Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Нагрузки, действующие на несущую конструкцию скатных крыш



Скатные крыши

ФОРМЫ КРЫШ

Крыша — это верхняя ограждающая конструкция здания, служащая для обеспечения несущих, гидроизоляционных, а в совмещенных крышах и теплых чердаках (мансардах) еще и теплоизоляционных функций. Крыша должна выдерживать собственный вес, ветровые и снеговые нагрузки, соответствовать противопожарным нормам и нести декоративную миссию. Делают два вида крыш: чердачные и бесчердачные. В чердачных крышах между перекрытием и кровлей имеется помещение. В бесчердачных — перекрытие верхнего этажа и кровля объединены в одну конструкцию. Оба вида крыш делают утепленными или холодными.

Кровля — верхний элемент крыши, защищающий здание от внешних воздействий: дождя, снега, мороза, солнечной радиации, пыли, вредных веществ.

Чердак — это пространство между внутренними поверхностями крыши, наружными стенами и перекрытием верхнего этажа. Он обеспечивает вентилирование конструктивных элементов крыши. Чердачные крыши для большинства зданий выполняют холодными. Чердачная крыша защищает здание только от атмосферных осадков, а теплоизоляция здания делается на чердачном перекрытии.

Мансарда — жилой чердак. В жилых домах делается отапливаемой. Либо не отапливаемой — для летних домиков.

По форме крыши делятся на плоские и скатные (рис. 1).


рис. 1. Формы крыш

Плоские крыши делают с уклоном менее 2, 5%. Плоская крыша испытывает большие снеговые нагрузки, чем скатная. Поскольку в ней отсутствует стропильная система, эта нагрузка передается сразу на перекрытие, что предъявляет к нему повышенные требования по несущей способности. Перекрытие домов с плоскими крышами это, чаще всего, сборные или монолитные железобетонные конструкции, в отличие от крыш скатных, где перекрытие может быть деревянным. Отсутствие в плоской крыше стропильной системы лишает ее парусности от воздействия ветровых нагрузок.

В зависимости от формы крыши меняется весь облик здания, при этом внутренняя планировка не меняется или меняется незначительно.

Плоскость крыши по которой скатывается вода, называется скатом. Скатные крыши имеют уклон более 2, 5%, они подразделяются на:

  • односкатную, опирающуюся на две наружные стены разной высоты;
  • двускатную, опирающуюся на две наружные стены равной высоты. Треугольные торцовые стены, образующиеся при этой форме, называются щипцами, если они сделаны из досок, или фронтонами, если они сделаны из камня. Отсюда еще одно название этих крыш — щипцовые;
  • вальмовую или четырехскатную — крышу с треугольными скатами (вальмами) по торцовым сторонам. Если вальма не доходит до карниза, крыша называется полувальмовой;
  • шатровую, четыре ската которой выполнены в виде одинаковых треугольников, сходящихся в одной точке;
  • ломаную (мансардную), двускатную, каждая плоскость которой представляет два прямоугольника, соединенных между собой под тупым углом.

Особенности скатных крыш

Форма скатных крыш, чаще всего, образуется стропильной системой крыши. Стропило (или стропильная нога) — это деревянная или металлическая балка, основной несущий элемент крыши. В зависимости от способа укладки и условий работы, стропила подразделяют на наслонные и висячие (рис. 2).

рис. 2. Схемы стропильных и бесстропильных скатных крыш

Наслонные стропила получили свое название от слова настелить («наслонить», «наслать»). Их концы опираются либо на стены разной высоты — балки раскладывают на стенах с определенным расстоянием (шагом) между собой — либо, например, в двускатных крышах, один конец стропила лежит на внешней, а другой на внутренней стене или на специальной несущей конструкции, сделанной по этой стене. Стропильные ноги низом опертые врубкой в мауэрлат, а верхом друг в друга передают на стены горизонтальную нагрузку (распор) от веса крыши и снега. Для нейтрализации распора, мауэрлат уложенный на стенах, жестко закрепляется. Стропила упирающиеся в мауэрлат горизонтальной врубкой, а верхом друг в друга, наоборот, безраспорная конструкция, в которой крепление мауэрлата к стене производится конструктивно.

Висячие стропила верхними концами упираются друг в друга и под местом стыка не имеют опоры. Для нейтрализации распора в нижней части висячих стропил устанавливают дополнительный элемент — затяжку. Таким образом, висячие стропила образуют треугольник, нижний элемент которого работает на растяжение, а на стены передается только вертикальное напряжение от веса крыши и снега.

Форма скатных крыш не всегда определяется стропильной системой. Скаты крыш можно образовывать фронтонами стен и использованием слег. Слега — несущий элемент крыши — балка, уложенная параллельно верху стен. Такие крыши называются бесстропильными, а несущие фронтоны стен — самцами. Бесстропильные крыши, чаще всего, применятся в деревянном рубленом домостроении. Однако замена материала слег с дерева на металл позволят их использование в домах со стенами из мелкоштучных материалов.

Перечисленные на рисунке виды скатных крыш: с наслонными и висячими стропилами или бесстропильные системы, представлены, так сказать, в «чистом» виде. На практике, все они могут быть выполнены на крыше одного дома с использованием отдельных конструктивных элементов. Например, скаты крыши могут сформированы фронтонами стен, на которые будет опираться один конец слег, а другой их конец может быть уложен на несущую ферму из висячих стропил.

