполнено в виде шестилопастного однодискового колеса со стальной литой втулкой. Вследствие консольного крепления лопаток к диску и снижения их прочности при неравномерном истирании механическими примесями эти вентиляторы не применяются при больших окружных скоростях, поэтому они развивают сравнительно невысокие давления и могут применяться в сетях с небольшим сопротивлением. Иногда с целью увеличения срока службы лопаток рабочего колеса их поверхности навариваются износоустойчивыми твердыми сплавами. С этой же целью обечайка спирального корпуса может быть покрыта внутри броневыми плитами. В конструкциях коррозионно-стойких вентиляторов, предназначенных для перемещения агрессивных смесей, применяются материалы, стойкие к этим смесям (нержавеющая сталь, титановые сплавы, винипласт, полипропилен) либо их проточная часть напыляется антикоррозионными покрытиями. Такими материалами являются нержавеющая сталь марки 12Х18Н10Т и титановый сплав ВТ 1-0. Область применения вентиляторов из нержавеющей стали резко ограничена их недостаточно высокими антикоррозионными свойствами. Для ряда агрессивных сред срок службы этих вентиляторов составляет 4-6 месяцев, а иногда и меньше. Пластмассовые вентиляторы, несмотря на более высокие антикоррозионные свойства по сравнению с вентиляторами из нержавеющей стали, обладают рядом существенных недостатков. Это в первую очередь низкие прочностные характеристики материалов, что не позволяет изготавливать вентиляторы больших размеров, при этом максимальная окружная скорость составляет 31 м/с. Поскольку винипласт неморозостоек, то вентиляторы из него могут быть установлены только в отапливаемых помещениях. Вентиляторы из титанового сплава могут использоваться во всех средах, где происходит пассивация поверхности в результате образования окислов, гидридов и сульфоокисных соединений титана. Такие вентиляторы нельзя применять в газовоздушных средах, содержащих пары фтористоводородной и плавиковой кислот, фтора и брома, а также сухие хлор и йод. Однако следует отметить, что решить проблему борьбы с коррозией титановые вентиляторы не могут, так как промышленность выпускает их в ограниченном количестве. Принципиально новые возможности открываются в связи с применением технологии напыления порошковых полимерных материалов в электростатическом поле. При этом нет необходимости в изменении технологии изготовления вентиляторов. Достаточно на заключительном технологическом этапе заменить процесс их окраски жидкими лакокрасочными материалами процессом напыления полимерных порошков. Перемещение взрывоопасных газовых смесей вентиляторами общего назначения недопустимо, так как при трении деталей рабочего колеса о корпус возможно появление искр, способных поджигать эти смеси. Следовательно, для перемещения таких смесей должны применяться вентиляторы, изготовленные из материалов, которые при трении или соударении подвижных частей с неподвижными исключали бы возможность появления искр. В зависимости от уровня защиты от искрообразования искрозащищенные вентиляторы подразделяются на следующие: - с повышенной защитой от искрообразования, в которых предусмотрены средства и меры, затрудняющие возникновение опасных искр только в режиме их нормальной работы. Изготовляются такие вентиляторы или из алюминиевых сплавов, или из разнородных металлов; - искробезопасные, в которых предусмотрены средства и меры защиты от искрообразования как при нормальной работе, так и при возможном кратковременном трении рабочего колеса о корпус вентилятора. Эти вентиляторы разработаны на основе алюминиевых сплавов с антистатическим пластмассовым покрытием. Вид покрытия - графитонаполненный полиэтилен или графитонаполненный пентапласт, - выбирается в зависимости от характеристики перемещаемых сред, т. е. от их способности противостоять коррозионному воздействию сред. Вентиляторы из алюминиевых сплавов выполняются по конструктивному исполнению 1 (ГОСТ 5976-73 с изм.) и комплектуются взрывозащищенными электродвигателями. В соответствии с техническими условиями они предназначены для перемещения некоторых газопаровоздушных взрывоопасных смесей, не вызывающих ускоренной коррозии материалов и покрытий проточной части вентиляторов, не содержащих взрывчатых веществ взрывоопасной пыли, окислов железа, добавочного кислорода, липких веществ и волокнистых материалов с запыленностью не более 100 мг/ и температурой не выше 80°С. Температура окружающей среды от -40 до 40°С (до 45°С для тропического исполнения). Вентиляторы из алюминиевых сплавов нельзя применять для перемещения газопаровоздушных смесей от технологических установок, в которых взрывоопасные вещества нагреваются выше температуры их самовоспламенения или находятся под избыточным давлением. Их также не разрешается использовать в качестве химически стойких вентиляторов. Технические данные и область применения таких вентиляторов более подробно приведены в соответствующих технических условиях. В ТУ 22-4942-81 приведен перечень смесей, для перемещения которых предназначены эти вентиляторы. Вентиляторы из разнородных металлов также выполняются по конструктивному исполнению 1 (ГОСТ 5976-73 с изм ) и комплектуются взрывозащищенными электродвигателями. В соответствии с техническими условиями они предназначены для перемещения некоторых парогазовоздушных взрывоопасных смесей, не вызывающих ускоренной коррозии материалов и покрытий проточной части вентиляторов, с запыленностью не более 100 мг/м3, не содержащих взрывоопасной пыли, взрывчатых веществ, липких и волокнистых материалов. Температура перемещаемой среды: вентиляторами исполнения В1 и И1-03 - 80 °С; вентиляторами исполнения В1Ж2 и И1-02 –150°С. Температура окружающей среды от -40 до 40 °С (45 °С для тропического исполнения). Вентиляторы из разнородных металлов нельзя применять для перемещения парогазовоздушных смесей, содержащих добавочный кислород, а также для перемещения смесей от технологических установок, в которых взрывоопасные вещества нагреваются выше температуры их самовоспламенения или находятся под избыточным давлением. Технические данные и область применения таких вентиляторов более подробно приведены в соответствующих технических условиях. В ТУ 22-5698-84 приведен перечень смесей, для перемещения которых предназначены эти вентиляторы. Для перемещения смесей, взрывающихся от удара, вентиляторы применять нельзя. (В этих случаях используют эжекторы.) В зависимости от применения различают два типа тягодутьевых вентиляторов: дымососы и дутьевые. Дымососы применяют для отсасывания дымовых газов с температурой до 200°С из топок пылеугольных котлоагрегатов. Поскольку