Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Научные направления института в 60-е годы



 

К 1960 году НИИ-2 уже имел богатую историю. За 13 лет — со времени организации в 1946 году — в нем сложился ряд научных школ и направлений. Я, к тому времени, как стал заместителем начальника, успел прикоснуться лишь краешком жизни к этой истории — работал только над ракетами класса «воздух — воздух» и противоракетами. В самой же авиационной тематике я разбирался слабо и, став в положение научного руководителя целых направлений, почувствовал всю сложность положения, в которое попал. Тем более, что я не очень хорошо представлял себе, что это вообще значит — быть руководителем подобного ранга. Весь мой опыт начальника ограничивался областью определенных авиационных ракет и управлением коллективом, который я сам создавал из студентов, знакомых аспирантов и однокашников. Это были люди, которых знал я лично, а они знали меня, и поэтому мои отношения с ними строились на совершенно неформальных методах управления. Скорее я работал с группой единомышленников, где мое руководство в административном плане было чисто номинальным. Я был некий лидер в чисто технических областях, да и не такой уж это большой администратор — начальник отдела, поскольку от него не зависит ни уровень заработной платы, ни карьера, ни решение социальных проблем...

А тут я попал в положение, когда должен руководить серьезным научным направлением. Их в институте к этому времени сложилось три.

Первое, которое НИИ-2 получил в готовом виде к моменту своего рождения, — совместимость оружия и самолета. Самолеты, закончившие Вторую мировую и первое поколение реактивных машин, были оснащены стрелково-пушечным, бомбардировочным вооружением и неуправляемыми ракетами. Авиационные пушки традиционно строились в Туле, где сложилась одна из лучших в ми-

78

ре школ их конструкторов, которая и по сей день держит пальму первенства. Трудно представить, что кто-то в мире может сделать авиационную пушку лучше, чем старик Василий Грязев из Конструкторского бюро приборостроения, которым руководит А. Г. Шипунов. В этом же ряду стоят такие конструкторы, как А. Э. Нудельман, А. А. Рихтер из школы Б. Г. Шпитального и другие.

Что же в этой области делал наш институт? Пушка стояла на самолете и надо было изучать, как стрельба из нее отражается на конструкции, поскольку при этом возникает сила отдачи, которую самолет должен выдержать без заметных потерь в точности стрельбы, как полет влияет на рассеивание снарядов. То есть институт занимался стрелково-пушечными установками, или, если употребить артиллерийский термин, — лафетами самолетов. Кроме нас, этими исследованиями не занимался никто, поэтому мы на своем полигоне под Москвой «отстреливали» практически все пушечные установки, выдавали рекомендации по их прочности в условиях многоимпульсных динамических нагрузок. В этом заключалась специфика работы нашего института по сравнению с ЦАГИ, который занимался статическими нагрузками.

Далее — бомбардировочное вооружение, сход бомб. Их также выбрасывали из бомбоотсеков. Бомба сразу попадала в воздушный поток, в то время — дозвуковой. Мы изучали поведение бомб на траекториях падения и, как следствие, техническое их рассеивание.

Изучали мы и стрельбу из НРС-блоков, то есть неуправляемыми реактивными снарядами. Здесь отдачи никакой нет, поскольку это безоткатное орудие, зато есть влияние факела двигателя ракеты на двигатель самолета (как и при стрельбе из пушки, когда звуковая волна попадает на вход воздухозаборника). Факел создавал неустойчивый воздушный поток на входе реактивного двигателя, так что он мог и «заглохнуть». Это очень опасно и приводило к катастрофам. И мы должны были вырабатывать рекомендации по борьбе с этими явлениями. Самый простой выход — проектировать самолет так, чтобы факел не попадал в поток, идущий на двигатель, но крыло ведь ограничено по размерам и ракету далеко не утащишь. И потом, число точек подвески оружия все время увеличивается, поэтому ближайшие из них все равно подбирались к самому соплу. А пушка и вовсе традиционно встраивается рядом с ним в фюзеляж. Мы по сей день занимаемся этими проблемами, поскольку они характерны и для управляемых ракет, хотя имеют свои особенности. Но физика этих явлений очень сходна.

В комплексе же все это и представляло собой такое направление работы нашего института, как совместимость оружия и самолета.

79

Изучали мы также техническое рассеивание — и снарядов, и неуправляемых ракет, и авиабомб, то есть баллистику боеприпасов. Это тоже требовало отработки специфических подходов.

