Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Резистивное заземление нейтрали



Резистивное заземление нейтрали – это заземление нейтрали трансформатора через подобранное активное сопротивление. Данный тип заземления нейтрали применяется в сетях с небольшим емкостным током замыкания на землю напряжением 6-35кВ. Широко распространен зарубежом. Существуют низкоомное и высокоомное резистивное заземление нейтрали.

Высокоомное заземление применяется в сетях, где имеется большой резистивный ток самой сети. Ток, создаваемый в месте КЗ при высокоомном заземлении должен быть равен или больше емкостного тока сети. При таком способе заземления нейтрали обеспечивается ограничение перенапряжений и длительная работа при замыкании на землю, до нахождения места повреждения.

При низкоомном способе главными задачами стоит быстрое отключение замыкания на землю и сохранение электродвигателей от повреждения обмоток статоров. Также при низкоомном заземлении нейтрали уменьшаются перенапряжения.

Бонус =) Комбинированное заземление нейтрали

Комбинированное заземление нейтрали состоит в том, что заземление нейтрали производится через параллельно включенные дугогосящий реактор и резистор. Данный способ позволяет уменьшать перенапряжения и емкостной ток при расстройке компенсации. Этот способ применяется на воздушных линиях электропередач в труднодоступных районах.

Системы заземления нейтрали в сетях до 1 кВ

В сетях до 1 кВ используются следующие 5 стандартных типов сетей заземления нейтрали (с рисунками):

Система TN

Нейтраль источника питания глухозаземлена, а открытые проводники соединены с нейтралью источника питания через нулевые провода.

TN-C

Нулевой защитный и нулевой рабочий провода соединены в одном проводе на всем протяжении линии.

TN-S

Нулевой защитный и нулевой рабочий – разделены на всем протяжении линии

TN-C-S

Нулевой рабочий и нулевой защитный проводники соединены в одном проводе на определенном участке, начиная от источника питания

Система IT

В этой системе нейтраль источника питания изолирована от земли или заземлена через устройства или сопротивления большой величины, а открытые проводящие части заземлены.

Система TT

Здесь нейтраль источника питания глухо заземлена, а открытые проводящие части заземлены с помощью устройства заземления, которое не связано с нейтралью источника питания.

Нейтраль, заземленная через дугогасящий реактор
Она также достаточно часто применяется в России. Этот способ заземления нейтрали, как правило, находит применение в разветвленных кабельных сетях промышленных предприятий и городов. При этом способе нейтральную точку сети получают, используя специальный трансформатор (рис.2).
С точки зрения исторической последовательности возникновения этот способ заземления нейтрали является вторым. Он был предложен немецким инженером Петерсеном в 20-х годах прошлого столетия (в европейских странах дугогасящие реакторы называют по имени изобретателя «Petersen coil» – катушка Петерсена).
Достоинствами этого метода заземления нейтрали являются:

  • отсутствие необходимости в немедленном отключении первого однофазного замыкания на землю;
  • малый ток в месте повреждения (при точной компенсации – настройке дугогасящего реактора в резонанс);
  • возможность самоликвидации однофазного замыкания, возникшего на воздушной линии или ошиновке (при точной компенсации – настройке дугогасящего реактора в резонанс);
  • исключение феррорезонансных процессов, связанных с насыщением трансформаторов напряжения и неполнофазными включениями силовых трансформаторов.

Недостатками этого режима заземления нейтрали являются:

  • возникновение дуговых перенапряжений при значительной расстройке компенсации;
  • возможность возникновения многоместных повреждений при длительном существовании дугового замыкания в сети;
  • возможность перехода однофазного замыкания в двухфазное при значительной расстройке компенсации;
  • возможность значительных смещений нейтрали при недокомпенсации и возникновении неполнофазных режимов;
  • возможность значительных смещений нейтрали при резонансной настройке в воздушных сетях;
  • сложность обнаружения места повреждения;
  • опасность электропоражения персонала и посторонних лиц при длительном существовании замыкания на землю в сети;
  • сложность обеспечения правильной работы релейных защит от однофазных замыканий, так как ток поврежденного присоединения очень незначителен.