газы содержат твердые частицы золы, вызывающие значительный износ деталей дымососа, лопатки рабочего колеса выполняют утолщенными, а внутреннюю поверхность обечайки корпуса покрывают броневыми листами. Ходовая часть дымососов имеет охлаждающий элемент в виде термомуфты или змеевика охлаждения масла в узле подшипников. Поэтому корпуса подшипников ходовой части дымососов изготовляют в виде литых или сварных коробок, внутри которых находится масло, охлаждаемое проточной водой, циркулирующей по змеевику. Применяют дымососы одно- и двухстороннего всасывания. Для регулирования работы они оснащаются осевыми направляющими аппаратами. В обозначении типа дымососов, например ДН-15, буквы обозначают: Д - дымосос; Н - загнутые назад лопатки рабочего колеса; цифры означают диаметр рабочего колеса в дециметрах. Дутьевые вентиляторы предназначены для подачи воздуха в топочные камеры котлоагрегатов тепловых электростанций или крупных промышленных котельных установок. Так же, как и дымососы дутьевые вентиляторы выполняют односторонними и двухсторонними. Они также оснащены осевыми направляющими аппаратами. Серийно изготовляют дутьевые вентиляторы номеров 8-36. Вентиляторы горячего дутья типа ВГД и ГД предназначены для подачи первичного воздуха с температурой до 400°С. В обозначении типа дутьевых вентиляторов, например ВДН-10, буквы означают: В - вентилятор; Д - дутьевой; Н - загнутые назад лопатки рабочего колеса. Конструкция тягодутьевых нагнетателей не рассчитана на восприятие нагрузок от массы и теплового расширения подводящих и отводящих участков сети, за и перед ними необходимо устанавливать компенсаторы. Вентиляторы типа ДН и ВДН предназначены для установки в помещении; возможна их эксплуатация вне помещения при температуре не ниже -30°С, дутьевые вентиляторы допускается устанавливать только после аппаратов очистки. Подбор тягодутьевых машин следует выполнять в соответствии с данными заводов-изготовителей. Мельничные вентиляторы предназначены для пневматического транспортирования и неагрессивной угольной пыли в системах пылеприготовления котлоагрегатов, работающих на пылевидном топливе, и для подачи пылевидного топлива в пылеугольные и муфельные горелки. Конструкции этих вентиляторов выполняют с учетом уменьшения степени износа стенок спирального корпуса и рабочего колеса, Малогабаритные вентиляторы с диаметрами рабочих колес менее 200 мм являются, как правило, встроенными вентиляторами. Будучи частью стационарных и подвижных машин и технологических установок, они должны соответствовать жестким требованиям к габаритам, массе и КПД. Привод таких вентиляторов осуществляется обычно от малогабаритных высокоскоростных электродвигателей с частотой вращения до 20000 мин -1, их подача составляет от 1 до 300 л/с, а полное давление - от 200 до 7000 Па. Судовые вентиляторы используют в системах вентиляции машинно-котельных отделений, служебных и жилых помещений, а также для охлаждения приборов и механизмов. Помимо требований, предъявляемых к вентиляторам общего назначения, судовые вентиляторы должны удовлетворять ряд специфических требований: быть виброударостойкими, создавать малый уровень шума, иметь небольшие габариты и массу, устойчиво работать в условиях крена и дифферента. Наиболее полно всем этим требованиям отвечают судовые вентиляторы с радиальными лопатками рабочего колеса единой серии ЦС. Шахтные вентиляторы используют в вентиляционных системах шахт и рудников для обеспечения больших расходов и давлений. Радиальные шахтные вентиляторы применяют в основном в вентиляторных установках главного проветривания, расположенных на поверхности земли и перемещающих весь воздух, проходящий по шахте или ее крылу. Серийно выпускают вентиляторы больших номеров - № 11; 16; 25; 32 и 47. Вентиляторы главного проветривания работают в сети с переменным сопротивлением, поэтому они имеют следующие устройства для экономичного регулирования: осевой направляющий аппарат, регулируемый привод, поворотные закрылки лопаток рабочего колеса и др. На входе в вентилятор устанавливают двойной поворот, входную коробку и тройник, на выходе из вентилятора - диффузор, поворотное колено, выходную коробку. Таким образом, вентилятор фактически является частью вентиляторной установки. Поэтому в каталогах, как правило, приведены аэродинамические характеристики вентиляторных установок, полученные в натурных условиях или при испытаниях полупромышленных моделей вентиляторов с присоединенными элементами. В зависимости от полного давления, создаваемого при номинальном режиме, в соответствии с ГОСТ 5976-73 с изм. вентиляторы подразделяют на вентиляторы низкого, среднего и высокого давления. Вентиляторы низкого давления создают полное давление до 1000 Па. К ним относятся вентиляторы большой и средней быстроходности, у которых рабочие колеса имеют широкие листовые лопатки. Допустимая окружная скорость для таких колес не превышает 50 м/с. Вентиляторы среднего давления создают полное давление до 3000 Па. Лопатки этих вентиляторов могут быть загнуты как по направлению вращения колеса, так и против направления его вращения. Максимальная окружная скорость рабочего колеса может достигать 80 м/с. Вентиляторы высокого давления создают полное давление свыше 3000 Па. Рабочие колеса вентиляторов, создающих давление до 1000 Па, как правило, имеют лопатки, загнутые назад, так как они более эффективны. В случае широких колес применяют профильные лопатки с плоским или слегка наклонным передним диском. Полное давление более 10000 Па могут создавать лишь вентиляторы малой быстроходности с узкими рабочими колесами, напоминающими компрессорные. Их окружная скорость при соответствующем конструктивном исполнении может достигать 200 м/с. Такие вентиляторы находят применение в системах с небольшими расходами воздуха и значительным сопротивлением. По быстроходности вентиляторы делят на вентиляторы большой ( >60), средней ( =30-60) и малой ( <30) быстроходности. Вентиляторы большой быстроходности имеют широкие рабочие колеса с небольшим числом загнутых назад лопаток. Коэффициент давления y<0,9. Максимальный КПД может достигать 0,9. К вентиляторам средней быстроходности относятся как вентиляторы с колесом барабанного типа с загнутыми вперед лопатками и большим диаметром входа, у которых коэффициенты давления близки к максимально возможным (y » 3), а КПД достигает лишь 0,73, так и вентиляторы, имеющие рабочие колеса значительно меньшей ширины с загнутыми назад лопатками, небольшими коэффициентами давления (y » 1) и КПД, достигающим 0,87. Вентиляторы малой быстроходности имеют небольшие диаметры входа, довольно узкие рабочие