Если же просуммировать все сказанное выше, то направление, с которого начинал свою жизнь институт, базировалось на летном эксперименте с исследованием физических процессов — нестационарной аэродинамики, газодинамики, нестационарной динамической прочности и других, подобных им по характеру явлений.

Это направление существовало до момента появления управляемого оружия.

Второе направление, которое вел институт, это — теория эффективности. Эффективность — вероятностная характеристика, описывающая возможность выполнения боевой задачи в целом. Она определяется как некий интегральный результат влияния многих факторов: точности прицеливания, технического рассеивания, возможности самолета выполнить возложенные на него функции... Задача определения эффективности системы, состоящей из многих компонентов, очень сложна, так как требует многочисленных оценок вероятности различных событий и процессов. Но решение этой задачи необходимо, поскольку при итоговой оценке боевых систем, их сравнении друг с другом военные в основном руководствуются именно этим критерием. Не так уж важна точность стрельбы или бомбометания, важна эффективность. Потому что точность можно компенсировать весом боевой части и т. д. А эффективность говорит о том, что задача будет выполнена с достаточно высокой вероятностью. В дальнейшем к критерию эффективности добавился критерий стоимости, потому что создавать военную систему, не оглядываясь на стоимость, тоже нельзя. Поэтому родился такой комбинированный критерий, как «эффективность — стоимость».

Коллектив НИИ-2 уже в начальной фазе жизни занимался проблемами эффективности и в какой-то мере начал изучать целые «операции», — перехвата, воздушного боя, ударно-бомбардировочную, то есть прорыв бомбардировщиков через зону ПВО противника... Эта тематика — исследование боевых операций и эффективности — тоже выросла в отдельное направление работы.

И третье направление, в котором довелось участвовать и мне, это — управляемое оружие. А уже параллельно с его развитием родилась система автоматизации режимов управления самолетом. То есть автоматика и управление стали широко внедряться и в оружие, и в самолет. Вначале это были работы по автоматизации режимов прицеливания, а в последующем и весь самолет стал фактически полностью автоматическим. Удельный вес действий летчика значительно снизился по сравнению с зарей авиации, когда человек в воздухе де-

80

лал все сам, если выполнял какую-то задачу. Сейчас появилась понятие человеко-машинной системы с очень большой долей автоматизированных режимов.

Вот это третье направление и было поручено вести мне, как заместителю начальника института, поскольку я был к нему наиболее подготовлен.

Первое направление вел заместитель начальника института Владимир Иванович Ермилов, второе — сам начальник, Виктор Арчилович Джапаридзе. Это направление, кстати, вначале курировал мой предшественник — Всеволод Евгеньевич Руднев. Он один из тех, кто отдал много сил и энергии созданию теории эффективности авиационных систем. Эта работа шла в тесном взаимодействии с академией им. Н. Е. Жуковского.

Особняком стояла очень интересная проблема — боевой живучести и поражения цели. Как выбрать боевую часть ракеты? Как организовать разброс осколков, чтобы наиболее эффективно поразить воздушную цель? Ведь на ракетах класса «воздух — воздух» боевая часть не может быть большой, и надо было обеспечить разлет осколков в определенной плоскости, своего рода «диском», который как бы перерезал цель. А в дальнейшем появились стержневые боевые части, имеющие вид свернутой «гармошки», которая при взрыве распрямлялась и получившееся кольцо перерубало цель.

Естественно, возникает и обратная задача: как защищать конструкцию самолета от воздействия оружия противника? Сейчас, благодаря нашим работам, Россия занимает уникальное положение в мире боевой авиации — нигде нет более живучих самолетов, чем российские. Они возвращаются домой с пробитыми крыльями, поврежденным до последних пределов оперением... Яркий пример — применявшийся в Афганистане Су-25, который был скомпонован полностью по рекомендации нашего НИИ. Мы отрабатывали его конструкции на поражение и в результате наши ВВС почти не несли потерь летчиков, даже если в Су-25 попадала ракета «воздух — воздух» или «Стингер».

В этом направлении мы работали и по линии самолетов Су-7 — Су-17. О случае с Ту-22 я уже рассказывал, когда он вернулся на базу после попадания в открытый бомболюк ракеты «Хок». Иракские летчики после этого беспредельно поверили в наши машины и говорили, что русские делают чудеса. Но эта культура закладывалась еще при создании штурмовика Ил-2 — самого массового самолета Второй мировой войны, когда С. В. Ильюшин защитил броней двигатель, кабину летчика, другие жизненно важные элементы машины. Душой и энтузиастом этого направления в нашем институте был доктор технических наук Сергей Иванович Базазянц.