В зданиях, стены которых сделаны из кирпича, бетона, пеноблоков или других влагопередающих материалов, пятка стропильных ног опирается на стены через деревянную балку, называемую мауэрлатом. А он, в свою очередь, отделяется от стены слоем рулонной гидроизоляции из рубероида, гидроизола или других подобных материалов. Для вентилирования подкрышного пространства и профилактики загнивания стропил и мауэрлата, а также для осмотра и возможного ремонта, верх мауэрлата устанавливают на стены на высоте не менее 300 мм и не более 500 мм от перекрытия. В домах с бревенчатыми или брусчатыми стенами стропила могут соединятся врубками или скобами с переводами (балками), врубленными между последним и предпоследним венцом сруба.

В конструкциях крыш с наслонными стропилами под опирание верха стропил часто выполняют различные несущие деревянные конструкции: стойки или фермы. Под них, как и под мауэрлат, тоже делается гидроизоляция и укладывается деревянная балка, которую, в этом случае, называют лежнем. И мауэрлат, и лежень монтируются в горизонт, но они могут быть уложены на разных высотах. Низ лежня делают на высоте не более 400 мм от верха перекрытия.

Снеговая нагрузка

Точную нагрузку от веса снегового покрова, требуемую для расчета несущей способности стропильных систем в конкретном месте строительства, нужно выяснить в районных строительных организациях или установить по СНиП 2.01.07-85 «Нагрузки и воздействия», а конкретно, по картам, вложенным в «Изменения к СНиП 2.01.07-85» (pdf 6, 4 MB). Необходимо обратить ваше внимание на то, что изменения к СНиПу вступили в силу с 2008 г. и в них переизданы ряд карт, в том числе и карта районирования снегового покрова. «Изменения», это практически новый СНиП, заменяющий СНиП 1985 года. В новой редакции СНиП границы районирования не совпадают со старой картой, а расчет нагрузки от веса снегового покрова гармонизирован со структурой Европейских норм.

На рис. 3 показаны нагрузки от веса снегового покрова для расчета по второй группе предельных состояний (с коэффициентом 0, 7). Полная снеговая нагрузка (без коэффициента 0, 7) по карте районирования, приведена в таблице 1.

Расчетный вес снегового покрова Q на 1 м2 горизонтальной поверхности земли

(таблица 1)

 

Снеговые районы Российской Федерации 1 2 3 4 5 6 7 8
Q, кПа (кг/м2) 0, 8 (80) 1, 2 (120) 1, 8 (180) 2, 4 (240) 3, 2 (320) 4, 0 (400) 4, 8 (480) 5, 6 (560)

рис. 3. Районирование территории Российской Федерации по расчетному значению веса снегового покрова.

Расчет несущих конструкций зданий и сооружений выполняют по методу предельных состояний, при которых конструкции теряют способность сопротивляться внешним воздействиям, либо получают недопустимые деформации или местные повреждения.

Предельных состояний, по которым производится расчет несущих конструкций крыши, может быть два:

Первое предельное состояние достигается в том случае, когда в строительной конструкции исчерпана несущая способность (прочность, устойчивость, выносливость), а попросту, происходит разрушение конструкции. Расчет несущих конструкций ведется на максимально возможные нагрузки. Это условие записывается формулами: , означающими, что напряжения развивающиеся в конструкции при приложении нагрузки не должны превышать предельно допустимых

Второе предельное состояние характеризуется развитием чрезмерных деформаций от статических или динамических нагрузок: в конструкции происходят недопустимые прогибы, раскрываются узлы сочленений. Однако в целом конструкция не разрушается, но дальнейшая ее эксплуатация без ремонта невозможна. Это условие записывается формулой: f < fнор, означающей, что прогиб появляющийся в конструкции при приложении нагрузки не должен превышать предельно допустимого прогиба. Нормируемый прогиб балки, для всех элементов крыши (стропил, прогонов и брусков обрешетки) составляет L/200 (1/200 длины проверяемого пролета балки L), см.

Расчет стропильной системы скатных крыш ведется по обоим предельным состояниям. Цель расчета: не допустить разрушения конструкций либо их прогиба выше допустимого предела. Для снеговых нагрузок, действующих на крышу, несущий каркас крыши рассчитывается по первой группе состояний — на полный вес снегового покрова Q. Эту величину принято называть расчетной нагрузкой т.к. в данном случае речь идет только о весе снега, то ее можно обозначить, как Qр.сн.. Для расчета по второй группе предельных состояний: вес снега учитывается с коэффициентом 0, 7 т.е. расчет ведется на снеговую нагрузку равную 0, 7Q — эту величину можно обозначить, как Qн.сн. (расчетная нормативная нагрузка от веса снега).

В зависимости от уклона крыши и направления преобладающих ветров снега на крыше может быть значительно меньше и, как ни странно, больше, чем на плоской поверхности земли. При возникновении в атмосфере таких явлений, как снежный буран или метель, снежинки, подхваченные ветром, переносятся на подветренную сторону. После прохождения препятствия в виде конька крыши скорость движения нижних потоков воздуха снижается по отношению к верхним и снежинки оседают на крышу. В результате с одной стороны крыши снега лежит меньше нормы, а с другой больше (рис. 4).

рис. 4. Образование снеговых «мешков» на крышах с уклонами скатов от 20 до 30°

Снижение и увеличение снеговых нагрузок, зависящих от направления ветра и угла наклона скатов, учитываются коэффициентом µ. Например, на двухскатных крышах с углом скатов выше 20° и меньше 30° с наветренной стороны будет лежать 75%, а с подветренной 125% от того количества снега, который лежит на плоской поверхности земли. Значение других коэффициентов µ приведено в СНиП 2.01.07-85 и на рисунке 5.