колеса, небольшую ширину и раскрытие спирального корпуса. Лопатки колеса могут быть загнуты вперед и назад. КПД этих вентиляторов не превышает 0,8. В зависимости от компоновки вентиляторы могут быть разделены на переносные, полустационарные и стационарные. Переносные вентиляторы изготовляются с односторонним входом и имеют цельную конструкцию (ходовая часть, корпус, а иногда и электродвигатель монтируются на общей жесткой стойке). Простота монтажа и демонтажа таких вентиляторов является существенным их преимуществом перед другими вентиляторами. К недостаткам переносных вентиляторов следует отнести отсутствие у них устройств для регулирования, что снижает их эксплуатационные качества. Кроме того, для осмотра и ремонта рабочего колеса эти вентиляторы нужно отсоединить от сети. Такую компоновку имеют обычно вентиляторы общего назначения. Полустационарные вентиляторы делают с одно- и двухсторонним всасыванием. Ходовая часть и электродвигатель этих вентиляторов монтируются на общей раме. Корпус присоединяется к раме или устанавливается непосредственно на фундаменте с расположением выходного отверстия в любом нужном направлении. Регулирование подачи осуществляется с помощью направляющего аппарата. Для привода могут быть использованы многоскоростные электродвигатели. Характерной особенностью конструкции полустационарных вентиляторов является то, что осмотр и ремонт их производятся без отсоединения от сети. Эти вентиляторы применяются для главного и шурфового проветривания шахт и рудников, в качестве дымососов и дутьевых вентиляторов, а также для общепромышленного назначения. Стационарными выполняются крупные шахтные и рудничные вентиляторы и дымососы ТЭЦ и наиболее крупные вентиляторы общего назначения. Конструктивной особенностью стационарных вентиляторов является то, что корпус, ходовая часть, стойка и электродвигатель взаимно связаны только фундаментом. Регулирование осуществляется осевыми или упрощенными направляющими аппаратами. Корпус стационарного вентилятора устанавливается только в одном определенном положении. При свободном выходе воздушного потока в атмосферу к выходному отверстию вентилятора присоединяют диффузор. Стационарные вентиляторы менее металлоемки, но монтаж их более сложен и требует больших первоначальных затрат. Такие установки определяются только при большом сроке их службы. Осмотр и ремонт их осуществляются без отсоединения от сети. Центробежные насосы
Центробежные насосы составляют весьма обширный класс насосов. Перекачивание жидкости или создание давления производится в центробежных насосах вращением одного или нескольких рабочих колес. Большое число разнообразных типов центробежных насосов, изготовляемых для различных целей, может быть сведено к небольшому числу основных их типов, разница в конструктивной разработке которых продиктована в основном особенностями использования насосов. Наиболее распространенным типом центробежных насосов являются одноступенчатые насосы с горизонтальным расположением вала и рабочим колесом одностороннего входа. Привод насосов этого типа, помимо электродвигателя, может осуществляться бензиновыми двигателями внутреннего сгорания. Одноступенчатые насосные установки могут быть оборудованы насосами консольного типа - типа К (рис. 42) с приводом от электродвигателя через соединительную муфту, предназначенными для подачи чистой воды и других малоагрессивных жидкостей.
Насос типа К состоит из корпуса 2, крышки 1 корпуса, рабочего колеса 4, узла уплотнения вала и опорной стойки. Крышка корпуса отлита за одно целое со всасывающим патрубком насоса. Рабочее колесо закрытого типа закреплено на валу 9 насоса с помощью шпонки и гайки 5. У насосов мощностью до 10 кВт рабочие колеса неразгруженные, а у насосов мощностью 10 кВт и выше разгруженные от осевых усилий. Разгрузка осуществляется через разгрузочные отверстия в заднем диске рабочего колеса и уплотнительный поясок на рабочем колесе со стороны узла уплотнения. Благодаря разгрузке снижается давление перед узлом уплотнения вала насоса. Для увеличения ресурса работы насоса корпус (только у насосов мощностью 10 кВт и выше) и сменные корпуса (у всех насосов) защищены сменными уплотняющими кольцами 3. Небольшой зазор (0,3-0,5 мм) между уплотняющим кольцом и уплотнительным пояском рабочего колеса препятствует перетоку перекачиваемой насосом жидкости из области высокого давления в область низкого давления, благодаря чему обеспечивается высокий КПД насоса. Для уплотнения вала насоса применяют мягкий набивной сальник. Для повышения ресурса работы насоса и предотвращения износа вала в зоне узла уплотнения на вал надета сменная защитная втулка 7. Набивка сальника 6 поджимается крышкой сальника 8. Опорная стойка представляет собой опорный кронштейн 10, в котором в шарикоподшипниках 11 установлен вал насоса. Шарикоподшипники закрыты крышками. Смазка шарикоподшипников консистентная. Рабочие колеса одностороннего всасывания подвержены воздействию осевой силы, которая направлена в сторону входа жидкости в рабочее колесо. Если в одноступенчатых насосах одностороннего всасывания осевая сила может быть надежно воспринята упорным подшипником, то это будет самым экономичным решением. В противном случае необходимо принять меры для уменьшения осевой силы, действующей на упорный подшипник. Это уменьшение может быть достигнуто только при понижении КПД насоса. Одноступенчатые насосы имеют ограниченный напор. Поэтому когда необходимый напор насоса не может быть создан достаточно экономично одним рабочим колесом, в конструкции многоступенчатого насоса применяют ряд последовательно расположенных колес. Задача уравновешивания осевых сил для многоступенчатых насосов является особенно важной из-за более высоких напоров этих насосов и суммирования осевых сил, действующих на отдельные ступени. Одним из способов уравновешивания осевых сил многоступенчатых насосов является применение самоустанавливающейся гидравлической пяты. Принцип работы этой пяты состоит в следующем. Все рабочие колеса расположены так, что поток при входе в них направлен в одну и ту же сторону. За колесом последней ступени находится разгрузочная камера, сообщаемая через патрубок с полостью всасывания, находящейся перед первым колесом. Осевая сила стремится переместить ротор, а следовательно, и гидравлическую пяту в сторону всасывающего патрубка. При этом осевой зазор между гидравлической пятой и торцом втулки уменьшится, вследствие чего уменьшится давление в разгрузочной камере. Тогда под действием полного давления пята начнет перемещаться в обратную сторону до тех пор, пока не наступит равновесие сил, действующих на