81

Как уже было сказано, я возглавил направление, связанное с управляемым вооружением, с автоматизацией боевых режимов самолетов, но для меня по-прежнему оставалось тайной, что же собой представляют истребитель и бомбардировщик с точки зрения такой автоматизации. Личного опыта в этой области я не имел никакого, хотя был одним из немногих в НИИ, кто достаточно хорошо владел теорией управления и технологиями управляющих систем. Но мне ведь надо было работать с научными коллективами, которые уже имели достаточно большой практический опыт по решению проблем, за которые я только принимался. Это коллектив лаборатории № 2, которым руководил Евгений Иванович Чистовский. Его правая рука — Иосиф Аркадьевич Богуславский, который, кстати, в это время не без моей помощи переключился на работу по космическим программам. Лабораторию № 3 вел Константин Александрович Сарычев; здесь занимались ударной, фронтовой и дальней бомбардировочной авиацией, в то время изучая в основном бомбардировочные режимы.

Это были уже сложившиеся коллективы, где хорошо понимали, что такое задачи бомбометания и прицеливания, владели их теорией. И когда я посмотрел на нее с позиций собственного опыта, я вдруг уловил в ней некие общности с теорией самонаведения. Но это самонаведение — в конечную точку, а не в цель, то есть вывод самолета на определенный режим, когда надо сбросить бомбу. В какой-то мере, если сравнивать кинематические зависимости бомбометания, они напоминают самонаведение ракеты.

В то же время и истребитель, который наводился на воздушную цель (только в нем сидел пилот) обладал закономерностями, очень похожими на самонаведение ракеты. Но истребитель специфичен. Ракета обладает аэродинамической симметрией, а именно так строились ракеты класса «воздух — воздух» — крестокрылое оперение, цилиндрический фюзеляж, что заметно упрощает задачи управления.

А самолет — это ярко выраженное крыло, состыкованное с фюзеляжем. Чтобы им управлять, надо создавать крен — координированный разворот, когда подъемная сила используется для того, чтобы создавать боковое и вертикальное движение самолета. То есть налицо специфическая динамика управления несимметричным объектом. Кроме того, самолет пилотирует летчик. Человек есть человек, и полностью исключать его из процесса наведения нельзя, он замыкает контур управления. Если смотреть на человека, как на звено в этом контуре, то можно и его динамику представить с помощью дифференциальных уравнений, описывающих его действия как оператора. Поэтому было введено понятие «передаточная функция человека». И оказалось, что наряду с традиционными динамическими

82

звеньями в передаточной функции человека присутствует запаздывание — время, за которое человек воспринимает информацию и начинает реализовать. Вот это временное запаздывание, которое связано с мышлением, принятием решения, с точки зрения теории управления является очень неприятным звеном, которое может привести к потере устойчивости и т. д. Более того, когда стали углубленно изучать человека, оказалось, что он — система со случайными параметрами, поскольку в разных условиях от него в принципе можно ожидать каких угодно неадекватных действий. Если же подойти к нему примитивно и усредненно, его можно описать достаточно точно, и тогда самонаведение истребителя (с учетом специфики несимметричной аэродинамики), очень напоминает решение для любой самонаводящейся системы перехвата — будь она зенитной, класса «воздух — воздух» или истребителем.

В конце концов зенитную ракету можно рассматривать, как беспилотный истребитель. Кстати, в это время в КБ С. А. Лавочкина строилась зенитная ракета «Даль» именно как беспилотный самолет-истребитель. Она тоже была аэродинамически несимметрична и по способу наведения очень похожа на самолет. Прогресс в авиации привел к тому, что истребитель уже имел два ярко выраженных режима полета при перехвате цели. Сначала он выводился к ней с земли — системой командного наведения, когда летчику на директорные приборы по линиям связи передавался нужный курс, высота и скорость. Он пилотировал по ним самолет, пока его бортовой локатор, который находился в режиме поиска, не захватывал цель. Тогда летчик переходил на режим бортового наведения, что фактически и было самонаведением. Он получал на прицельном индикаторе метку цели и далее пилотировал самолет с учетом совмещения этой метки с текущей маркой положения самолета. Так что в динамическом плане самонаведение ракеты и перехват цели самолетом-истребителем очень похожи.