рис. 5. Схемы нормативных снеговых нагрузок и коэффициенты µ

Толстый слой снега, скапливающийся на крыше и превышающий средненормативную толщину, называется снеговым «мешком». Они скапливаются в ендовах — местах, где пересекаются две крыши и в местах с близко расположенными слуховыми окнами. Во всех местах, где высока вероятность возникновения снегового «мешка», ставят спаренные стропильные ноги и выполняют сплошную обрешетку. Также здесь делают подкровельную подложку, чаще всего из оцинкованной стали, вне зависимости от материала основного покрытия кровли.

Снеговой «мешок», образующийся с подветренной стороны, постепенно сползает и давит на свес кровли, пытаясь обломить его, поэтому свес кровли не должен превышать размеры, рекомендуемые изготовителем кровельного покрытия. Например, для обычной шиферной кровли его принимают равным 10 см.

Направление преобладающего ветра определяется по розе ветров для данного региона строительства. Таким образом, после проведения расчета с наветренной стороны будут установлены одиночные стропила, с подветренной — спаренные. Если данные по розе ветров отсутствуют, для расчета нужно выбрать максимальную нагрузку, словно все скаты крыши находятся с подветренной стороны и на них лежит снега больше, чем на земле.

С увеличением угла наклонов скатов снега на крыше остается меньше, он сползает под собственным весом. При углах скатов, равных или больше 60°, снега на крыше совсем не остается. Коэффициент µ в этом случае равен нулю. Для промежуточных значений углов скатов µ находится методом прямой интерполяции (усреднением). Так, например, для скатов с углом наклона 40° коэффициент µ будет равен 0, 66, для 45° — 0, 5, а для 50° — 0, 33.

Таким образом, требуемые для подбора сечения стропил и шага их установки, расчетная и расчетная нормативная нагрузки от веса снега учитывающие углы наклонов скатов (Qр.сн и Qн.сн), рассчитываются как произведение полной нагрузки от веса снега (Q) и коэффициента µ:

Qр.сн = Qхµ — для первого предельного состояния (расчет на прочность);
Qн.сн = 0, 7Qхµ — для второго предельного состояния (расчет на прогиб)

Для расчета по первому предельному состоянию полную снеговую нагрузку (Q) берем из таблицы 1. Для расчета по второму предельному состоянию, табличные данные веса снегового покрова умножаем на коэффициент 0, 7 либо не производим этого арифметического действия и сразу выбираем нагрузку по карте рис. 3.

В регионах строительства, где средняя скорость ветра трех зимних месяцев превышает 4 м/с, на пологих крышах с уклоном от 12 до 20% (примерно от 7 до 12°), происходит частичный снос снега с крыши. В этом случае расчетная величина нагрузки от веса снега должна быть уменьшена применением коэффициента c = 0, 85. Во всех других случаях, для скатных крыш применяется коэффициент c = 1. Окончательные формулы определения расчетной нагрузки и расчетной нормативной нагрузки от веса снега, учитывающие наклон скатов и ветровой снос снега, будут выглядеть так:

Qр.сн = Qхµхc — для первого предельного состояния (расчет на прочность);
Qн.сн = 0, 7Qхµхc — для второго предельного состояния (расчет на прогиб)

Снижение снеговой нагрузки c=0, 85 не распространяется: на крыши зданий в районах со среднемесячной температурой воздуха в январе выше -5°С, так как периодически образующаяся наледь препятствует сносу снега ветром; на крыши зданий, защищенных от прямого воздействия ветра соседними более высокими зданиями или лесом, удаленными менее чем на 10h, где h — разность высот соседнего и проектируемого зданий; Скорость ветра и среднесуточная температура января определяется по картам «Изменения к СНиП 2.01.07-85» (рис. 6 и 7).

рис. 6. Районирование территории Российской Федерации по средней скорости ветра, м/с, за зимний период

Нагрузки, действующие на несущую конструкцию скатных крыш



Ветровая нагрузка

При боковом давлении ветра воздушный поток сталкивается со стеной и крышей здания (рис. 8). У стены дома происходит завихрение потока, часть его уходит вниз к фундаменту, другая по касательной к стене ударяет в карнизный свес крыши. Ветровой поток, атакующий скат крыши, огибает по касательной конек кровли, захватывает спокойные молекулы воздуха с подветренной стороны и устремляется прочь. Таким образом, на крыше возникают сразу три силы, способные сорвать ее и опрокинуть — две касательные с наветренной стороны и подъемная сила, образующаяся от разности давлений воздуха, с подветренной стороны. Еще одна сила, возникающая от давления ветра, действует перпендикулярно склону (нормаль) и старается вдавить скат крыши внутрь и сломать его. В зависимости от крутизны скатов нормальные и касательные силы изменяют свое значение. Чем больше угол наклона ската кровли, тем большее значение принимают нормальные силы и меньшее касательные, и наоборот, на пологих крышах большее значения принимают касательные, увеличивая подъемную силу с подветренной и уменьшая нормальную с наветренной стороны.

рис. 8. Ветровые нагрузки, возникающие от давления воздушных масс

Расчетное значение средней составляющей ветровой нагрузки w в зависимости от высоты z над поверхностью земли следует определять по формуле: Wр = Wхk(z)хc, где W — расчетное значение ветрового давления, определяется по карте приложения в «Изменениях к СНиП 2.01.07-85» (рис. 9); k — коэффициент, учитывающий изменение ветрового давления для высоты z, определяется по таблице 2; c — аэродинамический коэффициент, учитывающий изменение направления давления нормальных сил в зависимости от того с какой стороны находится скат по отношению к ветру, с подветренной или наветренной стороны (рис 10).