гидравлическую пяту. В ряде случаев для разгрузки насосов от осевого усилия используются многоступенчатые насосы со встречным расположением колес. Жидкость поступает из первой ступени во вторую по внутреннему каналу. Разъем корпуса продольный. Напорный и всасывающий трубопроводы присоединены к нижней части корпуса, что облегчает осмотр и ремонт насоса. Уплотняющие зазоры рабочих колес выполнены между сменными уплотняющими кольцами, защищающими корпус и рабочие колеса от износа. Фиксация ротора в осевом направлении осуществляется радиально-упорными шарикоподшипниками, расположенными в правом подшипнике. Расположенный со стороны всасывания сальник имеет кольцо гидравлического затвора, к которому жидкость подводится по трубке, идущей из отвода первой ступени. Сальник, расположенный справа, уплотняет подвод второй ступени. Жидкость подводится под напором, создаваемым отводом первой ступени. В теплоэнергетике для обеспечения энергетического цикла используют более 20 различных видов насосов. Насосное оборудование теплоэлектростанций среди вспомогательного оборудования занимает первое место. Если в качестве основного признака принять назначение насоса, то насосы можно разделить на две группы: 1) тесно связанные с работой основного эксплуатационного оборудования ТЭС; 2) разного назначения, предназначенные для технических целей. К первой группе насосов относятся те, которые заняты на следующих основных циклах работы: циркуляции воды (циркуляционные и рециркуляционные насосы), приготовления питательной воды (конденсатные насосы), теплопередачи (сетевые и бойлерные насосы), регулирования (нагнетательные насосы для питания серводвигателей регуляторов паровых турбин). Ко второй группе насосов относятся дренажные, пожарные, хозяйственные и др. К наиболее ответственным насосам, непосредственно влияющим на надежность и экономичность работы электростанции, относятся питательные, конденсатные, циркуляционные, сетевые и багерные. Конденсатные насосы всех типов имеют принципиальное конструктивное исполнение. Это центробежные двухкорпусные вертикальные насосы спирального типа. Довольно часто при проектировании автоматизированных линий систем водяного отопления используют электрические насосы типа ЦВЦ, устанавливаемые прямо на трубопроводе. Центробежные водяные циркуляционные насосы являются малошумными и предназначены для обеспечения водяного отопления. Насосы представляют собой малогабаритную моноблочную конструкцию со встроенным асинхронным короткозамкнутым электродвигателем. Рабочее колесо бессальникового насоса устанавливается консольно на валу электродвигателя. Ротор двигателя с радиально-упорными подшипниками скольжения вращается непосредственно в перекачиваемой воде, которая одновременно служит смазкой для них и охлаждающей средой. Насосы устанавливаются непосредственно на трубопроводе, что существенно упрощает их монтаж и эксплуатацию и позволяет обходиться без специального фундамента. В зависимости от типоразмера насосы соединяются с трубопроводом с помощью ниппельных или фланцевых соединений. Насосы ЦВЦ используются для подачи в теплосеть воды с температурой до 100°С. Сетевые насосы предназначены для питания теплофикационных сетей. Они устанавливаются либо непосредственно на электростанции, либо на промежуточных перекачивающих насосных станциях. В зависимости от теплового режима сети насосы должны надежно работать при значительных колебаниях температуры перекачиваемой воды в широком диапазоне подач. Как правило, насос и электродвигатель устанавливаются на отдельных фундаментах. Бустерные насосы предназначены для подачи воды из деаэратора к питательным насосам турбоагрегата с давлением, необходимым для предотвращения кавитации в питательных насосах. Подбор насосов осуществляется с помощью каталогов, в которых обычно приведены сведения о назначении и области применения насосов, краткое описание конструкции, технические и графические характеристики, чертежи общих видов насосов и насосных агрегатов с указанием габаритов и присоединительных размеров. Проектным организациям рекомендуется пользоваться каталогом только при техническом проектировании. Вводится новый ГОСТ «Насосы центробежные консольные с осевым входом для воды». При рабочем проектировании за уточненными данными необходимо обращаться на заводы-изготовители. При выборе насоса следует учитывать, что требуемые режимы работы (подача и напор) должны находиться в пределах рабочей области его характеристики. Для иллюстрации рассмотрим метод подбора насосов типа К. Типоразмер насоса выбирают по максимально необходимой подаче и сопротивлению системы, в которую устанавливают насос, при этой подаче. По подаче и напору на сводном графике полей Q-H предварительно выбирают насос требуемого типоразмера, а затем по графической характеристике уточняют правильность выбора. По графической характеристике и таблице «Техническая характеристика» определяют необходимый диаметр рабочего колеса насоса, кривая напора которого должна проходить через точку заданных параметров по подаче и напору или быть несколько выше ее. При выборе насоса очень важно обеспечить его бескавитационную работу. Для этого необходимо убедиться, что выбранный насос по своим кавитационным качествам соответствует системе, в которую его устанавливают. Кавитационный запас системы , где - абсолютное давление, Па, на свободную поверхность жидкости в резервуаре, из которого ведется откачивание; - давление, Па, насыщенных паров перекачиваемой жидкости при рабочей температуре; g - удельный вес перекачиваемой жидкости, Н/м3; - суммарные потери напора, м, во всасывающем трубопроводе при максимально необходимой подаче; - геометрическая высота всасывания (геометрический подпор), м. Величина равна расстоянию по вертикали от оси вала насоса до уровня жидкости в резервуаре, из которого ее откачивают. Она имеет знак «плюс» при расположении насоса выше уровня жидкости (высота всасывания) и знак «минус» при установке насоса ниже уровня жидкости (подпор). Допускаемый кавитационный запас насоса и мощность насоса определяют по графической характеристике насоса выбранного типоразмера при максимально необходимой подаче. Насосы типа К в зависимости от диаметра рабочего колеса комплектуют различными по мощности электродвигателями. Мощность требуемого электродвигателя определяют из равенства: , где k - коэффициент запаса; N - мощность насоса на номинальном режиме (в расчетной точке), кВт. Коэффициент запаса рекомендуется принимать следующим: k 1,3 1,25 1,2 1,15 , кВт до 4 4-20 20-40 <40 По назначению подбирают ближайший больший по мощности комплектующий электродвигатель.