Но в каждом техническом направлении есть своя специфика, какие-то традиции, складываются свои школы, рождается терминология. Мы, к примеру, работая в одном и том же институте над ракетами класса «воздух — воздух» и над истребителем, иногда друг друга плохо понимали, хотя говорили об одном и том же. Ведь терминология во многом определяется личностью людей, их подходом к решению проблем и т. д. Поэтому моя задача заключалась в том, чтобы сначала хотя бы научиться понимать, что делается в коллективах, которыми мне предстоит руководить: я-то в них не работал. Мне необходимо профессионально стать на их уровень. При этом, конечно, я не обязан погружаться в тонкости каждого направления — это и не по силам одному человеку. Потому и существует иерархия управле-

83

ния, где у человека на каждом уровне имеется свой круг вопросов. Но профессиональное понимание деятельности коллективов необходимо.

Поэтому мне пришлось оставить ракетную технику, тем более, что считалось: там работают уже вполне квалифицированные люди и погрузиться в проблематику авиационных систем. Для этого пришлось прочитать гору литературы, множество работ ЦАГИ, ЛИИ, всех классиков — И. В. Остославского, Г. С. Бюшгенса, В. С. Ведрова, М. Р. Тайца, Г. С. Калачева... Мне надо было разобраться в вопросах динамики управления самолетом, потому что аэродинамику я немного знал, и даже, как уже писал выше, набрался смелости прочитать курс лекций по этому предмету в МВТУ.

Естественно, я окунулся и в реальные программы, которые вел наш институт, в первую очередь в работу над системой «Ураган-5», предшествовавшей МиГ-25. В этой системе создавались экспериментальные самолеты фирмы Микояна, где как раз и отрабатывались режимы командного и бортового наведения. При этом мы столкнулись с различными проблемами эргономики кабины, со сложностью восприятия летчиком показаний индикаторов... Все это требовало глубокого изучения и выдачи необходимых рекомендаций.

Почему так остро встал вопрос о перехватчике? Дело в том, что понимание воздушного боя как дуэли истребителей базировалось на опыте Второй мировой войны, и вопрос автоматизации этой дуэли еще не стоял столь остро, а задача перехвата бомбардировщиков в это время вышла на первый план. Мы противостояли прежде всего Америке, ее стратегическая авиация стала считаться нашим основным противником и в случае возникновения конфликтных ситуаций надо было остановить ее налет, а не вступать во встречные воздушные бои с истребителями. Проблемы с ними возникли немного позже, когда СССР стал принимать участие в арабо-израильских и других локальных конфликтах. В период же конца пятидесятых — начала шестидесятых годов мы вплотную занимались решением задачи перехвата бомбардировщиков. А поскольку она очень сильно напоминала задачу самонаведения ракеты, мне была достаточно хорошо знакома динамика и логика таких процессов. Поэтому очень многое из того, что было достигнуто при работе над ракетами класса «воздух— воздух», мы стали внедрять в методику моделирования полета истребителей-перехватчиков.

Но одновременно мне пришлось вплотную заняться и проблемами бомбометания, поражения наземных целей, которые для меня были в полном смысле «терра инкогнита». Институт занимался уже и управляемыми ракетами, работающими по наземным целям, но

84

бомбометание — специфическая задача, когда нужно вывести самолет с определенной скоростью в некую точку, из которой баллистическая траектория бомбы накроет цель.

Для этого нами широко применялись методы лабораторного имитационного моделирования, которое мы назвали полунатурным, поскольку аппаратура была реальной, а сам полет моделировался в вычислительной машине. То есть, выражаясь современным языком, полет был виртуальным, а аппаратура — реальной. Но чтобы она работала в реальном режиме, на ее вход надо было подать из виртуального пространства вычислительной машины столь же реальную физически воспринимаемую информацию, преобразованную из цифровой или аналоговой модели — будь то движение линии визирования, угловое движение самолета или ракеты, скоростной напор на входе системы воздушных сигналов, сигнал на входе радиовысотомера...