рис. 9. Районирование территории Российской Федерации по расчетному значению давления ветра

Коэффициент k(z) для типов местности (таблица 2)

 
Высота z, м А Б В
не более 5 0, 75 0, 5 0, 4
10 1, 0 0, 65 0, 4
20 1, 25 0, 85 0, 55
Типы местности: А – открытые побережья морей, озер и водохранилищ, пустыни, степи, лесостепи, тундра; Б – городские территории, лесные массивы и другие местности, равномерно покрытые препятствиями высотой более 10 м; В – городские районы с плотной застройкой зданиями высотой более 25 м      


рис. 10. Значения аэродинамических коэффициентов ветровой нагрузки

Знак «плюс» у аэродинамических коэффициентов определяет направление давления ветра на соответствующую поверхность (активное давление), знак «минус» — от поверхности (отсос). Промежуточные значения нагрузок следует находить линейной интерполяцией. При затруднении в использовании таблиц 3 и 4 изображенных на рисунке 10, нужно выбирать наибольшие значения коэффициентов для соответствующих углов наклона скатов крыш.

Крутые крыши ветер старается опрокинуть, а пологие — сорвать и унести. Для того чтобы этого не произошло нижний конец стропильных ног крепят проволочной скруткой к ершу, забитому в стену (рис. 11). Ерш — это металлический штырь с насечкой против выдергивания, который изготавливают кузнечным способом. Поскольку достоверно неизвестно с какой стороны будет дуть сильный ветер, стропила прикручивают по всему периметру здания через одно, начиная с крайних, — в районах с умеренными ветрами и каждое — в районах с сильными ветрами. В некоторых случаях этот узел может быть упрощен: ерш не устанавливается, а проволока с выпущенными концами закладывается в кладку стен в период их возведения. Такое решение допустимо, если оба конца проволоки выпускается внутрь чердака и не портят внешний вид фасада здания. Обычно для крепления стропил используется стальная предварительно отожженная (мягкая) проволока диаметром от 4 до 8 мм.

рис. 11. Пример решения карнизного узла наслонных стропил скатной крыши

Общая устойчивость стропильной системы обеспечивается раскосами, подкосами и диагональными связями (рис. 12). Устройство обрешетки также способствует общей устойчивости стропильной системы.

рис. 12. Пример обеспечения пространственной жесткости стропильной системы

Нагрузки, действующие на несущую конструкцию скатных крыш


От веса кровли

На выбор сечения стропил и шага их установки существенное влияние оказывает собственный вес кровли, материал которой, в свою очередь, зависит от уклона скатов крыши.

Скаты одной кровли обычно устраивают с одинаковым уклоном, который выбирают в зависимости от кровельного материала, способа его укладки, архитектурных требований и экономических соображений, а также от района строительства. С крутых кровель, с уклоном 45° и более, быстро удаляется атмосферная вода и снег, что учитывают при строительстве зданий в районах с большим количеством осадков. Но с увеличением уклона повышается стоимость кровли. Например, при возведении кровли с уклоном 45° требуется в полтора раза больше материала, чем для плоской, а при уклоне крыши в 60° — в два раза больше. В тех районах страны, где бывают сильные ветры, наиболее рационально устраивать пологие кровли, так как ветровая нагрузка на скаты таких кровель меньше и наоборот, в заснеженных районах с несильными ветрами, лучше делать крутые скаты, уменьшая снеговую нагрузку за счет скатывания снега.

Уклон скатов крыш в различных нормативных документах выражается по разному: в виде безразмерных величин (отношения высоты к половине пролета), в процентах и градусах (рис. 13). Самое понятное определение уклона в виде безразмерных единиц. Когда крыша строится, то конечно же, никто не измеряет наклон скатов в градусах транспортиром. Если при строительстве отсутствует проектная документация, задающая высоту устройства конька, поступают проще: измеряют пролет здания, находят центр и от него вверх с помощью ровной деревянной рейки выносят высоту равную, например, половине пролета (уклон 1: 1) или трети половины пролета (уклон 1: 3), или любую другую. Процентное определение уклона, на взгляд многих строителей, только запутывает работу.

рис. 13. Взаимосвязь между безразмерной величиной уклона скатов крыши, углом в градусах и процентах

На уклон скатов крыши влияет и вид кровельного материала, так как при строительстве необходимо учитывать размер кровельного материала, способ его крепления, технологичность укладки и предусмотреть дальнейшую его ремонтопригодность и доступность обслуживания. Для скатных крыш применяют различные кровельные материалы: стальные оцинкованные листы, плоские и волнистые асбестоцементные и битумные листы, керамическую, цементную и металлическую черепицу, рубероид и другие. Выбор кровельного материала определяет величину угла наклона крыши. Чем плотнее материал кровли и герметичнее его стыки, тем меньше может быть уклон крыши, и наоборот, чем мельче размеры штучного кровельного материала, например, черепицы, тем круче должна быть крыша. Это объясняется не только большим количеством соединений малоразмерных деталей, а значит, возможным протеканием, но и большим весом кровли. Чем тяжелее кровельный материал, тем больший угол наклона нужно придать скатам. Рекомендуемые уклоны скатных крыш приведены в таблице 5.

Рекомендуемые уклоны скатных крыш (таблица 5)

 
Материал скатной кровли Уклон крыши Масса 1 м2, кг
Волнистые а/ц листы: среднего профиля от 1: 10 до 1: 2 11
усиленного профиля от 1: 5 до 1: 1 13
Волнистые целлюлозно-битумные листы от 1: 10 и более 6
Мягкая (гибкая) черепица от 1: 10 и более 9–15
Из оцинкованной жести: с одинарными фальцами от 1: 4 и более 3–6, 5
с двойными фальцами от. 1: 5 и более 3–6, 5
Керамическая черепица от 1: 5 до 1: 0, 5 50–60
Цементная черепица от 1: 5 до 1: 0, 5 45–70
Металлочерепица от 1: 5 и более 5

Необходимо отметить, что в таблице приведены рекомендованные практикой и нормативными документами уклоны скатов кровель из различных материалов и их усредненный вес на квадратный метр. Однако рынок строительных материалов намного богаче, фирмы-изготовители кровельных материалов постоянно совершенствуют свою продукцию: снижают вес и модернизируют технические характеристики изделий. При выборе конкретного материала на кровлю лучше использовать техническую документацию фирмы-изготовителя.

