Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Перлитное превращение. Продукты перлитного распада аустенита и их свойства.
Механизм превращения представлен на рис. 9.5. Рис. 9.5. Механизм превращения аустенита в перлит
При образовании перлита из аустенита ведущей фазой является цементит. Зарождение центров кристаллизации цементита облегчено на границе аустенитных зерен. Образовавшаяся пластинка цементита растет, удлиняется и обедняет соседние области углеродом. Рядом с ней образуются пластинки феррита. Эти пластинки растут как по толщине, так и по длине. Рост образовавшихся колоний перлита продолжается до столкновения с кристаллами перлита, растущими из других центров. Свойства и строение продуктов превращения аустенита зависят от температуры, при которой происходит процесс его распада. Толщина соседних пластинок феррита и цементита определяет дисперсность структуры и обозначается Δ 0. Она зависит от температуры превращения. В зависимости от дисперсности продукты распада имеют различное название. Δ 0≈ (0, 5…0, 7)10-3 мм – перлит. Образуется при переохлаждении до температуры Т = 650…700 °С, или при скорости охлаждения Vохл = 30…60 °С/ч. Твердость составляет 180…250 НВ. Δ 0=0, 25·10-3 мм – сорбит Образуется при переохлаждении до температуры Т = 600…650° С, или при скорости охлаждения Vохл = 60 °С/ч. Твердость составляет 250…350 НВ. Структура характеризуется высоким пределом упругости, достаточной вязкостью и прочностью. Δ 0=0, 1·10-3 мм – троостит Образуется при переохлаждении до температуры Т = 550…600 oС, или при скорости охлаждения Vохл = 150 oС/ч. Твердость составляет 350…450 НВ. Структура характеризуется высоким пределом упругости, малой вязкостью и пластичностью. Твердость ферритно-цементитной смеси прямопропорциональна площади поверхности раздела между ферритом и цементитом. Если температура нагрева незначительно превышала температуру А и полученный аустенит неоднороден по составу, то при малой степени переохлаждения образуется зернистый перлит.
3. Мартенситное превращение и его особенности. Мартенсит пластинчатый и реечный, его строение и свойства. Данное превращение имеет место при высоких скоростях охлаждения, когда диффузионные процессы подавляются. Сопровождается полиморфным превращением Fegв Fea При охлаждении стали со скоростью, большей критической (V > Vк), превращение начинается при температуре начала мартенситного превращения (Мн) и заканчивается при температуре окончания мартенситного превращения (Мк). В результате такого превращения аустенита образуется продукт закалки – мартенсит. Минимальная скорость охлаждения VК, при которой весь аустенит переохлаждается до температуры т. Мн и превращается, называется критической скоростью закалки. Так как процесс диффузии не происходит, то весь углерод аустенита остается в решетке Feα и располагается либо в центрах тетраэдров, либо в середине длинных ребер (рис. 9.6). Мартенсит – пересыщенный твердый раствор внедрения углерода в Fea. При образовании мартенсита кубическая решетка Fea сильно искажается, превращаясь в тетрагональную (рис. 9.6 а). Искажение решетки характеризуется степенью тетрагональности: с/а > 1. Степень тетрагональности прямопропорциональна содержанию углерода в стали (рис. 9.6 б). Рис. 9.6. Кристаллическая решетка мартенсита (а); влияние содержания углерода на параметры а и с решетки мартенсита (б)
Механизм мартенситного превращения имеет ряд особенностей. 1. Бездиффузионный характер. Превращение осуществляется по сдвиговому механизму. В начале превращения имеется непрерывный переход от решетки аустенита к решетке мартенсита (когерентная связь). При превращении гранецентрированной кубической решетки в объемно-центрированную кубическую атомы смещаются на расстояния меньше межатомных, т.е. нет необходимости в самодиффузии атомов железа. 2. Ориентированность кристаллов мартенсита. Кристаллы имеют форму пластин, сужающихся к концу, под микроскопом такая структура выглядит как игольчатая. Образуясь мгновенно пластины растут либо до границы зерна аустенита, либо до дефекта. Следующие пластины расположены к первым под углами 60° или 120°, их размеры ограничены участками между первыми пластинами (рис. 9.7). Рис. 9.7. Ориентированность кристаллов мартенсита
