Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Сцепление легкового автомобиля



Сцепление

Сцепление является элементом трансмиссии, непосредственно передающим крутящий момент от двигателя к последующим элементам трансмиссии посредством сил трения. Как правило, конструкция сцепления предусматривает кратковременное разъединение трансмиссии от двигателя.

Крутящий момент, принимаемый от двигателя, в сцеплении не преобразуется, но при проскальзывании ведущих и ведомых элементов происходят потери энергии двигателя на трение и нагрев деталей сцепления, т. е. снижается общий КПД трансмиссии.

В механической трансмиссии сцепление обеспечивает плавное трогание автомобиля, безударное переключение передач, предотвращает воздействие на двигатель и на трансмиссию больших динамических нагрузок, возникающих при резком изменении частоты вращения коленчатого вала двигателя или ведущих колес автомобиля.
Гаситель крутильных колебаний, присутствующий в конструкции современных сцеплений, препятствует появлению ударных и вибрационных нагрузок при работе двигателя и трансмиссии автомобиля.


Классификация сцеплений

По характеру работы различают постоянно замкнутые и постоянно разомкнутые сцепления.
Постоянно разомкнутые сцепления осуществляют связь между двигателем и трансмиссией только после достижения коленчатым валом двигателя определенной частоты вращения. Обычно включение таких сцеплений осуществляется посредством специального механизма, использующего силы инерции, возникающие при вращении деталей (см. далее центробежные сцепления).

Наиболее широкое применение в автомобильной трансмиссии нашли постоянно замкнутые сцепления, в которых при нормальном положении элементов осуществляется жесткая связь двигателя с трансмиссией.

По характеру связи между ведущими и ведомыми элементами различают следующие типы сцеплений:

· фрикционные, передающие крутящий момент во включенном состоянии за счет сил трения;

· гидравлические (гидромуфты), в которых для осуществления связи двигателя с трансмиссией используется кинетическая энергия жидкости (рис. 1, а);

· электромагнитные, работающие на принципе магнитного взаимодействия ведущих и ведомых элементов (рис. 1, б), в том числе порошковые, в которых используется сила трения, возникающая при движении порошка железа (ферронаполнителя) в магнитном поле.

Гидромуфта является разновидностью гидротрансформатора, однако она не имеет реакторного колеса, поэтому не способна увеличивать крутящий момент, принимаемый от двигателя, а лишь передает его от ведущего элемента к ведомому, при этом может трансформировать крутящий момент от нуля до максимума. Степень трансформации зависит от количества и качества масла в гидромуфте, а также от частоты вращения насосного колеса (коленчатого вала двигателя).
Гидромуфты имеют невысокий КПД – потери мощности из-за проскальзывания колес муфты при передаче максимальной мощности могут достигать 3% и даже более. Включение и выключение гидромуфты осуществляется посредством наполнения или слива масла из рабочего объема, и, поскольку этот процесс требует времени, а турбинное колесо имеет значительную инертность, чистоту и скорость выключения и включения сцепления обеспечить невозможно.
Инертность работы гидромуфты приводит к динамическим нагрузкам на трансмиссию и двигатель при переключении передач, поэтому гидромуфты обычно используют в комбинации с фрикционным сцеплением.

В электромагнитном сцеплении ток, подводимый к электромагниту, создает магнитное поле, которое заставляет его перемещаться в сторону якоря. При этом создается усилие на нажимном диске, которое тем больше, чем больше угловая скорость вращения коленчатого вала двигателя.
При переключении передач электромагнит обесточивается специальным контактором и сцепление выключается. Из электромагнитных сцеплений наиболее часто используются порошковые, так как в них силовое взаимодействие деталей значительно выше, но и они не получили широкого распространения на автомобилях.

По числу ведомых дисков фрикционные сцепления могут быть однодисковыми (рис. 2, а), двухдисковыми (рис. 2, б) или многодисковыми (с числом ведомых дисков более двух). Многодисковые сцепления применяются очень редко, когда необходимо передать очень большой крутящий момент, например, на большегрузных автомобилях.

По состоянию поверхностей трения различают сухое сцепление, у которого для создания сил трения используется сухое трение между ведущими и ведомыми элементами, и мокрое сцепление, когда для создания сил трения ведущие и ведомые диски погружены в жидкость.

Автомобили марок «ВАЗ», «ЗИЛ», «ГАЗ», оснащены сухими однодисковыми сцеплениями, а автомобили марок «Урал» и «КамАЗ» - сухими двухдисковыми сцеплениями. В планетарных коробках передач в качестве блокировочных фрикционов или тормозных фрикционов используют многодисковые мокрые сцепления.

По способу создания нажимного усилия различают:

· центробежные сцепления, в которых прижатие ведущих и ведомых элементов осуществляется за счет центробежных сил (рис. 3, а);

· сцепления с центральной пружиной, в которых прижатие ведущих и ведомых элементов осуществляется одной или несколькими винтовыми пружинами, расположенными концентрично оси вращения сцепления (рис. 3, б);

· сцепления с мембранной пружиной, в которых прижатие ведомых и ведущих дисков осуществляется посредством тарельчатой пружины специальной формы (рис. 3, в);

· сцепления с периферийными пружинами, в которых прижатие ведомых и ведущих элементов осуществляется посредством цилиндрических пружин, расположенных по перефирии (рис. 2).