В вес кровли входит вес обрешетки. Обрешеткой называют несущий элемент кровли, к которому собственно крепится сама кровля. Различают два вида обрешеток: сплошная и разреженная (рис. 14). Чтобы определить требуемый вид обрешетки и шаг установки решетин, нужно заранее определиться с видом кровельного покрытия.

рис. 14. Обрешетки скатных крыш

Разреженная обрешетка делается под жесткие кровельные материалы, то есть под те материалы, которые сами способны нести на себе снеговую и ветровую нагрузку и при этом не прогибаться и, тем более, не разрушаться. Разреженную обрешетку выполняют из деревянных жердей или пиленых брусков. В настоящее время в продаже появились П-образные оцинкованные металлические решетины. Шаг установки решетин и размер их сечения зависят от вида кровельного материала.

Под кровли из крупноразмерных штучных элементов: асбестоцементные листы среднего и унифицированного профиля длиной до 1, 3 м и цементноволокнистые листы шаг раскладки обрешетки выбирают таким, чтобы под каждым листом оказалось три решетины. Обычно шаг решетин составляет 60 см под асбестоцементные и цементноволокнистые листы любой унифицированной длины. Сечение решетин обычно принимается 60х60 мм, можно и меньше, например, 40х60 мм, но тогда их нужно устанавливать чаще. Под волнистые целлюлозобитумные листы типа ондулин шаг обрешетки выбирается от имеющегося уклона скатов крыши. Он выбирается размером 45 см для уклонов от 1: 6 до 1: 4 и 60 см — для уклонов более 1: 4. Для крыш с уклоном скатов менее 1: 6 под ондулин делается сплошная обрешетка.

Под кровли из малоразмерных штучных элементов, например, из черепицы, шаг обрешетки принимается таким, чтобы каждая отдельная черепица легла на две решетины. Он может составлять от 16 до 40 см. Самый распространенный шаг примерно 33 см. При расчете веса кровельного покрытия лучше заранее определиться с выбором типа черепицы и уточнить шаг обрешетки. Обрешетку под черепицу при однослойном покрытии стелют из обрезных брусков сечением 50х50 или 50х60 мм, при двухслойном или тяжелой штампованной черепицей — сечением 60х60 мм.

При устройстве кровель из стального профилированного настила и его разновидности металлочерепицы, шаг решетин выбирается исходя из несущей способности материала. Обычно он составляет 35–40 см и равен поперечному шагу профиля металлочерепицы. Для обрешетки используются доски шириной примерно 100 мм.

Под мягкие кровельные материалы делается сплошная обрешетка. Применяемый для определения типа обрешетки термин — «сплошная» совсем не означает, что доски решетин прибиваются впритирку друг к другу. Обычно таким образом крепятся только две верхних и две нижних решетины, остальные образуют между собой зазор от 2 до 5 см. Решетины могут быть изготовлены из окромленого (ровного обрезанного с двух сторон по длине) или не кромленого теса толщиной 2–2, 5 см. При применении не кромленых досок их располагают по скату кровли по типу комель к вершине, обзол с не кромленого теса должен быть обязательно снят.

Обрешетку под стальную кровлю выполняют сплошной или разреженной. Разреженную обрешетку делают из брусков сечением 50х50 мм, досок — 50х120 (140) мм, сплошную — из досок толщиной 30–40 мм. Бруски располагают через 200–250 мм друг от друга. Через каждые 1, 4 м прибивают доски такой же толщины, как бруски, шириной до 140 мм (более широкие доски могут коробиться), которые необходимы для стыковки на них лежачих фальцев картин. Верх крыши — конек сбивают из досок шириной 200 мм.

В последнее время при использовании новейших кровельных покрытий стали часто использоваться контробрешетки. Контробрешеткой называют вторую, чаще всего сплошную обрешетку, выполненную под углом к первой. Угол наклона контробрешетки делают примерно равным 45°. Наклон решетин не только увеличивает пространственную жесткость крыши, но и позволяет сделать практически любую кровлю, за исключением, пожалуй, только черепичной, но при желании можно сделать и ее.

Сплошная обрешетка из досок в настоящее время почти не применяется ее заменили на сплошную обшивку скатов влагостойкой фанерой или плитами OSB (табл. 6).

Рекомендуемая толщина сплошных обрешеток (таблица 6)

 

Шаг стропил, мм Толщина фанеры, мм Толщина OSB 3, мм Толщина досок, мм
600 900 1200 1500 12 18 21 27 12 18 21 27 20 23 30 37

Приблизительный вес материала кровельного покрытия можно принять по таблице 5, а вес обрешетки нужно рассчитать исходя из выбранного материала и конструкции кровли. Для деревянных обрешеток применяются бруски хвойных пород. Объемный вес одного кубометра древесины равен 500–550 кг/м3. Если будет использована фанера или OSB, то их объемный вес равен 600–650 кг/м3.

Нагрузки, действующие на несущую конструкцию скатных крыш

Совокупность нагрузок

Зимой на стропильную систему крыши могут действовать одновременно все нагрузки: от веса снега, собственного веса стропильной системы, кровли, утеплителя и давления ветра. В другое время часть этих нагрузок исчезает, например, давление от веса снега, тем не менее, стропила рассчитывают на полную совокупность нагрузок. После арифметического сложения всех нагрузок умножим их на коэффициент 1, 1. Другими словами, рассчитаем конструкции на самые неблагоприятные условия работы и при этом «на всякий случай» заложим в расчет дополнительную десятипроцентную прочность (коэффициент 1, 1). Если вы полностью уверены в том, что делаете коэффициент 1, 1 не применяется.