Центробежные компрессоры
В центробежных компрессорах (турбокомпрессорах) давление газа повышается при непрерывном его движении через проточную часть машины в результате работы, которую совершают лопатки рабочего колеса компрессора. Центробежные компрессоры применяются для сжатия газов до давления 0,8 МПа (8 ат). По сравнению с поршневыми центробежные компрессоры имеют ряд преимуществ. Вследствие отсутствия возвратно-поступательного движения частей они не требуют тяжелого фундамента; ротор их вращается с постоянной угловой скоростью, а движущиеся детали соприкасаются с неподвижными деталями только в подшипниках, что позволяет использовать более дешевые быстроходные двигатели. Центробежные компрессоры более компактны. Основной недостаток центробежных компрессоров по сравнению с поршневыми заключается в том, что степень повышения давления в одной ступени компрессора зависит от физических свойств газа, в первую очередь от его плотности. При сжатии легких газов до значительных давлений требуется большое число ступеней. Поэтому для обеспечения требуемой жесткости вала необходимо иметь многокорпусную машину. Центробежные компрессоры, как правило, представляют собой многоступенчатую машину. На рис. 43 показана в разрезе ступень центробежного компрессора. Находящемуся между лопатками газу при вращении рабочего колеса сообщается вращательное движение, в результате чего газ под действием центробежной силы движется к периферии колеса. Затем газ попадает в диффузор, площадь которого увеличивается с увеличением радиуса, скорость частичек газа при этом снижается, а давление возрастает. Для повышения эффективности работы диффузора по превращению кинетической энергии в потенциальную служат диффузорные лопатки, упорядочивающие движение газа. При вращении рабочего колеса в зонах, расположенных у оси вращения, давление газа становится меньше, чем во всасывающем трубопроводе, вследствие чего образуется непрерывный поток газа через проточную часть колеса и диффузор. При работе одного колеса и диффузора, образующих ступень центробежного компрессора, где происходит одноступенчатое сжатие газа, степень сжатия невелика и составляет не более 1,2. Для получения высокой степени сжатия газа e используют несколько ступеней компрессора. Конструктивно это обеспечивается установкой на одном валу нескольких рабочих колес, располагаемых в одном корпусе. В этом случае газ поступает в следующую ступень по каналам, образованным лопатками направляющего аппарата. Общая степень сжатия центробежного компрессора определяется степенью сжатия его отдельных ступеней и определяется отношением давления на выходе из компрессора к давлению на входе. Известно, что при сжатии газ нагревается, поэтому при использовании многоступенчатых компрессоров необходимо решить проблему охлаждения. Существуют два способа охлаждения: внутренний и внешний. При внешнем охлаждении газ, прежде чем попадает в следующую ступень, проходит через холодильник, а при внутреннем охлаждении корпус холодильника имеет «рубашку», через которую прокачивается охлаждающаяся вода. Обычно корпус холодильника представляет собой органически связанную с кожухом турбокомпрессора часть конструкции. Большинство современных машин имеет внешнее охлаждение. Промежуточные холодильники присоединяются либо к нижней части корпуса компрессора, либо к обеим частям корпуса. Охлаждаемый газ протекает в межтрубном пространстве холодильника, а в трубах протекает охлаждающая вода. По сравнению с внутренним охлаждением компрессоров основным преимуществом внешнего охлаждения является более интенсивное охлаждение газа, так как площадь поверхности охлаждения промежуточного холодильника значительно больше, чем у водяной рубашки. Наиболее простыми по конструкции являются одноступенчатые центробежные компрессоры, на которых холодильники не монтируются. Одной из основных частей центробежных компрессоров с внешним охлаждением являются компрессоры, сжимающие воздух для пневматического оборудования и инструментов. Давление нагнетания в этих машинах составляет 0,6-0,9 МПа. В воздушном центробежном компрессоре подачей 5,5 м3/ч и давлением нагнетания 0,8 МПа воздух отводится в промежуточные холодильники, установленные после второй и четвертой ступеней через асимметричные спиральные отводы. Промежуточные холодильники расположены с одной стороны компрессора. При эксплуатации центробежных компрессоров часто возникает необходимость изменения их подачи в весьма широких пределах. Помимо этих требований необходимо обеспечивать также определенную зависимость между давлением и подачей. Так, например, для работы пневматических инструментов необходимо поддерживать в сети определенное давление независимо от изменения подачи. Для компрессоров, нагнетающих воздух в доменные печи, требуется поддержание заданной подачи при изменении давления, которое зависит от сопротивления слоя шихты в печи, толщина которого изменяется в зависимости от хода технологического процесса. Регулирование центробежного компрессора по существу является изменением положения рабочей точки. Это изменение можно осуществлять изменением либо характеристики компрессора, либо характеристики сети.
Наиболее распространенными способами регулирования работы компрессоров являются: изменение частоты вращения ротора, изменение проточной части и дросселирование. Если посмотреть на напорную характеристику 4 центробежного компрессора (рис. 44), то можно увидеть, что с уменьшением подач и происходит постепенное сжатие газа до давления . Дальнейшее уменьшение подачи приводит к уменьшению давления. Теоретически оно должно падать вдоль пунктирной линии. На практике этого не происходит. Как только давление достигает значения , периодически происходит возврат газа из области нагнетания в область всасывания, сопровождающийся интенсивными ударами, частота которых зависит от давления сжатия, плотности газов, емкости сети и т. д. Это явление называется помпажем в компрессоре. Точка на характеристике, в которой начинается помпаж, называется границей помпажа. При большом сжатии газа при помпаже возникают такие удары, что эксплуатация турбокомпрессора становится невозможной.
При отборе потребителем небольших количеств газа, когда подача компрессора меньше критической и лежит в помпажной зоне, необходимо применять антипомпажное регулирование, сущность которого состоит в следующем. Если требуемая подача компрессора меньше , то компрессор настраивают на подачу , которая больше и лежит в устойчивой зоне. Разность расхода, равная - перепускается из линии нагнетания в линию всасывания или выбрасывается в атмосферу. Антипомпажное регулирование осуществляется только в автоматическом режиме специальными антипомпажными регуляторами. Основное отличие регулирования турбокомпрессоров от регулирования поршневых компрессоров заключается в том, что изменение давления, под влиянием которого должен переставляться регулятор, сравнительно невелико. Поэтому в большинстве случаев приходится прибегать к вспомогательным устройствам. Обычно такими вспомогательными устройствами являются либо масляные сервомоторы, либо мультипликаторы, когда регулирование связано с изменением подачи. Случаю, когда компрессор должен обеспечивать постоянное давление независимо от расхода, будет отвечать характеристика, соответствующая на рис. 44 прямой 1; а случаю, когда расход при изменяющемся давлении постоянен, - прямая 3. Помимо отмеченных основных случаев возможен и третий, когда требуется регулирование давления нагнетания в зависимости от подачи. В этом случае для поддержания определенного давления у потребителя необходимо регулировать давление газа за компрессором. Требуемая характеристика компрессора соответствует кривой 2. На практике выбор способа регулирования зависит от конструкции компрессора и типа привода. Если компрессор имеет привод с регулируемой частотой вращения, то это позволяет регулировать частоту вращения ротора компрессора. При повышении частоты вращения ротора конечное давление и мощность увеличиваются, при ее уменьшении давление и мощность снижаются. Регулирование изменением частоты вращения ротора является наиболее точным и экономичным. Для центробежных компрессоров, имеющих в качестве привода асинхронный двигатель, чаще всего применяют регулирование дросселированием газа на всасывании. При этом способе регулирования с помощью дроссельной заслонки снижается давление всасывания в компрессор, в результате чего достигается снижение давления нагнетания до требуемого значения. Давление во всасывающем трубопроводе перед дроссельной заслонкой остается постоянным. Регулирование изменениями в проточной части центробежного компрессора заключается в установке перед входом газа в рабочее колесо лопаток, снабженных механизмом поворота, и повороте лопаток диффузора. Этот способ регулирования основан на том, что если поток газа направляющими лопатками перед входом в рабочее колесо предварительно поворачивается в направлении вращения колеса, то степень сжатия будет ниже, чем при радиальном входе, и наоборот. Этот способ не получил до настоящего времени широкого распространения из-за значительного усложнения конструкции компрессора.