Центробежные сцепления устанавливались ранее на некоторых зарубежных грузовых автомобилях и ряде отечественных автомобилей. В них нажимное усилие создается за счет центробежных сил, образуемых при вращении грузиков.
Центробежные сцепления являются нормально разомкнутыми, т. е. при малой частоте вращения вала двигателя или при неработающем двигателе такое сцепление выключено (связь между двигателем и трансмиссией прерывается).

Сцепление с центральной цилиндрической пружиной использовалось в автомобилях марки «Татра».

Сцепление с центральной конической пружиной благодаря конструкции нажимного механизма может передавать достаточно большой крутящий момент при небольших габаритных размерах. Усилие пружины передается нажимному диску через рычаги, обеспечивая его равномерное прижатие к ведомым элементам. Поскольку нажимная пружина не соприкасается с нажимным диском, она меньше нагревается и дольше сохраняет упругость.
Сцепление с центральной конической пружиной используется на некоторых марках грузовых автомобилей.

Сцепление с мембранной пружиной применяется на легковых автомобилях и грузовых автомобилях малой грузоподъемности.

По типу привода различают сцепления с механическим и гидравлическим приводами. Механический привод содержит только механические элементы. В гидравлическом приводе усилие передается с помощью гидравлической системы.

По наличию и типу усилителей привода различают сцепления:

· с пружинным усилителем (сервопружиной);

· с пневматическим усилителем, работающим с использованием сжатого воздуха;

· с вакуумным усилителем, использующим для работы разрежение во впускном трубопроводе двигателя;

· с гидравлическим усилителем, использующим для работы жидкость под давлением.







Требования, предъявляемые к сцеплению

С учетом условий работы, места в схеме передачи энергии трансмиссией автомобиля к сцеплению предъявляются следующие требования:

· надежная передача крутящего момента от двигателя к коробке передач – обеспечивается необходимым запасом момента сцепления (момента трения) на всех режимах работы двигателя, сохранением нажимного усилия в необходимых пределах в процессе эксплуатации;

· полнота включения, т. е. отсутствие пробуксовывания ведущих и ведомых элементов сцепления, обеспечивающая надежную передачу крутящего момента двигателя, - достигается в эксплуатации наличием зазора в механизме выключения и недопущения попадания смазочного материала на трущиеся поверхности;

· полнота («чистота») выключения, обеспечивающая полное разъединение двигателя и трансмиссии, - достигается заданной величиной рабочего хода подшипника выключения и соответственно рабочим ходом педали сцепления;

· плавное включение, обеспечивающее заданную интенсивность трогания автомобиля с места или после включения передачи, - достигается конструкцией сцепления, его привода и темпом отпускания педали сцепления водителем;

· предохранение трансмиссии и двигателя от перегрузок и динамических нагрузок – достигается оптимальной величиной запаса момента сцепления, установкой на нем гасителя крутильных колебаний, специальными мероприятиями в конструкции ведомых элементов;

· малый момент инерции ведомых деталей сцепления, снижающий ударные нагрузки на зубья колес при переключении передач;

  • беспечение нормального теплового режима работы и высокой износостойкости за счет интенсивного отвода теплоты с поверхностей трения и применением качественных фрикционных материалов;
  • хорошая уравновешенность с целью исключения «биений» и соответственно динамических нагрузок при работе сцепления;
  • экономичность и технологичность: малые габариты, масса, низкая стоимость, простота конструкции и удобство технического обслуживания;
  • легкость и удобство управления, возможность автоматизации процессов включения и выключения.

Фрикционные одно- и двухдисковые сцепления наиболее полно отвечают указанным требованиям и из-за простоты конструкции получили наибольшее распространение.

Фрикционные сцепления


    Сцепление фрикционного типа устанавливается на маховике и состоит из ведущих и ведомых элементов, нажимного механизма и механизма выключения.

К ведущим элементам сцепления относятся те детали и узлы, которые воспринимают крутящий момент от маховика и передают его на ведомые детали. К ним можно отнести собственно маховик, кожух сцепления и нажимной диск.

Нажимной диск должен иметь возможность перемещаться в осевом направлении при включении и выключении сцепления, и в то же время не перемещаться в тангенциальном направлении относительно кожуха и маховика. С этой целью на некоторых сцеплениях нажимной диск соединяют с кожухом с помощью упругих пластин, которые одним концом закрепляются на кожухе, другим - на нажимном диске (рис. 1, а). Передача крутящего момента может также осуществляться бобышками нажимного диска, которые входят в окна, выполненные в кожухе (рис. 1, б).

При необходимости передачи большого крутящего момента кожух вообще исключается из участия в этой работе, а нажимные диски воспринимают крутящий момент сразу от маховика с помощью шипов, которые входят в пазы, выполненные на маховике (рис. 1, в).

Недостатком этого способа передачи крутящего момента является достаточно большое трение, возникающее между боковыми поверхностями пазов и шипов при осевом перемещении нажимного диска и препятствующее выключению сцепления.

К ведомым элементам сцепления относятся ведомые диски 4 (рис. 2), воспринимающие крутящий момент от ведущих элементов и передающих его на первичный вал коробки перемены передач.

Ведомые диски при включенном сцеплении не будут проскальзывать относительно ведущих деталей, если будет выполняться условие равенства максимального момента Мс трения сцепления и максимального крутящего момента Мmax двигателя с учетом коэффициента запаса:

Мс = β×Мmax = μ×Рпр×Rср×i, (1)

где
β – коэффициент запаса сцепления;
μ – коэффициент трения между активными поверхностями ведущего и ведомого дисков;
Рпр – усилие, создаваемое нажимным устройством;
Rср – средний радиус трения (зависит от радиуса активной поверхности трения ведущего и ведомого дисков);
i – число поверхностей трения.

В зависимости от условий эксплуатации автомобиля сцепления могут выполняться с коэффициентом запаса равным 3 и более.

Из формулы (1) следует, что для передачи бόльшего крутящего момента диски должны выполняться бόльшего диаметра, а существенным фактором, обеспечивающим его работу, является коэффициент трения между активными поверхностями ведомого и ведущего дисков. Для повышения коэффициента трения на дисках крепятся фрикционные накладки, изготовленные из различных материалов, обладающих хорошими фрикционными свойствами, износоустойчивостью и термической стойкостью.
Широко применяемые ранее фрикционные накладки с добавлением 50% асбеста в настоящее время применяются редко из-за экологической вредности асбестовой пыли, попадающей в воздух при производстве накладок и при их изнашивании в результате трения.

Ведомые диски оснащаются гасителями крутильных колебаний. Источником вынужденных колебаний валов трансмиссии в основном являются неравномерная работа двигателя и ведущих колес автомобиля при движении по неровностям дороги.
При совпадении частот вынужденных колебаний и собственных колебаний трансмиссии могут возникнуть резонансные явления, вызывающие большие динамические знакопеременные нагрузки в трансмиссии, что может привести к поломке деталей и аварийной ситуации при движении автомобиля.
Поэтому в конструкции сцепления необходимо предусмотреть механизм, снижающий вероятность или полностью исключающий подобные явления.

С этой целью и применяются гасители крутильных колебаний, состоящие из нескольких цилиндрических пружин, размещенных по окружности на ведомом диске в специальной ступице на некотором расстоянии от оси вращения.
Гаситель крутильных колебаний за счет упругости пружин и сил трения поглощает часть энергии колебательных и динамических перегрузок благодаря возможности относительного перемещения ведомого и ведущего диска в тангенциальном направлении (по касательной) к оси вращения. При этом энергия колебаний и превращается в тепловую энергию сил внутреннего (в витках пружины) и внешнего трения.




Нажимным механизмом является нажимная пружина 6 (см. рис. 2). От нажимного усилия зависит максимальное значение и надежность передачи крутящего момента от ведомых элементов сцепления к ведомым.

Наибольшее распространение получили центральная мембранная пружина и периферийные цилиндрические пружины, располагаемые в один или два ряда. С целью обеспечения равномерности усилия по всей площади нажимного диска число пружин должно быть кратным количеству рычагов выключения.

Механизм выключения сцепления включает рычаги выключения сцепления 12 (рис. 2) и вилки рычагов 11. Длины плеч рычагов должны обеспечить достаточный ход нажимного диска для чистоты выключения сцепления и облегчить водителю процесс выключения. Поэтому они выполняются с передаточным числом от 4,5 до 4,85.
В некоторых конструкциях сцеплений для уменьшения износа концов рычагов к ним прикрепляют упорное кольцо, исключающее непосредственный контакт рычагов и подшипника выключения (выжимного подшипника). В сцеплениях с мембранной нажимной пружиной рычаги отсутствуют, а их функцию выполняют лепестки самой пружины.

Вилки рычагов должны иметь возможность наклоняться, т. е. совершать качательные движения, так как при перемещении рычагов изменяется их положение, и, следовательно, расстояние между опорами рычагов. С этой целью вилки рычагов закрепляются на кожухе сцепления не жестко, а через регулировочную гайку со сферической поверхностью.

Работа сцепления может проходить в трех режимах: во включенном положении, в выключенном положении и при частичном выключении-включении (при трогании автомобиля с места).

При включенном положении (рис. 2, а), когда педаль сцепления 8 отпущена, нажимные пружины 6, воздействуя на нажимной диск 2, плотно зажимают ведомый диск 4 между маховиком 3 и нажимным диском. Крутящий момент через активные поверхности трения передается от ведущих элементов на ведомые, при этом угловая скорость вращения ведущих и ведомых элементов одинакова.

При выключенном сцеплении (рис. 2, б), когда педаль 8 сцепления нажата, через привод осуществляется воздействие на подшипник выключения 7, который перемещается в сторону маховика 3 и воздействует на конец рычага 12. При этом противоположные концы рычага отодвигают нажимной диск 2 от ведомого диска 4, сжимая нажимные пружины 6. Крутящий момент с ведущих элементов на ведомые не передается, и ведомый диск сцепления не вращается.

При трогании автомобиля с места педаль 8 сцепления отпускается плавно, внутренние концы рычагов 12 перемещаются в сторону от маховика 3, а нажимной диск начинает постепенно прижиматься к ведомому диску и передавать на ведомый диск плавно возрастающий крутящий момент. Когда он станет достаточным для преодоления сил сопротивления движению автомобиля, ведомый диск начнет вращаться, и автомобиль тронется с места.

Этот режим работы сцепления является самым напряженным, поскольку он сопровождается выделением значительного количества теплоты при проскальзывании ведомого диска и динамическими нагрузками при резком отпускании педали сцепления. В этом режиме имеет место максимальный износ рабочих поверхностей фрикционных накладок.

Полнота выключения сцепления обеспечивается наличием свободного хода педали, который определяется зазором между рычагами 12 выключения и подшипником выключения 7. В процессе эксплуатации из-за изнашивания фрикционных накладок этот зазор уменьшается. Уменьшается и величина свободного хода педали сцепления. Это может привести к пробуксовыванию сцепления во включенном состоянии.
Зазор восстанавливают соответствующими регулировками в приводе сцепления, но не изменением положения рычагов выключения сцепления.

Полнота выключения сцепления обеспечивается рабочим ходом педали сцепления (70…140 мм). В двухдисковых сцеплениях предусматриваются специальные устройства для принудительного отведения среднего нажимного диска и установки его в промежуточное положение относительно маховика и нажимного диска.

На некоторых сцеплениях легковых автомобилей зазор между рычагами и подшипником выключения сцепления отсутствует (подшипник все время прижат к рычагам и вращается вместе с ними). Это позволяет исключить ударные нагрузки на подшипник при выключении сцепления и продлить срок его службы. В этом случае полнота включения и выключения сцепления обеспечивается полным ходом педали.

Наглядно с работой фрикционного сцепления можно ознакомиться, посмотрев размещенный внизу страницы видеоролик. Здесь же рассказывается о взаимодействии сцепления с другими агрегатами трансмиссии и о том, как правильно управлять фрикционным сцеплением.














Однодисковые сцепления


    Однодисковые сцепления получили наибольшее применение вследствие простоты конструкции, незначительного момента инерции ведомых деталей, лучшего теплоотвода и полноты выключения.

Конструкцию однодисковых сцеплений и особенности их работы рассмотрим на примере сухого однодискового сцепления автомобилей марки «ВАЗ» и «ЗИЛ».


Двухдисковые сцепления


    Фрикционные сцепления способны передавать крутящий момент лишь в том случае, когда он меньше момента сил трения между ведущими и ведомыми дисками. Эти силы, в свою очередь, зависят от нажимного усилия, коэффициента трения между трущимися поверхностями и площади трущихся поверхностей.

Очевидно, что при увеличении поверхности трения ведомых дисков пропорционально увеличивается передаваемый крутящий момент.

Увеличение поверхности трения в фрикционных сцеплениях возможно двумя способами – увеличением диметров ведомого и ведущего дисков, либо применением нескольких ведомых дисков, расположенных последовательно. Увеличение диаметра дисков приводит к существенному увеличению габаритных размеров сцепления, что не всегда удовлетворяет требованиям компактности силового агрегата.
Кроме того, при увеличении диаметра вращающихся элементов сцепления неизбежно возрастают действующие на них центробежные силы, величина которых пропорциональна диаметрам дисков.
При этом если диск недостаточно сбалансирован (а идеальную балансировку такого сложного узла произвести невозможно), возрастают вибрационные и переменные динамические нагрузки, пагубно влияющие на работу трансмиссии и двигателя. По этим причинам в конструкциях сцеплений, передающих значительный крутящий момент, применяют двухдисковые сцепления.
Как правило, такими сцеплениями оборудуются силовые агрегаты грузовых автомобилей повышенной грузоподъемности, например, автомобилей марки «КамАЗ».

На автомобилях марки «КамАЗ» применяется сухое двухдисковое фрикционное сцепление с периферийным расположением пружин (рис. 1).

Сцепление установлено в картере, изготовленном из алюминиевого сплава. Ведущие части сцепления смонтированы на маховике 1 двигателя, который крепится к коленчатому валу на двух штифтах и шести болтах.
Кожух сцепления стальной, штампованный, устанавливается на маховике на двух трубчатых штифтах и двенадцати болтах.
Нажимной 11 и средний (промежуточный) 12 диски установлены в пазах маховика на четырех шипах, равномерно расположенных по окружности диска. При этом одновременно обеспечивается возможность осевого перемещения среднего и нажимного дисков.

В шипах среднего нажимного диска размещен рычажный механизм 4, который автоматически регулирует положение среднего диска при включении сцепления с целью обеспечения чистоты выключения. Он представляет собой двуплечий рычаг 13, установленный на оси на закрученной пружине. Одним концом рычаг упирается в нажимной диск 11, а другим концом – в маховик 1.

При включении сцепления пружина, раскручиваясь, поворачивает рычаг вокруг оси и отодвигает средний нажимной диск на одинаковое расстояние от маховика и нажимного диска.

Стальные ведомые диски 3 с приклепанными к ним фрикционными накладками оснащены гасителем 2 крутильных колебаний и с помощью ступицы устанавливаются на шлицах первичного вала коробки передач.

Нажимное усилие создают двенадцать цилиндрических пружин 10, устанавливаемых между кожухом и нажимным диском по окружности.
Суммарное усилие, создаваемое нажимным механизмом, 12200 Н. Для преодоления этого усилия при выключении сцепления в приводе управления сцеплением автомобилей марки «КамАЗ» устанавливается пневматический усилитель.

Механизм выключения состоит из шести рычагов 5, соединенных наружными концами через игольчатые подшипники с нажимным диском 11, а в средней части – с опорными вилками. Вилки устанавливаются в кожухе 9 на гайках со сферическими поверхностями, которые позволяют им наклоняться при перемещении рычагов.
На внутренних концах рычагов с помощью специальной пружины крепится упорное кольцо 8, позволяющее исключить изнашивание поверхностей рычагов, возникающее от контакта с подшипником выключения 6 муфты 7 при выключении сцепления.









Привод сцепления


    Привод сцепления служит для дистанционного управления сцеплением. Наибольшее распространение получили механический и гидравлический приводы.