В старых нормах для расчета по первому предельному состоянию в снеговую нагрузку вводился коэффициент надежности 1, 4. В связи со значительным изменением (увеличением) нормативных значений давлений от веса снега, этот коэффициент в новом СНиПе 2.01.07-85 не указывается. Включать его в расчет не нужно (пункт 1.3 СНиП 2009 г. издания, пункт 1.1.3 СНиП 2008 г. издания). Весь материал сайта построен на этом измененном СНиПе. Однако, если же вы будите работать по СП 20.13330.2011, то коэффициент надежности 1, 4 должен быть включен в расчет (пункты 4.2 и 10.12), но при этом нужно использовать формулы из СП. Конечный результат расчета будет одинаков в не зависимости от того будите ли вы использовать обновленный СНиП 2.01.07-85 или СП 20.13330.2011.

Как уже говорилось, расчет несущей конструкции крыши (стропил, прогонов и обрешетки) ведется по двум предельным состояниям: на разрушение и прогиб.

Расчет на разрушение производится на полную нагрузку, действующую на крышу. Она называется расчетной нагрузкой и включает в себя полный вес снега принятый по таблице 1 с учетом наклона скатов, ветровую нагрузку, зависящую от высоты здания и угла наклона скатов, собственный вес крыши (стропил, прогонов, обрешетки, утепления и подшивки).

Расчет на прогиб ведется для той же суммы нагрузок, но вес снега принимается с понижающим коэффициентом 0, 7. Эта нагрузка называется расчетной нормативной нагрузкой или просто нормативной нагрузкой.

Для правильного расчета стропильной системы должны быть собраны два варианта нагрузок действующих по площади (расчетная и нормативная) и переведены в линейные нагрузки.

Установка мауэрлата

Мауэрлат изготавливают из досок 50× 150 или бруса 100× 150 (150× 150) мм. Его назначение принять нагрузку от веса крыши, равномерно распределить ее и передать на стены.

Сначала приведем две цитаты. В. Е. Шишкин в своем знаменитом учебнике «Примеры расчета конструкций из дерева и пластмасс», по которому училось не одно поколение строителей, пишет: «Наслонные стропила при правильном их конструировании и устройстве — безраспорная конструкция. Чтобы стропила не вызывали появления распора, Надо опорные плоскости врубок в местах опирания стропильных ног на мауэрлаты и прогоны делать горизонтальными и погашать распор, вызываемый продольными усилиями, которые возникают в стропильных ногах, устройством горизонтальных парных схваток или ригелей». А вот, что говорит Карл Мёлер в главе «Основы строительства с применением деревянных конструкций» в книге «Атлас деревянных конструкций». «Особенно важны условия на опорах, которые в статической системе принимаются за основу. Они должны соответствовать заданным возможностям исполнения. Как правило, встречаются неподвижно шарнирные и скользящие в продольном направлении опоры балок и брусьев, в то время как жесткое защемление деревянных конструкций на опорах из-за сминаемости древесины и гибкости соединений встречается очень редко. Работающая на изгиб балка, опертая двумя концами, встречается, например, в виде стропил, прогонов, нижних поясов ферм. При этом одна опора бывает закрепленной, но свободно вращающейся, другая свободно вращающейся и подвижной в направлении оси балки».

Выделим ключевые фразы из этих двух цитат: Наслонные стропила при правильном их конструировании и устройстве — безраспорная конструкция. При этом одна опора бывает закрепленной, но свободно вращающейся, другая свободно вращающейся и подвижной.

А теперь еще одна цитата Филипова Н. А. из практического пособия для проектировщиков «Примеры расчета и проектирования деревянных конструкций» « Наслонные стропила являются распорной конструкцией; опорные реакции в наслонных стропилах направлены под углом, где горизонтальная составляющая (распор) передается на мауэрлат».

Иными словами, если наслонные стропила запроектировать, а затем установить соответствующим образом, то они не будут передавать распора на мауэрлат и стены. И наоборот, их можно запроектировать и установить, так, что на стены будет передаваться распор. Оба варианта имеют свои преимущества и недостатки. В первом варианте (без распора) мауэрлат не требует жесткого закрепления на стене, но вся стропильная система при неравномерной нагрузке становится статически неустойчивой и требуются меры по ее закреплению. Во втором варианте (с передачей распора на стены) получаем стабильную устойчивую систему (до определенных нагрузок, конечно), но требующую дополнительных работ по закреплению мауэрлата.

И еще одно пояснение с цитатой из курса лекций профессора Залесского В. Г: «Стропильные ноги в наслонной системе рассчитывают, как наклонные балки, нагруженные равномерно, причем, принимая за пролет горизонтальное расстояние между опорами, наибольший изгибающий момент выражается той же самой формулой, как и для балки, лежащей горизонтально ». Перефразируя слова профессора можно сказать так: наслонное стропило, установленное под углом к горизонту, рассчитывается как обычная горизонтальная балка длиной равной горизонтальной проекции стропилине. Доказательство опускаем, кому интересно скачайте весь документ. В общем, на начальном этапе сбора вертикальных нагрузок и определения схемы узлов опирания стропил не нужно зацикливаться на угол наклона скатов крыши и делать из этого разного рода умозаключения. Следует принимать нагрузки действующими на горизонтальную поверхность, а сами стропилины считать горизонтальными балками (рис. 21).