Осевые вентиляторы
Осевым вентилятором называется вентилятор, в котором воздух (или газ) перемещается вдоль оси рабочего колеса, вращаемого двигателем (рис. 45). Как и у радиальных вентиляторов, характеристики осевых вентиляторов показывают зависимость давления и мощности на валу и КПД от подачи. Полную характеристику обычно получают экспериментальным путем при постоянной частоте вращения рабочего колеса. Пересчет параметров работы на другие частоты вращения производится по зависимостям. Форма характеристики определяется конструкцией и аэродинамическими свойствами вентилятора. В отличие от радиальных характеристика давления осевых нагнетателей часто имеет седлообразную форму. На основе полных характеристик (рис. 46), используя формулы пересчета, получают универсальные характеристики осевых вентиляторов - индивидуальные, совмещенные и безразмерные. Безразмерные параметры (коэффициенты), характеризующие вентилятор, относятся к его внешнему диаметру или к окружной скорости на внешнем диаметре. Эти параметры меняются вдоль радиуса. Например, коэффициент давления yб изменяется обратно пропорционально радиусу. Аэродинамические схемы. Под аэродинамической схемой осевого вентилятора подразумевается совокупность признаков и параметров, однозначно характеризующих проточную часть машины: число ступеней, равное числу рабочих колес; тип схемы, зависящей от наличия аппаратов, и их расположение по отношению к рабочему колесу; относительный диаметр втулки; число лопаток колеса и аппаратов, их углы установки.
В тех случаях, когда по условиям компоновки вентилятора перед ним образуется неравномерный по сечению входа поток, входной направляющий аппарат будет уменьшать эту неравномерность и ее неблагоприятное влияние на работу вентилятора.
К многоступенчатым вентиляторам относятся также вентиляторы встречного вращения, у которых рабочие колеса вращаются в противоположных направлениях, а аппарат между ними отсутствует. Получив энергию в первом колесе, закрученный поток поступает во второе колесо, которое закручивает его в противоположном направлении, продолжая передавать ему энергию. Эти вентиляторы могут иметь входной и выходной аппараты. По назначению осевые вентиляторы делят на вентиляторы общего назначения и специальные. Вентиляторы общего назначения предназначены для перемещения чистого или мало запыленного воздуха, не содержащего взрывоопасных веществ, липкой, волокнистой и цементирующей пыли и агрессивных веществ при температуре до 40°С. Температурный предел принят из тех соображений, что при более высоких температурах значительно ухудшаются условия теплоотдачи обмоток электродвигателя, находящегося обычно в потоке перемещаемого газа. К специальным вентиляторам относят вентиляторы, не используемые в обычных системах общеобменной вентиляции гражданских и промышленных зданий. Это вентиляторы, используемые для перемещения взрывоопасных и агрессивных примесей, шахтные вентиляторы и вентиляторы тоннельной вентиляции, потолочные вентиляторы, вентиляторы градирен, вентиляторы, встроенные в технологическое оборудование, и т. д. Для перемещения взрывоопасных примесей применяют вентиляторы, выполненные из разнородных металлов: проточная часть выполнена из стали (рабочее колесо) и латуни (в корпусе имеется обечайка в зоне расположения рабочего колеса). При этом перемещаемая среда не должна иметь температуру выше 40°С, вызывать ускоренную коррозию материалов проточной части вентиляторов, содержать пыль и другие твердые примеси в количестве более 10 мг/м3, а также взрывоопасную пыль, липкие и волокнистые материалы. Шахтные осевые вентиляторы используют в системах вентиляции подземных выработок. Вентиляторы местного проветривания предназначены для установки под землей в шахтах и рудниках и служат для проветривания тупиковых выработок, а также шахтных стволов и околоствольных выработок при их проходке. К местным вентиляторам предъявляют требования взрыво-безопасности, компактности, минимальной массы, устойчивости работы в широком диапазоне расходов воздуха, простоты обслуживания и транспортабельности. Вентиляторы главного проветривания предназначены для обеспечения свежим воздухом шахт горнодобывающей промышленности. Их располагают на поверхности и они перемещают все количество воздуха, проходящего по вентиляционной сети шахты. Шахтные вентиляторные установки работают в основном на всасывание. Вентиляторы тоннельной вентиляции служат для удаления выделяющихся в процессе эксплуатации теплоты, влаги, пыли и газов, а также поддержания в транспортных тоннелях требуемых метеорологических условий и химического состава воздуха. Работа вентиляторных установок тоннельной вентиляции сопровождается поршневым воздействием транспортных средств (поездов метрополитена и железнодорожных поездов, автомобильного транспорта). Потолочные вентиляторы (фены) обычно применяют для турбулизации воздушной среды в помещениях, но иногда их используют для создания локального душирующего эффекта (в тех случаях, когда обеспечить требуемую подвижность воздуха вследствие его перемешивания невозможно). По направлению вращения лопастного колеса вентиляторы могут быть правыми и левыми. Если смотреть со стороны входа воздуха, то у вентиляторов правого вращения колесо вращается по часовой стрелке. Номер вентилятора определяет его размер, т. е. диаметр рабочего колеса, выраженный в дециметрах. Номенклатура осевых вентиляторов, выпускаемых нашей промышленностью для использования в промышленных и гражданских зданиях, довольно ограничена и включает вентиляторы типа В-06-300 (№ 4; 5; 6,3; 8; 10 и 12,5) и В-2, 3-130 (№ 8; 10 и 12,5). Из разнородных металлов выпускаются вентиляторы лишь типа В-06-300 (№ 5; 6,3; 8; 10 и 12,5). В крышной модификации выпускается осевой вентилятор с колесом Ц3-04 (№ 4; 5 и 6,3), При этом рабочее колесо вращается в горизонтальной плоскости; приводом служит вертикально расположенный электродвигатель. Номенклатура шахтных вентиляторов и вентиляторов тоннельной вентиляции довольно обширна и приведена в специальных справочных руководствах. Отличительной особенностью этих вентиляторов (по сравнению с вентиляторами общего назначения) является высокая подача. Например, вентилятор типа ВОМД-24 (осевой двухступенчатый реверсивный с диаметром рабочих колес 2400 мм), применяемый для реверсивной вентиляции метрополитена, имеет подачу: при прямом ходе - 70 000-250 000 м3/ч, при реверсивном - 60000-200000 м3/ч. В связи с осевым направлением потока непосредственное присоединение нагнетателя к трубопроводу является самым простым конструктивным решением. При входе в корпус чаще всего устанавливается очерченный плавной кривой коллектор. Если же перед нагнетателем имеется достаточно длинный трубопровод (такого же диаметра, что и корпус), то коллектор, естественно, становится ненужным. Следует заметить, что при очень длинных трубопроводах ( >5d) наличие пограничного слоя на стенках трубы может привести к значительному вытягиванию профиля скоростей и нарушению работы нагнетателя. В связи с этим желательно цилиндрические участки на подводах к нагнетателю делать больших, чем у нагнетателя, диаметров. Для вентиляторных установок, работающих на всасывание, присоединительными элементами к сети могут быть: - входная коробка или входное колено для присоединения вентилятора к каналу, идущему от устья вентиляционной шахты; - выходная часть, состоящая из примыкающего к вентилятору диффузора и поворотного участка за ним. Иногда за диффузором устанавливается шумоглушитель. Насосы с диаметром лопастей более 1 м имеют подвод в виде колена, небольшие насосы - камерный подвод. При построении эффективной рабочей характеристики нагнетателя следует учитывать наличие различных колен и коробок, с помощью которых нагнетатель присоединяется к сети. В зависимости от схемы вентиляторов, угла установки лопастей их рабочих колес и относительного диаметра втулки их характеристики могут иметь различную форму (рис. 47). При малых углах установки лопастей (10-15°) характеристики давления обычно монотонны (кривая 1).