Применение на автомобиле того или иного привода определяется типом сцепления, компоновкой автомобиля и рядом требований по обеспечению легкости и удобства управления.
Так, полный ход педали сцеплении не должен превышать 190 мм, а усилие на педали – 150 Н для легкового автомобиля и 250 Н для грузового автомобиля. Поэтому общее передаточное число в существующих конструкциях привода сцепления находится в пределах от 25 до 50.
В случае, если для обеспечения работы сцепления необходимо более высокое передаточное число, применяют усилители разных типов.




Усилители привода сцеплений


    Усилители привода сцепления вводятся в привод, если требуемое для выключения сцепления усилие на педали превышает 150 Н для легковых автомобилей и 250 Н для грузовых автомобилей. Их назначение – облегчить работу водителю по управлению сцеплением автомобиля при переключении передач либо при необходимости удержания сцепления в выключенном состоянии для временного разъединения трансмиссии от двигателя (например, при кратковременном движении накатом).
Наиболее часто в конструкциях автомобильных трансмиссий применяют механические и пневматические (пневмогидравлические) усилители сцепления.
Электрические усилители привода сцепления в настоящее время применения не нашли.




Сцепление

Сцепление является элементом трансмиссии, непосредственно передающим крутящий момент от двигателя к последующим элементам трансмиссии посредством сил трения. Как правило, конструкция сцепления предусматривает кратковременное разъединение трансмиссии от двигателя.

Крутящий момент, принимаемый от двигателя, в сцеплении не преобразуется, но при проскальзывании ведущих и ведомых элементов происходят потери энергии двигателя на трение и нагрев деталей сцепления, т. е. снижается общий КПД трансмиссии.

В механической трансмиссии сцепление обеспечивает плавное трогание автомобиля, безударное переключение передач, предотвращает воздействие на двигатель и на трансмиссию больших динамических нагрузок, возникающих при резком изменении частоты вращения коленчатого вала двигателя или ведущих колес автомобиля.
Гаситель крутильных колебаний, присутствующий в конструкции современных сцеплений, препятствует появлению ударных и вибрационных нагрузок при работе двигателя и трансмиссии автомобиля.


Классификация сцеплений

По характеру работы различают постоянно замкнутые и постоянно разомкнутые сцепления.
Постоянно разомкнутые сцепления осуществляют связь между двигателем и трансмиссией только после достижения коленчатым валом двигателя определенной частоты вращения. Обычно включение таких сцеплений осуществляется посредством специального механизма, использующего силы инерции, возникающие при вращении деталей (см. далее центробежные сцепления).

Наиболее широкое применение в автомобильной трансмиссии нашли постоянно замкнутые сцепления, в которых при нормальном положении элементов осуществляется жесткая связь двигателя с трансмиссией.

По характеру связи между ведущими и ведомыми элементами различают следующие типы сцеплений:

· фрикционные, передающие крутящий момент во включенном состоянии за счет сил трения;

· гидравлические (гидромуфты), в которых для осуществления связи двигателя с трансмиссией используется кинетическая энергия жидкости (рис. 1, а);

· электромагнитные, работающие на принципе магнитного взаимодействия ведущих и ведомых элементов (рис. 1, б), в том числе порошковые, в которых используется сила трения, возникающая при движении порошка железа (ферронаполнителя) в магнитном поле.

Гидромуфта является разновидностью гидротрансформатора, однако она не имеет реакторного колеса, поэтому не способна увеличивать крутящий момент, принимаемый от двигателя, а лишь передает его от ведущего элемента к ведомому, при этом может трансформировать крутящий момент от нуля до максимума. Степень трансформации зависит от количества и качества масла в гидромуфте, а также от частоты вращения насосного колеса (коленчатого вала двигателя).
Гидромуфты имеют невысокий КПД – потери мощности из-за проскальзывания колес муфты при передаче максимальной мощности могут достигать 3% и даже более. Включение и выключение гидромуфты осуществляется посредством наполнения или слива масла из рабочего объема, и, поскольку этот процесс требует времени, а турбинное колесо имеет значительную инертность, чистоту и скорость выключения и включения сцепления обеспечить невозможно.
Инертность работы гидромуфты приводит к динамическим нагрузкам на трансмиссию и двигатель при переключении передач, поэтому гидромуфты обычно используют в комбинации с фрикционным сцеплением.

В электромагнитном сцеплении ток, подводимый к электромагниту, создает магнитное поле, которое заставляет его перемещаться в сторону якоря. При этом создается усилие на нажимном диске, которое тем больше, чем больше угловая скорость вращения коленчатого вала двигателя.
При переключении передач электромагнит обесточивается специальным контактором и сцепление выключается. Из электромагнитных сцеплений наиболее часто используются порошковые, так как в них силовое взаимодействие деталей значительно выше, но и они не получили широкого распространения на автомобилях.

По числу ведомых дисков фрикционные сцепления могут быть однодисковыми (рис. 2, а), двухдисковыми (рис. 2, б) или многодисковыми (с числом ведомых дисков более двух). Многодисковые сцепления применяются очень редко, когда необходимо передать очень большой крутящий момент, например, на большегрузных автомобилях.

По состоянию поверхностей трения различают сухое сцепление, у которого для создания сил трения используется сухое трение между ведущими и ведомыми элементами, и мокрое сцепление, когда для создания сил трения ведущие и ведомые диски погружены в жидкость.