В России режим заземления нейтрали через дугогасящий реактор применяется в основном в разветвленных кабельных сетях с большими емкостными токами. Кабельная изоляция в отличие от воздушной не является самовосстанавливающейся. То есть, однажды возникнув, повреждение не устранится, даже несмотря на практически полную компенсацию (отсутствие) тока в месте повреждения. Соответственно для кабельных сетей самоликвидация однофазных замыканий как положительное свойство режима заземления нейтрали через дугогасящий реактор не существует.
При дуговом характере однофазного замыкания скважность воздействия перенапряжений на изоляцию сети ниже, чем при изолированной нейтрали, но и здесь существует возможность возникновения многоместных повреждений. В последние десятилетия сети 6-10 кВ разрослись, а мощность компенсирующих устройств на подстанциях осталась той же, соответственно значительная доля сетей среднего напряжения сейчас работает с существенной недокомпенсацией. Это ведет к исчезновению всех положительных свойств сетей с компенсированной нейтралью. Отметим дополнительно, что дугогасящий реактор компенсирует только составляющую промышленной частоты тока однофазного замыкания. При наличии в сети источников высших гармоник последние могут содержаться в токе замыкания и в некоторых случаях даже усиливаться.
Применение режима с нейтралью, заземленной через дугогасящий реактор, в таких странах, как Финляндия, Швеция, отличается от российского. В этих странах он применяется в сетях с воздушными линиями, где его применение наиболее эффективно. Кроме того, в этих странах существует значительное сопротивление грунта, состоящего в основном из скальных пород, и режим заземления нейтрали через дугогасящий реактор позволяет обнаруживать однофазные замыкания через значительные переходные сопротивления 3-5 кОм. Применение режима заземления нейтрали через дугогасящий реактор в таких странах, как Германия, Австрия, Швейцария, носит в некоторой степени традиционный характер (выше уже говорилось онемецком инженере – изобретателе этого способа). Тем не менее и в этих странах этот режим заземления нейтрали применяется в основном в сетях с воздушными линиями. В сетях среднего напряжения зарубежных промышленных предприятий используется резистивное заземление нейтрали.

Нейтраль, заземленная через резистор (высокоомный или низкоомный)
Этот режим заземления используется в России очень редко, только в некоторых сетях собственных нужд блочных электростанций и сетях газоперекачивающих компрессорных станций. В то же время, если оценивать мировую практику, то резистивное заземление нейтрали – это наиболее широко применяемый способ (см. табл. 1).

 

                     

  Рис. 1. Схема двухтрансформаторной подстанции с изолированной нейтралью. Рис. 2. Схема двухтрансформаторной подстанции с нейтралью, заземленной через дугогасящий реактор. Рис. 3. Схема двухтрансформаторной подстанции с нейтралью, заземленной через резистор. Рис. 4. Варианты включения резистора в нейтраль сети 6-10 кВ.

 

ГОСТ 13109-99 устанавливает показатели и нормы качества электрической энергии (КЭ) в электрических сетях систем электро­снабжения общего назначения переменного трехфазного и одно­фазного тока частотой 50 Гц в точках, к которым присоединяются электрические сети, находящиеся в собственности различных по­требителей, или приемники электрической энергии (точки общего присоединения - ТОП).

Этот ГОСТ устанавливает 11 основных показателей качества электроэнергии (ПКЭ):

1) отклонение частоты δf;

2) установившееся отклонение напряжения δUу;

3) размах изменения напряжения δU1

4) дозу фликера (мерцания или колебания) Рt;

5) коэффициент искажения синусоидальности кривой напряже­ния КU

6) коэффициент п-й гармонической составляющей напряжения КU(n)

7) коэффициент несимметрии напряжений по обратной последовательности К2U',

8) коэффициент несимметрии напряжений по нулевой последо­вательности К0U;

9) глубину и длительность провала напряжения δUn , ∆tn;

10) импульсное напряжение Uимп;

11) коэффициент временного перенапряжения КлерU.

При определении значений некоторых показателей КЭ исполь­зуют следующие вспомогательные параметры электрической энер­гии:

1) частоту повторения изменений напряжения FδUt

2) интервал между изменениями напряжения ∆ti, ti + 1

3) глубину провала напряжения δUn;

4) частота появления провалов напряжения Fn.

5) длительность импульса по уровню 0,5 его амплитуды ∆tимп0,5;

6) длительность временного перенапряжения ∆tпер U

Установлены два вида норм ПКЭ: нормально допустимые (норм.) и предельно допустимые (пред.)


Поделиться:



Последнее изменение этой страницы: 2019-04-20; Просмотров: 252; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь