Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Физиологические реакции организма на избыток кислорода



 

В последнее время в связи с широким применением кислорода в авиации, космических полетах, в водолазном деле, при освоении морских глубин и, наконец, в лечебной практике резко возрос интерес к изучению физиологического и отравляющего действия кислорода на организм человека и животных. Изучение проблемы гипероксии наряду с решением практических задач представляет также большой теоретический интерес в общебиологическом плане.

Широко известно, что почти все живые существа, обитающие на суше, приспособились к строго определенной постоянной концентрации кислорода в атмосфере нашей планеты – 20, 9 %, которая считается адекватной средой обитания и жизнедеятельности организмов. В связи с проникновением человека в космические высоты и морские глубины возникла необходимость создавать искусственные газовые смеси, искусственную атмосферу, в которой содержание кислорода не всегда разумно поддерживать на «земном» уровне.

Продолжаются поиски допустимых и наиболее адекватных для лечения различных заболеваний концентраций кислорода как при атмосферном, так и при повышенном давлении.

Оксигенированный воздух используется не только для лечебных целей, но и для профилактики утомления, повышения работоспособности, для нормализации физиологических функций в пожилом, старческом возрасте.

В ряде случаев возникает вопрос о неадекватности постоянного, неизменного содержания кислорода в окружающей нас атмосфере, о необходимости обоснования оптимального парциального давления кислорода для различных условий жизнедеятельности человека.

Чрезмерное увеличение кислорода в среде оказывает отрицательное действие на живые организмы. Кислород, необходимый для жизни, в то же время при его избытке в среде является ядом для различных представителей животного и растительного мира. Токсичность кислорода ставит серьезные преграды для его эффективного применения, особенно в водолазной практике, при освоении морских глубин, и в оксигенобаротерапии.

Токсическое действие кислорода проявляется в виде двух классических форм отравления: легочной и судорожной. В первом случае легочные явления (отек, ателектазы и другие признаки воспаления) развиваются преимущественно при длительном вдыхании кислорода в условиях земного давления. Во втором – при давлении свыше 3 ата (атмосфера абсолютная) – действие кислорода направлено, главным образом, на центральную нервную систему, в сравнительно короткие сроки развиваются судороги – характерный признак резкого возбуждения нервных центров. В тяжелых случаях обе эти формы заканчиваются летальным исходом.

Однако токсическое действие кислорода не ограничивается этими формами, кислород влияет на весь организм, что дало основание выделить отдельную, общетоксическую форму отравления кислородом (А. Г. Жиронкин и др., 1965).

Увеличение парциального давления кислорода и длительности экспозиции усиливает степень отравления, поэтому действие кислорода на организм является хроноконцентрационным. До начала проявления признаков отравления, в латентном периоде, кислород оказывает определенное влияние на различные функции организма, которое характеризуется как физиологическое. Правда, физиологическое влияние кислорода – несколько условное понятие, поскольку оно включает начальные, малозаметные, незначительные сдвиги, которые могут рассматриваться как патологические.

С другой стороны, реакции организма на избыток кислорода, возникающие в этом периоде, рассматривают как приспособительные, компенсаторные, направленные на снижение отравляющего действия кислорода, на восстановление постоянства внутренней среды организма. Нарушение этих компенсаторных реакций приводит к развитию патологических явлений.

При постепенном нарастании концентрации кислорода и длительности экспозиции легче проследить за развитием начальных реакций организма, имеющих в своей основе приспособительное значение.

При вдыхании обогащенного кислородом воздуха или кислорода в пределах атмосферного давления в течение сравнительно короткого времени реакции дыхания, сердечно-сосудистой системы, крови направлены на ограничение доставки этого газа тканям, особенно в головном мозге. Исключение составляют легкие, непосредственно соприкасающиеся с газообразным кислородом во вдыхаемом воздухе, что делает их весьма уязвимыми при более длительных экспозициях в кислороде и приводит в конце концов к патологии.