При увеличении угла установки характерно появление максимума давления и седловины (кривая 2), отчего вся характеристика делится на левую - нерабочую и правую - рабочую ветви. При работе на левой ветви могут образовываться вращающиеся срывные зоны, угловая скорость которых отличается от скорости вращения рабочего колеса, что приводит к возникновению переменных нагрузок на лопасти и вибрации. При еще больших углах установки происходит разрыв характеристики давления (кривая 3). Если на характеристике имеется глубокая седловина или разрыв, то режим работы при соответствующих подачах становится неустойчивым и возникает вероятность помпажных явлений, связанных с сильными колебаниями подачи и давления, что в некоторых случаях может вывести вентилятор из строя. При использовании нагнетателей, имеющих характеристику с разрывом, наименьшая допустимая подача обусловливается положением точки разрыва, в то время как наибольшая - выбирается из условия обеспечения минимально допустимого значения КПД. Это обстоятельство приводит к уменьшению диапазона подач, который возможен для данного вентилятора. Работа вентилятора в области, расположенной правее максимума давления, исключает опасность как появления вращающихся срывных зон, так и возникновения помпажа. В условиях эксплуатации часто требуется, чтобы установка обеспечивала такой диапазон режимов работы, который невозможно получить с помощью характеристики, соответствующей фиксированным углам установки лопастей вентилятора и принятой частоте вращения рабочего колеса. В этих условиях выполняется регулирование вентилятора одним из следующих способов: 1) изменение частоты вращения лопастного колеса; 2) поворот лопастей рабочего колеса; 3) поворот лопаток входного направляющего аппарата; 4) дросселирование. Последний способ регулирования, как и для радиальных вентиляторов, самый неэкономичный, так как затраты мощности мало изменяются при уменьшении подачи. Применение способа регулирования поворотом лопастей рабочего колеса определяется двумя факторами: безопасностью работы и экономичностью (при параллельном включении учитывается также устойчивость работы). Осевые вентиляторы с поворотными лопастями колес обладают способностью значительной (до 50 %) регулировки подачи, с сохранением при этом оптимального значения КПД. Однако при этом способе регулирования требуется вентилятор особой конструкции, позволяющей изменять в известных пределах угол установки лопастей его рабочего колеса. Практически изменение угла поворота происходит в диапазоне от 15 до 45°. Регулирование изменением частоты вращения лопастного колеса, хотя и является самым экономичным способом регулирования, применяется очень редко из-за сложности практического осуществления приводного устройства. Наиболее рациональный способ регулирования в каждом конкретном случае выбирается с учетом всех показателей. 3.7. Осевые насосы
Современная тепловая электростанция потребляет большое количество воды, подаваемой циркуляционными насосами и используемой для охлаждения оборудования и других технических целей. Широкое применение получили осевые насосы. В осевых насосах рабочее колесо выполняется, как правило, погружного типа, т. е. располагается ниже уровня жидкости в приемном резервуаре, а приводной двигатель устанавливается выше этого уровня для исключения его затопления. Поэтому чаще всего осевые насосы бывают вертикального исполнения.
На рис. 48 приведена схема рабочего органа осевого насоса. В корпусе 1, представляющем собой проточную часть насоса, находится рабочее колесо, состоящее из ступицы 2 с установленными на ней лопастями 3. Число лопастей осевого насоса обычно не превышает шести. Энергия движущейся жидкости в рабочем колесе насоса передается по тому же принципу, что и у центробежного. Осевые насосы могут быть жестколопастными, в которых лопасти рабочего колеса жестко закреплены относительно ступицы и угол их установки не может быть изменен, и поворотно-лопастными, в которых положение лопастей может регулироваться. Проходя через рабочее колесо, жидкость участвует одновременно в двух движениях: переносном (вращательном) и относительном (поступательном). Для установления вращения жидкости в рабочем колесе с целью уменьшения ее напора за вращающимся рабочим колесом устанавливают неподвижный вращающийся аппарат 4, состоящий из ряда лопастей. Ступица рабочего колеса насажена на вал 5, соединенный с электродвигателем. Из проточной части насоса жидкость попадает в напорный трубопровод. Коэффициент удельной быстроходности осевых насосов >600, т. е. это насос, обладающий большой подачей и малым напором. Достоинством этих насосов является простота и компактность конструкции, а также возможность перекачивания загрязненных жидкостей. В осевом насосе жидкость движется в осевом направлении вдоль цилиндрических поверхностей. Следовательно, радиусы входа и выхода жидкости из рабочего колеса одинаковы: . Для ориентировочных подсчетов напор, развиваемый осевым насосом, можно определить по выражению H=(1/ )( /2g), где - коэффициент напора, равный 0,0244 ; u - окружная скорость на внешнем диаметре рабочего колеса. Теоретическую подачу осевого насоса можно определить по формуле , где Q - внешний диаметр рабочего колеса; d - диаметр ступицы (может быть принят равным 0,5D); - осевая скорость. Коэффициент полезного действия h большинства осевых насосов равен 0,75-0,90.
