Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


МАТЕРИАЛЫ ЛЕКЦИОННЫХ ЗАНЯТИЙ



по дисциплине «Тепловые двигатели и нагнетатели»

<140104.65> - «<ПРОМЫШЛЕННАЯ ТЕПЛОЭНЕРГЕТИКА»

 

 


1. Общие сведения о машинах для подачи жидкостей и газов

Основные определения и классификация устройств для подачи жидкостей и газов

 

Насос — устройство (гидравлическая машина или аппарат) для напорного перемещения (всасывания и нагнетания) главным образом капельной жидкости в результате сообщения ей механической энергии (потенциальной и кинетической). ГОСТ 17398–72 определяет насос как машину для создания потока жидкой среды. Устройства для безнапорного перемещения жидкости насосами обычно не называют и относят к водоподъемным машинам.

Компрессорная машина — это машина, предназначенная для подачи газовых сред путем сообщения им механической энергии. В зависимости от степени сжатия t (т. е. отношения давления на выходе к давлению на входе) лопастных компрессорных машин различают вентиляторы (t  1,15), газодувки (1,15 £ t £ 3) и компрессоры (t  3). Вследствие малого изменения давления вентиляторами термодинамического изменения газа почти не происходит. Это дает основание рассматривать теорию лопастных насосов и вентиляторов рассматривать слитно, как теорию машин для подачи несжимаемой среды.

Гидравлические машины для подачи жидкостей и газов в целом часто называют также нагнетателями.

Названия большинства устройств, применяемых для всасывания и нагнетания жидкостей, состоят из слова «насос» и соответствующего определения, характеризующего, как правило, либо принцип его действия (например, центробежный, электромагнитный), либо особенности конструкции (горизонтальный, зубчатый, шиберный), либо подаваемую среду (например, конденсатный, грунтовой). Иногда определительное слово фиксирует назначение или область применения насоса (например, лабораторный, дозировочный), тип привода (с паровым приводом, с электроприводом), а также автора конструкции (например, насос Гемфри) или название фирмы (насос СИХИ — по первым буквам слов Simen Hinsch; насос Фарко — по имени владельца завода). Некоторые из рассматриваемых устройств получили особые названия, например: газлифт, одна из конструкций которого называется маммут-насос, или насос Маммута; вытеснители, к которым относится монжус, называемый также насосом Монтежю, или пневматический насос; гидроэлеватор, инжектор и эжектор, являющиеся разновидностями струйного насоса.

Устройства для напорного перемещения жидкостей разделяют на виды и разновидности по различным признакам, например по принципу действия и конструкции. Насосы можно также условно разделить на насосы-машины, приводимые в действие от двигателей, и насосы-аппараты, которые действуют за счет иных источников энергии и не имеют движущихся рабочих органов. ГОСТ 17389–72 подразделяет насосы на два основных класса: динамические и объемные.

Компрессорные машины также подразделяют на динамические и объемные.

В динамических машинах передача энергии потоку происходит под влиянием сил, действующих на жидкость (газ) в рабочих полостях, постоянно соединенных с входом и выходом насоса (компрессорной машины). Доля кинетической энергии в общем приращении энергии достаточно велика вследствие больших скоростей жидкости (газа) на выходе из машины.

Работа объемных машин выполняется путем всасывания и вытеснения жидких или газовых сред за счет циклического изменения объема в рабочих полостях (цилиндрах, корпусах специальных форм) при движении рабочих органов (поршней, диафрагм, пластин, зубцов и т. д.). Простейший пример — поршневой насос одностороннего действия. Периодичность движения поршня обусловливает неравномерность подачи и возникновения инерционных сил. Поэтому привод таких машин имеет низкую частоту вращения. Эти обстоятельства вызвали появление объемных насосов вращательного типа, называемых роторными: шестеренных, пластинчатых и винтовых.

Классификация насосов по энергетическому и конструктивным признакам представлена на рис. 1.1, аналогичная классификация компрессорных машин — на рис. 1.2.