При более высоких давлениях (в пределах до 4 ата кислорода) все указанные реакции еще более выражены. Особенно заметно сужение сосудов в головном мозге, отчетливы процессы перераспределения крови (депонирование ее в паренхиматозных органах).

Согласно данным С. Ламбертсена,  при давлениях 2, 5 ата кислорода его напряжение в концевых отделах мозговых капилляров в 5 раз меньше, чем в почке или сердце. Этот факт свидетельствует о довольно эффективной защите клеток головного мозга от избытка кислорода путем сосудистой реакции и замедления кровотока, что обеспечивает поддержание оптимального кислородного режима мозговых центров. Однако такие защитные реакции, как сужение капилляров, замедление кровотока, осложняются развитием противоположного процесса: задержкой углекислоты в тканях, которая усиливается затрудненным ее транспортом к легким венозной кровью, вследствие выключения нормальной функции гемоглобина. Гиперкапния способствует расширению сосудов и таким образом снимает защитную сосудистую реакцию на кислород.

При удлинении экспозиции в пределах давления до 4 ата кислорода развиваются признаки возбуждения вегетативной и гормональной систем, повышается кровяное давление, нарушаются системы регуляции дыхания, кровообращения и крови. В этот период может возникнуть внезапная потеря сознания без судорожных явлений. Легочная перенхима также повреждается. Наконец, при более высоких давлениях наблюдаются те же реакции, но они протекают быстрее и переходят в судорожный припадок либо в коматозное состояние.

 

Таким образом, по мере увеличения парциального давления кислорода и удлинения его действия наряду с реакциями приспособительными (1-я стадия) появляются реакции патологические (2-я стадия), которые, нарастая, приводят к типичной картине кислородного отравления.

 

Компенсаторной стадии, или латентному периоду наступления симптомов кислородного отравления, придают большое значение в повышении устойчивости к кислородному отравлению. Было обнаружено увеличение устойчивости к отравляющему действию кислорода путем прерывистых экспозиций в нем в пределах этой стадии, т. е. тогда, когда организм еще не успел пострадать от кислорода.

Несмотря на большое число исследований по изучению влияния кислорода на организм, механизм его физиологического и отравляющего действия оказался недостаточно изученным. Отставание глубокой разработки этой проблемы в теоретическом аспекте явилось причиной трудностей в решении ряда практических задач.

До настоящего времени нет четкости и окончательных критериев относительно сроков и величин безопасного дыхания кислородом для здорового человека и в использовании оксигенотерапии больного организма. Большие колебания индивидуальной чувствительности к кислороду дают основания предполагать отсутствие порогов токсического действия этого газа аналогично действию ионизирующей радиации. И кислород, и проникающая радиация являются вредящими факторами универсального действия на все живые организмы.

Адаптация организма к кислороду относительна и несовершенна по сравнению с адаптацией к гипоксии, что связывается со сравнительно молодым в эволюционном аспекте развитием антиокислительных защитных тканевых процессов, тормозящих высокий энергетический потенциал кислорода. Допустимо думать, что развитие этого механизма шло на фоне нарастающего на протяжении многих тысячелетий содержания кислорода в земной атмосфере, тогда как в основе приспособительного механизма к гипоксии лежат уже пройденные в эволюционном развитии фазы анаэробных окислительных процессов в гипоксической атмосфере.

В механизме действия кислорода на организм определенное значение имеет «молчание» рефлекторных синокаротидных зон при оксигенации артериальной крови, что сказывается на функции дыхания. Внесена некоторая ясность в понимание механизма сложного, в основном угнетающего влияния кислорода на гемопоэз красной крови.

Значительный прогресс был достигнут при изучении механизма токсического действия кислорода на легкие и центральную нервную систему.