Автомобили марок «ВАЗ», «ЗИЛ», «ГАЗ», оснащены сухими однодисковыми сцеплениями, а автомобили марок «Урал» и «КамАЗ» - сухими двухдисковыми сцеплениями. В планетарных коробках передач в качестве блокировочных фрикционов или тормозных фрикционов используют многодисковые мокрые сцепления.

По способу создания нажимного усилия различают:

· центробежные сцепления, в которых прижатие ведущих и ведомых элементов осуществляется за счет центробежных сил (рис. 3, а);

· сцепления с центральной пружиной, в которых прижатие ведущих и ведомых элементов осуществляется одной или несколькими винтовыми пружинами, расположенными концентрично оси вращения сцепления (рис. 3, б);

· сцепления с мембранной пружиной, в которых прижатие ведомых и ведущих дисков осуществляется посредством тарельчатой пружины специальной формы (рис. 3, в);

· сцепления с периферийными пружинами, в которых прижатие ведомых и ведущих элементов осуществляется посредством цилиндрических пружин, расположенных по перефирии (рис. 2).

Центробежные сцепления устанавливались ранее на некоторых зарубежных грузовых автомобилях и ряде отечественных автомобилей. В них нажимное усилие создается за счет центробежных сил, образуемых при вращении грузиков.
Центробежные сцепления являются нормально разомкнутыми, т. е. при малой частоте вращения вала двигателя или при неработающем двигателе такое сцепление выключено (связь между двигателем и трансмиссией прерывается).

Сцепление с центральной цилиндрической пружиной использовалось в автомобилях марки «Татра».

Сцепление с центральной конической пружиной благодаря конструкции нажимного механизма может передавать достаточно большой крутящий момент при небольших габаритных размерах. Усилие пружины передается нажимному диску через рычаги, обеспечивая его равномерное прижатие к ведомым элементам. Поскольку нажимная пружина не соприкасается с нажимным диском, она меньше нагревается и дольше сохраняет упругость.
Сцепление с центральной конической пружиной используется на некоторых марках грузовых автомобилей.

Сцепление с мембранной пружиной применяется на легковых автомобилях и грузовых автомобилях малой грузоподъемности.

По типу привода различают сцепления с механическим и гидравлическим приводами. Механический привод содержит только механические элементы. В гидравлическом приводе усилие передается с помощью гидравлической системы.

По наличию и типу усилителей привода различают сцепления:

· с пружинным усилителем (сервопружиной);

· с пневматическим усилителем, работающим с использованием сжатого воздуха;

· с вакуумным усилителем, использующим для работы разрежение во впускном трубопроводе двигателя;

· с гидравлическим усилителем, использующим для работы жидкость под давлением.







Требования, предъявляемые к сцеплению

С учетом условий работы, места в схеме передачи энергии трансмиссией автомобиля к сцеплению предъявляются следующие требования:

· надежная передача крутящего момента от двигателя к коробке передач – обеспечивается необходимым запасом момента сцепления (момента трения) на всех режимах работы двигателя, сохранением нажимного усилия в необходимых пределах в процессе эксплуатации;

· полнота включения, т. е. отсутствие пробуксовывания ведущих и ведомых элементов сцепления, обеспечивающая надежную передачу крутящего момента двигателя, - достигается в эксплуатации наличием зазора в механизме выключения и недопущения попадания смазочного материала на трущиеся поверхности;

· полнота («чистота») выключения, обеспечивающая полное разъединение двигателя и трансмиссии, - достигается заданной величиной рабочего хода подшипника выключения и соответственно рабочим ходом педали сцепления;

· плавное включение, обеспечивающее заданную интенсивность трогания автомобиля с места или после включения передачи, - достигается конструкцией сцепления, его привода и темпом отпускания педали сцепления водителем;

· предохранение трансмиссии и двигателя от перегрузок и динамических нагрузок – достигается оптимальной величиной запаса момента сцепления, установкой на нем гасителя крутильных колебаний, специальными мероприятиями в конструкции ведомых элементов;

· малый момент инерции ведомых деталей сцепления, снижающий ударные нагрузки на зубья колес при переключении передач;

  • беспечение нормального теплового режима работы и высокой износостойкости за счет интенсивного отвода теплоты с поверхностей трения и применением качественных фрикционных материалов;
  • хорошая уравновешенность с целью исключения «биений» и соответственно динамических нагрузок при работе сцепления;
  • экономичность и технологичность: малые габариты, масса, низкая стоимость, простота конструкции и удобство технического обслуживания;
  • легкость и удобство управления, возможность автоматизации процессов включения и выключения.

Фрикционные одно- и двухдисковые сцепления наиболее полно отвечают указанным требованиям и из-за простоты конструкции получили наибольшее распространение.

Фрикционные сцепления


    Сцепление фрикционного типа устанавливается на маховике и состоит из ведущих и ведомых элементов, нажимного механизма и механизма выключения.

К ведущим элементам сцепления относятся те детали и узлы, которые воспринимают крутящий момент от маховика и передают его на ведомые детали. К ним можно отнести собственно маховик, кожух сцепления и нажимной диск.

Нажимной диск должен иметь возможность перемещаться в осевом направлении при включении и выключении сцепления, и в то же время не перемещаться в тангенциальном направлении относительно кожуха и маховика. С этой целью на некоторых сцеплениях нажимной диск соединяют с кожухом с помощью упругих пластин, которые одним концом закрепляются на кожухе, другим - на нажимном диске (рис. 1, а). Передача крутящего момента может также осуществляться бобышками нажимного диска, которые входят в окна, выполненные в кожухе (рис. 1, б).