Динамические машины представлены в современной промышленности четырьмя основными конструктивными группами: центробежными, диагональными и осевыми насосами (рис. 1.3), вентиляторами и компрессорами и вихревыми насосами. Машины первых двух групп являются лопастными, третья группа относится к машинам трения.

Лопастные насосы также подразделяются по конструкции отвода — устройства для частичного преобразования кинетической энергии жидкости в потенциальную энергию давления (со спиральным, кольцевым или лопаточным отводом), по числу потоков внутри рабочего колеса (рис. 1.4), по числу ступеней рабочих колес в насосе — одноступенчатый, многоступенчатый (одностороннее или симметричное расположение колес на одном валу с последовательным прохождением потока) и по числу потоков — однопоточные и многопоточные (с параллельным прохождением потока через колеса, расположенные на одном валу). По расположению оси вращения вала насосы подразделяются на вертикальные, горизонтальные, с наклонной осью.

В осевых и диагональных насосах лопасти на рабочем колесе могут быть жестко закрепленными во втулке или с поворотными (регулируемыми), с электрическим, гидравлическим или электрогидравлическим приводом их разворота.

По способу герметизации насосы можно разделить на две группы: с уплотнением вала (обычно сальниковым или торцевым, для крупных насосов — щелевым) и герметичные (с экранированным электродвигателем, ротор и статор которого разделены тонкой цилиндрической гильзой из магнитопроницаемой стали).

Рис. 1.1. Основная классификация насосов

Рис. 1.2. Основная классификация компрессорных машин

Рис. 1.3. Классификация лопастных насосов
по направлению потока жидкости на выходе из рабочего колеса:
а) центробежный; б) диагональный; в) осевой

Рис. 1.4. Классификация центробежных насосов по потокам внутри рабочего колеса:
а) одностороннего входа;
б) двустороннего входа

Классификация насосов по назначению не может быть строгой, т. к. одни и те же насосы применяются в энергетике, водоснабжении, в химическом производстве и т. д. Например, в теплоэнергетике все центробежные насосы разделяют на следующие группы: 1) насосы для чистой воды; 2) конденсатные (для удаления конденсата с температурой до 393 К); 3) питательные (для подачи горячей воды в паровые котлы); 4) насосы для кислых сред (из нержавеющих сталей); 5) насосы для подачи смесей жидкостей и твердых частиц, в том числе песковые, шламовые (грязевые), земляные (землесосы) (для снижения износа проточная часть насосов выполнена из конструкционных или твердых белых чугунов).

Особо следует отметить химические насосы (тип Х). Конструктивно они выполнены практически одинаково и различаются в основном материалом деталей проточной части в зависимости от качества перекачиваемой среды и условий эксплуатации. Химические насосы выпускаются различных типоразмеров (Х, АХ, ХБ, ХВС, ХГ, ХМ, АХП, ХО, ХП, ТХ, ТХИ) в горизонтальном и вертикальном исполнении.

Основные параметры гидравлических машин для подачи жидкостей и газов

 

Основными параметрами гидравлических машин для подачи жидкостей и газов (нагнетателей) являются подача, напор (или развиваемое давление), потребляемая мощность и КПД.

Подача (производительность) — количество (объем или масса) жидкости (газа), подаваемое машиной в сеть в единицу времени. Соответственно различают производительность объемную Q, м3/с, и массовую G, кг/с.

В расчетах принято приводить объемную подачу компрессоров к условиям всасывания (для вакуум-насосов — к условиям на линии нагнетания) или к нормальным условиям, т. е. к давлению 100 кПа и температуре 293 К.

Напор насоса (м) — это удельная механическая энергия, сообщаемая насосом жидкости в единицу времени:

,                                     (1.1)

где Е — полная механическая энергия, сообщаемая жидкости за время t, Дж; m — масса жидкости, протекающей через насос за время t, кг; g — ускорение свободного падения, м/с2.

Согласно ГОСТ 17398–72, давление, развиваемое насосом (Па), определено зависимостью

,                         (1.2)

где рв, рн — соответственно давления на входе в насос (во всасывающем патрубке) и на выходе из него (в нагнетательном патрубке), Па; r — плотность жидкости, кг/м3; zв, zн — высоты расположения центров входного и выходного сечений насоса, м; vв, vн — средние скорости потока на входе и выходе, м/с.