рис. 21. Схема загрузки наслонной стропилины

Таким образом, из всего выше сказанного получается, что мауэрлатная обвязка стены может быть установлена двумя способами: принимающим и отдающим на стены распор и не принимающим распор ввиду его отсутствия.

Условия работы мауэрлата, не принимающего и не передающего распора:

  • если низ стропильных ног делается «ползунами» — по схемам с двумя степенями свободы (рис. 20.2), то верх стропильных ног обязательно выполняется по узловым схемам с одной степенью свободы (рис. 20.1) или жестким защемлением (рис. 20.3);
  • если низ стропил делается по узловым схемам с одной степенью свободы (рис. 20.1), то верх обязательно выполняется с двумя степенями свободы (рис. 20.2).

Иными словами, если низ стропил опираем на мауэрлат сверху без дополнительных упоров, то верхнюю часть стропил упираем друг в друга и надежно закрепляем либо вообще делаем жесткое защемление. Если же низ стропил упираем в мауэрлат запилом или пришивной опорной планкой, то вверху стропила друг в друга не упираем, а кладем горизонтальной врубкой на прогон, рядом друг с другом и конструктивно крепим к коньковому прогону. В обоих вариантах в точках опоры стропильной ноги на прогон и мауэрлат будут только вертикальные реакции опор, а распора не будет. Доказательство найдете в лекциях профессора Залесского В. Г. Обратим особое внимание на то, что если во втором варианте низ стропил упереть в мауэрлат врубкой, а верх стропил положить на прогон рядом друг с другом, но без горизонтальной врубки, как это часто бывает, то стропило покажет в нижней части распор!

При установке мауэрлатов не передающих распор на стены их крепление к стене производится конструктивно. Скобами или гвоздями к деревянным пробкам, предварительно уложенным в стены либо проволочными скрутками (рис. 22). Обязательное условие: мауэрлат укладывается ближе к внутренней стороне стены и защищается снаружи хотя бы невысоким выступом стены. Здесь при принятой безраспорной расчетной схеме хоть и нет распора, все равно желательно подстраховаться от горизонтальной подвижки низа стропил и мауэрлата (за счет сил трения) при возникновении на крыше неравномерных нагрузок. Выступ не позволит сбросить мауэрлат со стены.

рис. 22. Схема укладки мауэрлата не передающего распор на стену

Если стропила верхними концами уперты друг в друга, а нижними упираются в мауэрлат посредством врубки зубом или нашивного опорного бруска, то мауэрлат принимает и передает на стены горизонтальный распор. Иными словами если и вверху, и внизу стропильной ноги изготовить узловые соединения с одной степенью свободы (рис. 20.1) или сделать защемленные концы (вообще без степеней свободы, рис. 20.3), то мауэрлат нуждается в закреплении к стене.

Возможны два варианта устройства мауэрлатной обвязки, принимающей распор от стропил (рис. 23):

  • брусья мауэрлата связываются в единую жесткую раму по всему периметру здания. Сращивание брусьев производят косым прирубом с креплением болтами, гвоздевым боем или винтами (саморезами или глухарями), а углы рамы — скобами или пластинами. Таким образом, на стене получается жесткая рама, принимающая распор и работающая на растяжение и изгиб. Крепление такой рамы к стене производится либо скобами к антисептированным деревянным пробкам, предварительно заложенным в стену, либо анкерами. Применяться этот способ может только для небольших в плане зданий;
  • в стене по всему периметру производится заливка железобетонного пояса с выпуском анкеров для крепления мауэрлата. Такой способ рекомендуется для легких стен из газосиликатных, пенобетонных и им подобных блоков. Мауэрлатные брусья, прикрепленные анкерами, распределяют вертикальную нагрузку и передают распор на нижний монолитный железобетонный пояс. Здесь на растяжение и изгиб мауэрлат работает частично, а основное напряжение принимает армированный пояс.

рис. 23. Два способа закрепления мауэрлата принимающего и предающего распор на стены

Стропила без подкосов

Схема 1

Стропила, опертые на две опоры без каких-либо дополнительных упоров. Применяется для односкатных крыш пролетом 4, 5 м или двухскатных пролетом до 9 м (рис. 30). Стропильная система может быть использована с передачей распора на мауэрлат (стены) и без передачи распора.

рис. 30. Наслонные стропила без подкосов

Стропила с подкосами

Схема 2

Для подбора сечения однопролетной деревянной балки (стропильной ноги на двух опорах) определяющим часто является прогиб при не полностью используемых напряжениях изгиба. Поэтому однопролетная балка с постоянным сечением обычно бывает не самой экономичной. Неразрезные двухпролетные балки позволяют использовать более экономичные поперечные сечения, чем однопролетные балки той же длины.

И эти системы наслонных стропил можно делать по распорному и безраспорному варианту. Вся разница заключается только в устройстве концевых опор, не будем больше на этом останавливаться.

рис. 39. Наслонные стропила с подкосами

Третья опора стропильной ноги — подкос, другое название подстропильная нога (рис. 39), устанавливается под углом к горизонту не менее 45° и превращает стропило из однопролетной балки в двухпролетную неразрезную. Что позволяет уменьшить сечение стропильной ноги при той же нагрузке, а пролет, перекрываемый двускатной крышей, увеличить до 14 м.