При необходимости передачи большого крутящего момента кожух вообще исключается из участия в этой работе, а нажимные диски воспринимают крутящий момент сразу от маховика с помощью шипов, которые входят в пазы, выполненные на маховике (рис. 1, в).

Недостатком этого способа передачи крутящего момента является достаточно большое трение, возникающее между боковыми поверхностями пазов и шипов при осевом перемещении нажимного диска и препятствующее выключению сцепления.

К ведомым элементам сцепления относятся ведомые диски 4 (рис. 2), воспринимающие крутящий момент от ведущих элементов и передающих его на первичный вал коробки перемены передач.

Ведомые диски при включенном сцеплении не будут проскальзывать относительно ведущих деталей, если будет выполняться условие равенства максимального момента Мс трения сцепления и максимального крутящего момента Мmax двигателя с учетом коэффициента запаса:

Мс = β×Мmax = μ×Рпр×Rср×i, (1)

где
β – коэффициент запаса сцепления;
μ – коэффициент трения между активными поверхностями ведущего и ведомого дисков;
Рпр – усилие, создаваемое нажимным устройством;
Rср – средний радиус трения (зависит от радиуса активной поверхности трения ведущего и ведомого дисков);
i – число поверхностей трения.

В зависимости от условий эксплуатации автомобиля сцепления могут выполняться с коэффициентом запаса равным 3 и более.

Из формулы (1) следует, что для передачи бόльшего крутящего момента диски должны выполняться бόльшего диаметра, а существенным фактором, обеспечивающим его работу, является коэффициент трения между активными поверхностями ведомого и ведущего дисков. Для повышения коэффициента трения на дисках крепятся фрикционные накладки, изготовленные из различных материалов, обладающих хорошими фрикционными свойствами, износоустойчивостью и термической стойкостью.
Широко применяемые ранее фрикционные накладки с добавлением 50% асбеста в настоящее время применяются редко из-за экологической вредности асбестовой пыли, попадающей в воздух при производстве накладок и при их изнашивании в результате трения.

Ведомые диски оснащаются гасителями крутильных колебаний. Источником вынужденных колебаний валов трансмиссии в основном являются неравномерная работа двигателя и ведущих колес автомобиля при движении по неровностям дороги.
При совпадении частот вынужденных колебаний и собственных колебаний трансмиссии могут возникнуть резонансные явления, вызывающие большие динамические знакопеременные нагрузки в трансмиссии, что может привести к поломке деталей и аварийной ситуации при движении автомобиля.
Поэтому в конструкции сцепления необходимо предусмотреть механизм, снижающий вероятность или полностью исключающий подобные явления.

С этой целью и применяются гасители крутильных колебаний, состоящие из нескольких цилиндрических пружин, размещенных по окружности на ведомом диске в специальной ступице на некотором расстоянии от оси вращения.
Гаситель крутильных колебаний за счет упругости пружин и сил трения поглощает часть энергии колебательных и динамических перегрузок благодаря возможности относительного перемещения ведомого и ведущего диска в тангенциальном направлении (по касательной) к оси вращения. При этом энергия колебаний и превращается в тепловую энергию сил внутреннего (в витках пружины) и внешнего трения.




Нажимным механизмом является нажимная пружина 6 (см. рис. 2). От нажимного усилия зависит максимальное значение и надежность передачи крутящего момента от ведомых элементов сцепления к ведомым.

Наибольшее распространение получили центральная мембранная пружина и периферийные цилиндрические пружины, располагаемые в один или два ряда. С целью обеспечения равномерности усилия по всей площади нажимного диска число пружин должно быть кратным количеству рычагов выключения.

Механизм выключения сцепления включает рычаги выключения сцепления 12 (рис. 2) и вилки рычагов 11. Длины плеч рычагов должны обеспечить достаточный ход нажимного диска для чистоты выключения сцепления и облегчить водителю процесс выключения. Поэтому они выполняются с передаточным числом от 4,5 до 4,85.
В некоторых конструкциях сцеплений для уменьшения износа концов рычагов к ним прикрепляют упорное кольцо, исключающее непосредственный контакт рычагов и подшипника выключения (выжимного подшипника). В сцеплениях с мембранной нажимной пружиной рычаги отсутствуют, а их функцию выполняют лепестки самой пружины.

Вилки рычагов должны иметь возможность наклоняться, т. е. совершать качательные движения, так как при перемещении рычагов изменяется их положение, и, следовательно, расстояние между опорами рычагов. С этой целью вилки рычагов закрепляются на кожухе сцепления не жестко, а через регулировочную гайку со сферической поверхностью.

Работа сцепления может проходить в трех режимах: во включенном положении, в выключенном положении и при частичном выключении-включении (при трогании автомобиля с места).

При включенном положении (рис. 2, а), когда педаль сцепления 8 отпущена, нажимные пружины 6, воздействуя на нажимной диск 2, плотно зажимают ведомый диск 4 между маховиком 3 и нажимным диском. Крутящий момент через активные поверхности трения передается от ведущих элементов на ведомые, при этом угловая скорость вращения ведущих и ведомых элементов одинакова.