Связь между давлением, развиваемым насосом, и напором, представляется соотношением:

,                                      (1.3)

откуда следует выражение для напора, развиваемого насосом:

.                                 (1.4)

Выражение (1.4) имеет четкий энергетический смысл: первое слагаемое характеризует приращение удельной потенциальной энергии давления, приобретаемой жидкостью в насосе, второе — приращение удельной потенциальной энергии положения, третье — приращение ее удельной кинетической энергии. Сумма первых двух слагаемых характеризует развиваемое насосом увеличение статического напора, третье слагаемое — увеличение скоростного напора.

Из выражения (1.4) вытекает, что напор измеряется в метрах столба перекачиваемой жидкости. Не следует воспринимать напор насоса как геометрическую высоту столба жидкости, на которую насос может поднять жидкость. Соотношение (1.4), помимо изменения потенциальной энергии, обусловленной подъемом жидкости на высоту (zн — zв), содержит еще и приращение потенциальной энергии давления , а также приращение кинетической энергии .

Полезная мощность (мощность, сообщаемая насосом жидкости либо вентилятором газу) при известных производительности и напоре определяется из выражения

Nп =  gQH                                         (1.5)

и может интерпретироваться как работа, затраченная на подъем на высоту Н жидкости весом rgQDt, отнесенная к промежутку времени Dt.

Эффективная (затрачиваемая) мощность Nэф — это мощность, потребляемая насосом (вентилятором) при перекачивании жидкости (газа) от механического привода, т. е. она может быть измерена на приводном валу насоса. Схема преобразования мощности Nэл, потребляемой электроприводом, сначала в эффективную мощность Nэф, а затем в полезную Nп представлена на рис. 1.5.

Рис. 1.5. Схема трансформации мощности при работе нагнетателя от электропривода

Коэффициент полезного действия (КПД) насоса (вентилятора)

                                           (1.6)

может быть представлен в виде

h = h г × h об × h мех,                                    (1.7)

где hг — гидравлический КПД, учитывает потери энергии, обусловленные гидравлическими сопротивлениями внутри насоса (в клапанах и патрубках поршневых насосов, в проточных каналах лопастных насосов и т. п.), т. е. связан со снижением H; hоб — объемный КПД, учитывает потери энергии, вызванные внутренними и внешними утечками жидкости (между всасывающим и нагнетательным патрубками, через уплотнения вала), т. е. обусловлен снижением Q; hмех — механический КПД, учитывает прочие потери энергии в насосе (на трение в подшипниках, уплотнениях, трение поршня о цилиндр в поршневом насосе, диссипацию энергии в жидкости между диском колеса центробежного насоса и его корпусом и т. п.).

Всасывающая способность обусловлена явлением кавитации и характеризуется максимально допустимой высотой установки насоса над уровнем жидкости в емкости, из которой она всасывается (при данном давлении в емкости и температуре жидкости).

Подача и напор объемных и динамических машин. Области применения насосов и компрессоров

 

Подача и напор нагнетателей определяются, с одной стороны, их конструкцией и скоростями движения рабочих органов, с другой — характеристикой сети, к которой подключен нагнетатель (рис. 1.9).

Поршневые и роторные машины конструктивно приспособлены для создания высоких напоров при относительно небольших подачах. Лопастные машины перекрывают область значительных подач при широком диапазоне развиваемых напоров, причем для центробежных машин характерны большие напоры, для диагональных — умеренные, для осевых — малые напоры и наибольшие подачи. Вихревые машины занимают промежуточную область между центробежными и поршневыми.

Представление о подачах и напорах насосов общепромышленного назначения разных типов, где в качестве перекачиваемой жидкости принята вода, можно получить по рис. 1.6. Отдельные уникальные конструкции насосов могут иметь параметры, выходящие за пределы этого графика. Однако в целом нетрудно проследить выполнение закона сохранения энергии: при перекачивании одной и той же жидкости при постоянной полезной мощности согласно формуле (1.5) с ростом производительности напор уменьшается, и наоборот. Области применения компрессоров различных типов показаны на рис. 1.7.