В первом случае были получены факты, указывающие на большое значение сурфактанта и процессов поверхностного натяжения пленки альвеол легких. Однако остается не вполне ясным, что является ведущим в легочных поражениях кислородом – локальное его действие на легочную ткань, гормональное или нервно-рефлекторные механизмы.

Более определенно обозначился при высоком давлении кислорода так называемый судорожный центр, находящийся в ретикулярной формации среднего мозга; нарушение целостности этой области полностью исключает возникновение кислородных судорог. В происхождении судорог большая роль принадлежит симпатоадреналовой системе и нарушению тканевого дыхания в различных отделах головного мозга.

Различают две классические формы кислородного отравления:

легочную – при продолжительных экспозициях в кислороде и небольшом его избыточном давлении;

судорожную – при коротких экспозициях под высоким давлением кислорода.

В последнее время стали выделять третью, общетоксическую форму – преимущественно при давлениях от 1 до 4 ата, когда не успевают развиваться легочные и судорожные явления, но патологические нарушения в той или иной степени наблюдаются со стороны многих органов и тканей. Этот диапазон давлений менее всего изучен, хотя практическое значение его велико, особенно для оксигенобаротерапии.

В основе токсического действия кислорода во всех его формах лежат процессы угнетения тканевого дыхания, дыхательных ферментных систем. Из них наиболее чувствительными к кислороду оказались системы, содержащие SH-группы.

Кислородная интоксикация имеет много общих черт с уникальным действием проникающей радиации на все живые организмы. Подобно приспособлению к радиации, адаптация к кислороду относительна и несовершенна. Средства защиты против кислородного отравления и действия радиационного фактора очень близки по своему химическому составу, они в основном содержат группы антиокислителей.

Хотя арсенал защитных средств против токсического действия кислорода значительно возрос, все же существующие способы не предотвращают полностью, а лишь ослабляют это действие.

В настоящее время значительно увеличился перечень заболеваний, при которых показана оксигенотерапия и оксигенобаротерапия. Выяснилось, что эффективность применения кислорода связана с уровнем кислородного голодания организма. Наиболее хорошие результаты оксигенотерапии были получены при лечении заболеваний, в развитии которых гипоксический фактор является доминирующим.

Наряду с этим фактором представлены доказательства значительной роли нервно-рефлекторного звена в физиологическом и лечебном действии кислорода.

Поставлен вопрос об адекватности парциального давления кислорода как для лечебных целей, так и в жизнедеятельности организмов, находящихся в различных неблагоприятных условиях существования (освоение космоса и глубин, некоторые факторы производства и т. д.).

 

Гиперкапния

 

 

Гиперкапния – повышенное напряжение углекислого газа в артериальной крови и тканях организма.

 

Она может развиваться в космическом полете при повышении концентрации углекислого газа в атмосфере кабины или в гермошлеме скафандра вследствие частичного или полного нарушения работы системы удаления и поглощения углекислоты. Избыток углекислого газа в кабине может быть предусмотрен программой полета по соображениям экономии веса, уменьшения габаритов и энергоемкости системы жизнеобеспечения, а также с целью усиления регенерации кислорода, профилактики гипокапнии или для ослабления поражающего действия космической радиации.

В зависимости от вентилируемого объема скафандра и кабины, повреждения системы регенерации и количества продуцируемой экипажем углекислоты, ее концентрация во вдыхаемом воздухе может возрасти до токсического уровня (более 1 %, или 7, 5 мм рт. ст. – 1 кПа) за несколько минут или часов. В этом случае развивается состояние острой гиперкапнии. Длительное (дни, недели, месяцы) пребывание в атмосфере с умеренным содержанием углекислого газа приводит к хронической гиперкапнии.

При отказе ранцевой системы поглощения углекислоты в космическом скафандре во время интенсивной работы концентрация углекислого газа в гермошлеме достигает токсического уровня за 1–2 мин. В кабине корабля с тремя космонавтами, выполняющими обычную для них работу, это произойдет более чем через 7 ч после полного отказа системы регенерации.