Ориентированный (когерентный) рост кристаллов мартенсита обеспечивает минимальную поверхностную энергию. При когерентном росте, из-за различия объемов аустенита и мартенсита, возникают большие напряжения. При достижении определенной величины кристаллов мартенсита, эти напряжения становятся равными пределу текучести аустенита. В результате этого нарушается когерентность и происходит отрыв решетки мартенсита от решетки аустенита. Рост кристаллов прекращается. 3. Очень высокая скорость роста кристалла, до 1000 м/с. 4. Мартенситное превращение происходит только при непрерывном охлаждении. Для каждой стали начинается и заканчивается при определенной температуре, независимо от скорости охлаждения. Температуру начала мартенситного превращения называют мартенситной точкой МН, а температуру окончания превращения – МК. Температуры МН и МК зависят от содержания углерода и не зависят от скорости охлаждения. Для сталей с содержанием углерода выше 0, 6 % МК уходит в область отрицательных температур (рис.9.8) Рис. 9.8. Зависимость температур начала (МН) и конца (МК)мартенситного превращения от содержания углерода в стали
Мартенситное превращение чувствительно к напряжениям, и деформация аустенита может вызвать превращение даже при температурах выше МН. В сталях с МК ниже 20° С присутствует аустенит остаточный, его количество тем больше, чем ниже МН и МК.(при содержании углерода 0, 6…1, 0 % количество аустенита остаточного – 10 %, при содержании углерода 1, 5 % - до 50 %). В микроструктуре наблюдается в виде светлых полей между иглами мартенсита. 5. Превращение необратимое. Получить аустенит из мартенсита невозможно. Кристаллы мартенсита в зависимости от состава стали, а следовательно, и от температуры своего образования могут иметь различные морфологию и субструктуру. Различают два типа мартенсита — пластинчатый и реечный. Пластинчатый (игольчатый) мартенсит образуется в высокоуглеродистых сталях, характеризующихся низкой температурой мартенситной точки Мн рис. 8.8. Реечный (массивный) мартенсит — в легированных средне- и низкоуглеродистых сталях, при высоких температурах мартенситной точки Мн рис. 8.8. Свойства мартенсита обусловлены особенностями его образования. Он характеризуется высокой твердостью и низкой пластичностью, что обуславливает хрупкость. Твердость составляет до 65 HRC. Высокая твердость вызвана влиянием внедренных атомов углерода в решетку α -фазы, что вызывает ее искажение и возникновение напряжений. С повышением содержания углерода в стали возрастает склонность к хрупкому разрушению.
Промежуточное превращение При температуре ниже 550° С самодиффузия атомов железа практически не происходит, а атомы углерода обладают достаточной подвижностью. Механизм превращения состоит в том, что внутри аустенита происходит перераспределение атомов углерода и участки аустенита, обогащенные углеродом превращаются в цементит. Превращение обедненного углеродом аустенита в феррит происходит по сдвиговому механизму, путем возникновения и роста зародышей феррита. Образующиеся при этом кристаллы имеют игольчатую форму. Такая структура, состоящая из цементита и феррита, называется бейнитом. Особенностью является повышенное содержание углерода в феррите (0.1…0.2 %). Дисперсность кристаллов феррита и цементита зависят от температуры превращения. При температуре550° С, Δ 0= 0, 12·10-3 мм – верхний бейнит. Структура характеризуется недостаточной прочностью, при низких относительном удлинении (δ ) и ударной вязкости (КСU). При температуре 300° С, Δ 0= 0, 08·10-3 мм – нижний бейнит. Структура характеризуется высокой прочностью в сочетании с пластичностью и вязкостью.
|
Последнее изменение этой страницы: 2019-05-06; Просмотров: 149; Нарушение авторского права страницы