Регулирование подачи жестколопастных насосов производится изменением частоты вращения рабочего колеса а поворотно-лопастных насосов - изменением угла наклона лопастей. Регулирование подачи задвижкой невыгодно, так как связано с резким уменьшением КПД. Отечественная промышленность выпускает осевые насосы типов О и ОП. Это одноступенчатые насосы с жестким креплением лопастей (тип О) и поворотно-лопастные насосы (тип ОП), позволяющие менять угол установки лопасти во время остановки насоса. На рис. 49 приведена рабочая характеристика осевого насоса. На малых подачах кривая H=f(Q) круто падает вниз, имея характерный перегиб в точке А. В отличие от центробежных насосов мощность осевых насосов понижается при увеличении подачи и имеет наибольшее значение при подаче, равной нулю. Осевые насосы типа О служат для подачи пресной, морской и загрязненной воды температурой до 35 оС. Осевые насосы типа ОП предназначены для подачи технически чистой воды температурой до 50 оС, а также пресной и морской воды температурой до 45 оС. Осевые компрессоры
Осевые компрессоры предназначены для сжатия любых газов. Они получили широкое распространение в энергомашиностроении благодаря высокой быстроходности (и следовательно, большей компактности) и большим КПД по сравнению с турбокомпрессорами. Осевые компрессоры являются многоступенчатыми машинами, принцип работы которых состоит в следующем. Лопатки b рабочего колеса а образуют поверхность, которая, взаимодействуя во время вращения рабочего колеса с окружающим газом, перемещает его в направлении действия подъемной силы. Двигаясь поступательно, газ одновременно с колесом участвует и во вращательном движении. Для устранения вращательного движения газ проходит через направляющий аппарат, снабженный лопатками с, после чего поступает в следующую ступень или отводится в напорный патрубок. Часто перед поступлением в первую ступень потоку газа сообщают предварительную подкрутку с помощью лопаток и направляющего аппарата, установленного перед рабочим колесом.
Степень сжатия в одной ступени осевого компрессора обычно невелика и составляет e = 1,15-1,35. Поэтому для получения высокого давления компрессор имеет большое число ступеней. Сопоставление характеристик осевых и центробежных компрессоров показывает, что в осевых компрессорах с изменением подачи резче меняется КПД и степень сжатия. Диапазоны устойчивых режимов у осевых компрессоров меньше, однако в расчетных режимах осевые компрессоры позволяют получить большие КПД, чем центробежные. Регулирование осевых компрессоров может осуществляться по тем же схемам, что и турбокомпрессоров. Однако наряду с ними в осевых компрессорах возможно регулирование поворотными направляющими, а иногда и рабочими лопатками одной или нескольких ступеней. Для работы в силовых и энергетических установках осевые компрессоры применяются, как правило, в соединении с газовыми турбинами. В этом случае мощность газовой турбины расходуется частично на привод компрессора, питающего воздухом камеру сгорания, а частично передается на вал электрогенератора. На рис. 50 приведена простейшая схема установки осевого компрессора с газовой турбиной. Сжатый осевым компрессором 1 воздух подается для сжигания топлива в камеру сгорания 4, откуда смесь горячих газов и воздуха поступает в газовую турбину 5. Излишек мощности турбины через редуктор 2 передается на вал электрогенератора 3. 3.9. Диаметральные вентиляторы
Диаметральный вентилятор, схема которого приведена на рис. 14 состоит из колеса барабанного типа с загнутыми вперед лопатками и корпуса, имеющего на входе патрубок и на выходе диффузор. Известны диаметральные вентиляторы как с направляющим одно- и многолопаточным аппаратом, расположенным внутри рабочего колеса, так и без него. Оптимальной компоновочной особенностью таких вентиляторов является возможность выполнения их колес с относительной шириной, значительно превышающей ширину колес радиальных вентиляторов. Применение таких колес позволяет значительно увеличить подачу. В вентиляторах без направляющего аппарата рабочее колесо может быть выполнено в виде двух дисков, к которым приклепаны (или приварены) лопатки из листовой стали. При этом подшипники, в которых находится вал, размещены с обеих сторон корпуса, вследствие чего обеспечивается высокая жесткость всей конструкции. Это особенно важно при колесах большой ширины. При наличии направляющего аппарата рабочее колесо напоминает конструкцию рабочего колеса радиального вентилятора низкого давления с односторонним всасыванием: лопатки одним концом крепятся к диску, установленному на валу, другим - к кольцу. Направляющий аппарат, состоящий из одной или нескольких лопаток, закрепляется на боковой стенке корпуса, противоположной диску рабочего колеса. Основной отличительной особенностью диаметральных вентиляторов являются большие значения коэффициента полного давления, которые достигают 3 и более. Причиной этого, как уже отмечалось, является двукратное (диаметральное) прохождение потока через одну и ту же решетку вращающегося колеса. Высокие значения коэффициентов давления и подачи по сравнению с их значениями для вентиляторов других типов позволяют диаметральным вентиляторам иметь меньшие габариты и скорости вращения рабочего колеса. Вместе с тем весьма сложный характер течения потока внутри корпуса, приводящий к большой неравномерности поля скоростей, обусловливает значительные потери энергии. В связи с этим максимальные значения полного КПД диаметральных вентиляторов находятся в пределах 0,55-0,61. Эффект от применения направляющих аппаратов достигается главным образом за счет повышения энергоемкости вентилятора. (Под энергоемкостью в данном случае следует понимать полезно затраченную мощность вентилятора). Это происходит в результате стабилизации и ограничения вихревой зоны в заданном месте внутри корпуса, а также вследствие повышения эффективности работы «центробежной» части рабочего колеса. Серийно диаметральные вентиляторы в настоящее время не выпускаются. Разработанный А. Г. Коровкиным и др. в ЦАГИ им. Н. Е. Жуковского ряд аэродинамических схем диаметральных вентиляторов находит применение либо только в бытовой отопительно-вентиляционной технике и в малогабаритных установках кондиционирования воздуха, либо в специальных технологических устройствах или машинах. Так, в замкнутых проточных контурах, в которых давление перемещаемого газа ниже атмосферного, применяется вентилятор типа Д22-36 с так называемым профильным вихреобразователем, расположенным в корпусе с внешней стороны колеса. Маркировка диаметральных вентиляторов соответствует маркировке, установленной ГОСТом для лопастных машин. Буква Д означает диаметральный, число при Д - увеличенное в 5 раз – значение коэффициента давления при работе в режиме , а последнее число - быстроходность. Диаметральные вентиляторы обычно работают в переменных условиях, поэтому необходимо регулировать режимы их работы. Это осуществляется различными способами. Например, регулирование можно проводить путем поворота направляющего аппарата. Это обеспечивает получение у одного и того же вентиляционного агрегата больших коэффициентов давления в широком диапазоне значений коэффициента подачи. С помощью входного многолопаточного направляющего аппарата, выполненного в виде жалюзи или решеток, можно осуществлять регулирование путем дросселирования. Однако при этом способе снижение номинальной подачи, например, на 10% приводит к снижению КПД на 19%. В качестве регулирующего органа может использоваться направляющая поворотная лопатка, устанавливаемая в выходном патрубке корпуса. При этом добиваются изменения в достаточно широком диапазоне поля скоростей на выходе из вентилятора, но суммарные аэродинамические характеристики вентилятора в этом случае изменяются незначительно.
|
Последнее изменение этой страницы: 2019-04-19; Просмотров: 317; Нарушение авторского права страницы