При выключенном сцеплении (рис. 2, б), когда педаль 8 сцепления нажата, через привод осуществляется воздействие на подшипник выключения 7, который перемещается в сторону маховика 3 и воздействует на конец рычага 12. При этом противоположные концы рычага отодвигают нажимной диск 2 от ведомого диска 4, сжимая нажимные пружины 6. Крутящий момент с ведущих элементов на ведомые не передается, и ведомый диск сцепления не вращается.

При трогании автомобиля с места педаль 8 сцепления отпускается плавно, внутренние концы рычагов 12 перемещаются в сторону от маховика 3, а нажимной диск начинает постепенно прижиматься к ведомому диску и передавать на ведомый диск плавно возрастающий крутящий момент. Когда он станет достаточным для преодоления сил сопротивления движению автомобиля, ведомый диск начнет вращаться, и автомобиль тронется с места.

Этот режим работы сцепления является самым напряженным, поскольку он сопровождается выделением значительного количества теплоты при проскальзывании ведомого диска и динамическими нагрузками при резком отпускании педали сцепления. В этом режиме имеет место максимальный износ рабочих поверхностей фрикционных накладок.

Полнота выключения сцепления обеспечивается наличием свободного хода педали, который определяется зазором между рычагами 12 выключения и подшипником выключения 7. В процессе эксплуатации из-за изнашивания фрикционных накладок этот зазор уменьшается. Уменьшается и величина свободного хода педали сцепления. Это может привести к пробуксовыванию сцепления во включенном состоянии.
Зазор восстанавливают соответствующими регулировками в приводе сцепления, но не изменением положения рычагов выключения сцепления.

Полнота выключения сцепления обеспечивается рабочим ходом педали сцепления (70…140 мм). В двухдисковых сцеплениях предусматриваются специальные устройства для принудительного отведения среднего нажимного диска и установки его в промежуточное положение относительно маховика и нажимного диска.

На некоторых сцеплениях легковых автомобилей зазор между рычагами и подшипником выключения сцепления отсутствует (подшипник все время прижат к рычагам и вращается вместе с ними). Это позволяет исключить ударные нагрузки на подшипник при выключении сцепления и продлить срок его службы. В этом случае полнота включения и выключения сцепления обеспечивается полным ходом педали.

Наглядно с работой фрикционного сцепления можно ознакомиться, посмотрев размещенный внизу страницы видеоролик. Здесь же рассказывается о взаимодействии сцепления с другими агрегатами трансмиссии и о том, как правильно управлять фрикционным сцеплением.














Однодисковые сцепления


    Однодисковые сцепления получили наибольшее применение вследствие простоты конструкции, незначительного момента инерции ведомых деталей, лучшего теплоотвода и полноты выключения.

Конструкцию однодисковых сцеплений и особенности их работы рассмотрим на примере сухого однодискового сцепления автомобилей марки «ВАЗ» и «ЗИЛ».


Сцепление легкового автомобиля

Устройство однодискового сцепления легкового автомобиля ВАЗ-2110 представлено на рис. 1. Конструктивно оно представляет собой постоянно замкнутое, сухое сцепление с мембранной центральной нажимной пружиной и механическим приводом.

Стальной штампованный кожух сцепления 3 крепится к маховику 6 шестью болтами 4, а с нажимным диском 5 соединяется тремя парами упругих стальных пластин 18, которые обеспечивают перемещение нажимного диска в осевом направлении и передают крутящий момент с кожуха на нажимной диск.
Кожух центрируется относительно маховика с помощью штифтов.
На кожухе с внутренней стороны устанавливаются кольца 19, являющиеся опорами для мембранной пружины. На нажимном диске выполнен кольцевой выступ, на который нажимная пружина опирается своим наружным краем.

Нажимная пружина 11 выполняется методом штамповки из листовой стали и в свободном состоянии имеет форму усеченного конуса. Внутренняя часть нажимной пружины имеет радиальные прорези, которые образуют лепестки, работающие как рычаги. Давление пружины создается ее участком между опорными кольцами и наружным краем пружины.
Ведущие детали сцепления проходят статическую балансировку путем высверливания металла на нажимном диске.

Ведомый диск 7 сцепления состоит из диска с фрикционными накладками 16 и гасителя крутильных колебаний. Диск стальной, с радиальными прорезями, делящими его на сектора, отогнутые поочередно в разные стороны, что придает волнообразную форму его рабочей поверхности.

К секторам ведомого диска независимо одна от другой приклепаны фрикционные накладки 16. Головки заклепок утопают в отверстиях накладок, а их стержни расклепаны на поверхности ведомого диска. Для этого в противоположной фрикционной накладке выполнены отверстия бόльшего диаметра.
Такое крепление накладок способствует повышению плавности включения сцепления.

Ведомый диск соединяется со ступицей 15 с помощью гасителя крутильных колебаний, позволяющего смещаться ступице относительно диска в тангенциальном направлении (по касательной) за счет деформации пружин 17 гасителя.
Поглощение энергии колебаний происходит при совершении работы трения фрикционных элементов, расположенных между ведомым диском и диском, к которому приклепана ступица. Усилие, сжимающие эти диски, установлено при сборке на заводе-изготовителе.

Окна в ступице делаются одинаковыми, а в ведомом диске часть окон имеет бόльшую длину, поэтому не все пружины начинают деформироваться одновременно. Это позволяет расширить диапазон колебаний, при которых гаситель начинает эффективно работать.




Поделиться:



Последнее изменение этой страницы: 2019-04-21; Просмотров: 264; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.118 с.)
Главная | Случайная страница | Обратная связь