Наш институт был одним из ведущих НИИ в разработке методов цифрового моделирования. И поскольку в то время БЭСМ делали только первые шаги, мы, как я уже писал, стали разрабатывать свою машину, способную моделировать процессы в реальном масштабе времени, то есть обладающую таким быстродействием, чтобы вычислительные процессы не опаздывали по отношению к реальным, и на вход приборов поступала реальная информация. Для этого нам пришлось делать скоростную машину, каковых в СССР еще не было. Однако к тому моменту, когда мы сделали ВДМ-101 и начали моделировать полеты, появились «бурцевские» машины и на каком-то этапе институт просто закупил две или три машины заводского исполнения — М-50 и 5Э51, а впоследствии и «Эльбрус».

С их помощью перехват цели самолетом-истребителем мы уже моделировали на более высоком уровне — чисто «цифровом», целиком внутри машины. Никто ничего подобного до этого в Советском Союзе не моделировал в реальном времени на цифровых машинах. Они ведь создавались как управляющие для систем ПРО, а при решении авиационных задач они как моделирующие не применялись.

В общем, я стал одним из тех, кто начал внедрять в институте моделирование процесса самонаведения истребителей с использованием ЦВМ, поскольку еще у себя в отделе очень много занимался цифровым моделированием ракет.

Надо сказать, что применение цифровой техники в моделировании, как и в управлении, рождало дополнительные проблемы. Действительно: процессы в машине живут своей жизнью в особом «виртуальном» мире. Здесь, кстати, рождаются очень интересные философские вопросы о существовании материального и идеального миров в машине. Так вот, идеальный мир должен в динамическом

85

плане соответствовать реальному пространству и времени, и нам надо было понять, насколько этот виртуальный мир искажает процессы реального мира, совместимы ли они. Оказалось, что на этапе преобразования цифровой информации в аналоговую и ее «входа» в реальный мир появляются ступенчатые нелинейности, связанные с разрядностью преобразований сигнала «туда и обратно», а также определенное запаздывание в процессе обмена информацией между машиной и реальной средой.

Все это надо было увидеть и понять самим, поскольку тогда использование цифровой техники в управлении только начиналось и было засекречено, так что ничего на эту тему в литературе не публиковалось. Полунатурное моделирование — это тоже в какой-то мере управление, поскольку представляет собой некий замкнутый процесс, в который включена цифровая машина. Когда ЦВМ появилась на борту ракеты и самолета, мы столкнулись с проявлением тех же физических закономерностей, что и при полунатурном моделировании — физические параметры полета преобразуются в цифровую информацию, машина ее «осмысливает», вырабатывает управляющие сигналы, которые снова преобразуются и выходят в реальный мир.

Одновременно с изучением процессов перехвата мне пришлось вплотную заняться и проблемами бомбометания. Здесь необходимо вывести самолет уже не на цель, а в некую точку, с которой начинается траектория падения бомбы. Эта задача и рассматривается в теории бомбометания, причем она распадается на две фазы: сначала надо точно выйти в точку сброса бомбы, а затем довернуть самолет по курсу полета так, чтобы траектория падения бомбы пересекала цель. Эта вторая фаза получила название «боковой наводки». В ней участвует динамика самого самолета — его надо накренить, ввести в вираж и выйти на нужный курс, но одновременно надо не упускать из виду и визировать цель. Вот здесь и возникает связка, похожая на самонаведение, поскольку необходимо вести визирование цели, а еще — учитывать баллистику падения бомбы. Этой теорией бомбометания занимались многие наши корифеи, начиная с Н. Е. Жуковского, но наиболее впечатляющие результаты были достигнуты академиком Н. Г. Бруевичем, заведующим кафедрой бомбометания академии им. Жуковского и сотрудниками нашего института, которые этой проблемой занимались со дня его основания. В их числе Г. Г. Абдрашитов, который первым стал изучать вопросы боковой наводки.

Американцы на В-29, а соответственно и мы на Ту-4, задачу бомбометания решали с помощью прицела ОПБ-5. Сигнал с него шел на авиапилот, который автоматически выводил самолет на цель и так же автоматически обеспечивался сброс бомбы. Я с этой проблемой

86

столкнулся, когда началось освоение бомбометания с самолета, летящего со сверхзвуковой скоростью. До этого все бомбы сбрасывались на «дозвуке», в том числе с Ту-16 и других машин. Надо сказать, что бомбардировочная авиация в эти годы мало развивалась, потому что Хрущев считал, что вообще ею нет смысла заниматься, поскольку есть МБР.

 


Поделиться:



Последнее изменение этой страницы: 2019-05-08; Просмотров: 257; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.035 с.)
Главная | Случайная страница | Обратная связь