Даже умеренная гиперкапния ухудшает самочувствие и общее состояние, истощает резервы основных жизненных функций организма. Поведение человека становится неадекватным, снижаются умственная, особенно физическая работоспособность, а также устойчивость организма к стрессовым факторам – перегрузкам, ортостазу, перегреванию, гипероксии, декомпрессии.

Важно, что гиперкапния в космическом полете чревата тяжелыми осложнениями и в связи с «обратным» действием углекислоты: после перехода с дыхания в гиперкапнической среде на нормальную газовую смесь, а также на воздух или кислород отмеченные нарушения в организме часто не только не ослабевают, но даже усиливаются, возможно появление новых симптомов отравления углекислотой. Такое состояние может сохраняться минуты, часы, а иногда и сутки после восстановления нормального газового состава вдыхаемого воздуха.

• Повышение концентрации углекислого газа во вдыхаемом воздухе до 0, 8–1% не вызывает нарушений физиологических функций и работоспособности при остром и хроническом действии. Допустимость больших концентраций определяют прежде всего с учетом длительности пребывания в такой атмосфере и интенсивности выполняемой работы. Если космонавту предстоит несколько часов работать в скафандре, содержание углекислого газа в гермошлеме не должно превышать 2 % (р СО2 15 мм рт. ст. – 2 кПа). По достижении такой концентрации углекислоты появятся жалобы на одышку и утомление, однако работа будет выполнена в полном объеме.

• В кабине космического корабля с периодическим выполнением только легкой работы космонавт может справиться с заданием в течение нескольких часов при увеличении концентрации углекислоты до 3 % (р СО2 22, 5 мм рт. ст. – 3 кПа). Однако возникнут выраженная одышка и головная боль, которая может оставаться длительное время.

• Повышение содержания углекислоты в гермошлеме скафандра или в кабине до 3 % и более – тревожная ситуация, подлежащая немедленному устранению.

Состояние острой гиперкапнии можно установить по увеличению р СО2 в артериальной крови (более 40 мм рт. ст., или 5, 33 кПа), а также по субъективным и клиническим признакам: одышка, особенно в покое, тошнота и рвота, усталость при работе, головная боль, головокружение, нарушения зрения, синюшность лица, сильная потливость.

Признаки хронической гиперкапнии развиваются при длительном пребывании в атмосфере с содержанием углекислого газа от 0, 9 до 2, 9 %. В этих условиях изменяются электролитный баланс и кислотно-щелочное состояние, происходят напряжение физиологических функций и истощение функциональных резервов, обнаруживаемые нагрузочными пробами. Хроническая гиперкапния сопровождается фазными изменениями психомоторной деятельности (возбуждение, сменяющееся депрессией), которые проявляются в поведении и во время умственной и мышечной работы. Головная боль, усталость, тошнота и рвота выражены меньше. Часто бывает стойкая гипотензия. Нарушение электролитного баланса и кислотно-щелочного состояния, а также напряжение функции коры надпочечников определяются только биохимическими методами.

Пока нет специфических методов лечения гиперкапнического ацидоза или способов повышения устойчивости организма к действию повышенных концентраций углекислого газа. Самой эффективной помощью космонавту при нарушении системы регенерации будет быстрейшее восстановление нормального газового состава вдыхаемого воздуха. Если нельзя устранить неполадки в основной системе регенерации, то следует использовать субсистемы и аварийные системы, а также аварийные запасы кислорода на борту или в скафандре.

В скафандре космонавт также может изолироваться от гиперкапнической среды кабины, закрыв смотровой щиток гермошлема. Для своевременного предупреждения гиперкапнии на борту корабля необходим прибор-сигнализатор опасного уровня углекислого газа.

 


Поделиться:



Последнее изменение этой страницы: 2019-05-06; Просмотров: 257; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.022 с.)
Главная | Случайная страница | Обратная связь