Рис. 1.6. Примерные графики подач и напоров насосов различных типов для перекачивания воды:
I — поршневые; II — центробежные; III — осевые

Рис. 1.7. Области применения различных типов компрессоров по производительности и давлению:
I — поршневые; II — центробежные;
III — винтовые; IV — ротационные

Наибольшее распространение в промышленности получили центробежные нагнетатели. Центробежные насосы могут создавать напор до 3500 м и подачу — 100 000 м3/ч в одном агрегате; подача центробежных вентиляторов достигает 1 000 000 м3/ч в одном агрегате.

Центробежные насосы используются в теплоэнергетических установках для питания котлов, подачи конденсата и сетевой воды, а также для подачи умеренно вязких жидкостей в химической и нефтехимической промышленности. В конденсационных установках мощных паровых турбин применяют осевые насосы. Струйные насосы используют для удаления воздуха из конденсаторов паровых турбин, а также в качестве эжекторов и инжекторов.

Вихревые насосы применяют для подачи кислот, щелочей и других химически агрессивных сред, где при малых подачах необходимы высокие напоры, а также для перекачивания сжиженного газа. Разработаны конструкции дисковых насосов, обладающих высокими антикавитационными качествами.

Поршневые насосы применяются для питания паровых котлоагрегатов малой паропроизводительности и в качестве дозаторов реагентов. Роторные нагнетатели чаще всего применяются в системах смазки (шестеренные насосы).

Осевые вентиляторы используются в установках местного проветривания, в градирнях и т. п. Прямоточные центробежные (радиальные) вентиляторы используют в установках с ограниченными размерами. Смерчевые вентиляторы целесообразно применять для перемещения среды, которую нельзя подвергать механическому повреждению, а также для пневматического транспортирования материалов, вызывающих большой износ лопаток и дисков рабочих колес. Дисковые вентиляторы благодаря их малошумности устанавливают в местных кондиционерах для вентиляции помещений. Диаметральные вентиляторы широко используют в системах вентиляции и кондиционирования воздуха, в электротермическом оборудовании, в бытовых установках.

Центробежные компрессоры являются основным видом компрессорных машин в химическом и металлургическом производствах. Поршневые компрессоры служат для снабжения сжатым воздухом пневмоинструмента, а на тепловых электростанциях — для сдува золы и сажи с поверхностей котельных агрегатов. Роторные компрессорные машины особенно часто используются в качестве газодувок и вакуум-насосов.

Работа насоса, подключенного к сети

Для определения фактических напора и производительности, при которых работает насос, нужно знать параметры сети, к которой он подключен (рис. 1.8).

Рис. 1.8. Насос, включенный в сеть:
1 — сеть; 2 — насос

Понятие характеристики сети введено ранее. В случае турбулентного режима течения жидкости в трубах характеристика сети близка к квадратичной, где Н0 — статический напор, т. е. в координатах H—Q характеристика сети имеет вид параболы (рис. 1.9).

Рис. 1.9. График совместной работы насоса и сети:
1 — характеристика сети; 2 — характеристика насоса

Уравнение характеристики сети позволяет при заданных параметрах сети найти напор насоса Н для обеспечения заданного расхода Q, а значит — подобрать насос.

Точка пересечения характеристики сети и характеристики насоса (т.очка А на рис. 1.9) является рабочей точкой, соответствующие ей подача QA и напор HA — это самопроизвольно устанавливающиеся параметры системы насос—сеть. Очевидно, что при выборе насоса в точке пересечения характеристик должны выполняться условия QA > Qр и HA > Hр, где Qр и Hр — требуемые рабочие параметры сети. Способы регулирования производительности насосов описаны ниже (см.: Регулирование подачи центробежных нагнетателей).

                                                     2. Насосы

Центробежные насосы


Поделиться:



Последнее изменение этой страницы: 2019-05-08; Просмотров: 200; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.042 с.)
Главная | Случайная страница | Обратная связь