В двухпролетной неразрезной балке максимальный изгибающий момент находится над средней опорой, его и принимают для расчета сечения стропильной ноги (рис 40). Простой пример, попробуйте перегнуть палку через колено, она сломается на колене. Здесь будет максимальный изгибающий момент, по которому и нужно определять сечение всего деревянного элемента. Прогиб неразрезной двухпролетной балки будет меньше, чем обычной балки на двух опорах той же длины. Мешает средняя опора, это очевидно. Однако если вспомнить, что наша реальная расчетная схема это все-таки не горизонтальная балка, а наклонная и подперта она наклонным подкосом, то очевидным становится и то, что прогнувшееся стропило сместит и узел соединения с подкосом. Поэтому прогиб стропильной ноги для упрощения считают по обычной формуле прогиба (2) однопролетной балки для наибольшего пролета. В данном случае, для крыш с уклонами скатов до 45°, прогиб считается для нижнего пролета — от узла соединения с мауэрлатом до узла соединения с подкосом.

Рис. 40. Конструктивные и расчетные схемы наслонных стропил с подкосами. Узел крепления подкоса

Узел крепления подкоса к стропильной ноге очень простой и не требует никакого расчета. Подкос просто заводят под стропильную ногу и фиксируют от смещения прибоинами: нижней и двумя боковыми. Расчет гвоздевого соединения не производится, оно здесь носит чисто конструктивный характер. Важно, чтобы торец подкоса был точно подпилен под угол наклона стропильной ноги так, чтобы у стропилины не было люфта на выбор зазора при приложении к ней нагрузки. Иными словами, точно подогнанный под низ стропила подкос не даст ему прогнуться в месте опирания. При полном расчете стропильной системы стропило в месте опирания подкоса проверяют на местное смятие древесины, но как правило, в таком расчете нет необходимости. Сечение подкоса определяют расчетом на сжатие и если получают слишком маленькое сечение, задают конструктивно, равным сечению стропильной ноги.

В верхней части рисунка 40 изображена распорная стропильная схема без схватки. Сжимающие усилия в ней принимают подкосы. Система, рассчитанная на распор воспринимаемый материалом стен, в схватке не нуждается. Здесь уже есть элементы, работающие на сжатие — подкосы. Схватка не снимает распор, значит в ней нет острой необходимости.

В нижней части рисунка 40 безраспорная схема стропил с затяжкой. Здесь все наоборот, затяжка необходимый элемент и она участвует в работе всей системы. Схватку нужно устанавливать ниже крепления подкосов. Иначе безраспорный узел опирания на мауэрлат — ползун при изменении нагрузок может действительно начать ползать по мауэрлату. Обычно рассчитывается только гвоздевое соединение схватки со стропильной ногой, из-за малых внутренних напряжений сечение схватки-затяжки подбирается конструктивно.

Сращивание стропил по длине

При значительном увеличении длины стропил часто приходится соединять между собой короткие доски (брусья), так как поставляемые пиломатериалы не имеют длины, требуемой для изготовления длинных стропильных ног. Жесткие на изгиб стыки сделать крайне сложно, как правило, в месте соединения стропил получаются пластичные шарниры. Выходят из этой ситуации довольно просто, для получения неразрезной балки пластичный шарнир располагают там, где эпюра изгибающих моментов пересекает продольную ось стропилины. То есть шарнир (стык) делают там, где изгибающий момент стремится к нулю. Полная аналогия с консольно-балочной подстропильной конструкцией.

Если стропила изготавливаются из брусьев, то вместе стыка делают косой прируб и скрепляют концы болтом (рис. 43). Если стропила делаются из спаренных досок, то делают стык аналогичный дощатому неразрезному прогону. Если стропила из одинарных досок, то либо тоже делают косой прируб, но скрепляют гвоздевым боем и/или хомутами, либо стропила стыкуют лобовым упором с двух- или односторонними накладками. Стропила торцуются, соединяются друг с другом и закрепляются с двух или одной стороны деревянными или стальными накладками. Расчет стыка ведется на количество забиваемых гвоздей. Их количество должно быть таким, чтобы удерживать поперечную силу, направленную на срез гвоздей. Длина накладки определяется из количества гвоздей, чтобы не «измочалить» накладки. Обычно гвозди забиваются в два ряда на равных расстояниях от продольной оси стропил.

В случае устройства пластичного шарнира, его делают на расстоянии 0, 15l от опоры, где l длина пролета над которым располагается стык. Обратите внимание, если при стыковании прогонов можно было использовать равнопрочную и равнопрогибную схему, то при стыковании стропил применяют равнопрочную схему. Это обусловлено тем, что пролеты стропил от мауэрлата до промежуточной опоры и от промежуточной опоры до коньковой, абсолютно разные. Нам важнее обеспечить равную прочность стропилины по всей длине, а не равный прогиб. В коньковом прогоне все, наоборот, там в ряде случаев, важнее обеспечить равный прогиб, чтобы конек кровли оставался на одной высоте.

рис. 43. Стыкование стропил косым прирубом

Стропила можно состыковать лобовым упором и на опорах (на прогоне или на подкосах), но при этом неразрезной балки не получится. Получатся несколько простых однопролетных балки и расчет их сечений нужно делать, как для обычных балок на двух опорах. Стык стропил прикрывается двухсторонними дощатыми накладками без расчета гвоздевого боя. В этом случае у накладок только одна задача — обеспечить соосность стропил и их монтажное закрепление. Если нужно получить неразрезную балку, но при этом используется стыкование в произвольном месте лобовым упором с накладками, то равнопрочный основному сечению стык расчитывается по методике изложенной в книге Гроздова В. Т. «Деревянные наслонные стропильные системы».

рис. 44. Пример устройства составных стропил

Также для удлинения стропил можно использовать стропила сколоченные из двух досок с просветом (рис. 44). Уникальность такой конструкции состоит в том, что вверху стропильной системы можно установить одинарные стропила, а внизу спаренные, раздвинутые на толщину верхнего стропила. Такой подбор стропил позволяет экономить материал, подбирая оптимальные размеры сечений и легко решать конструкции узлов соединения стропил между собой и с ригелем-схваткой. Вкладыши между стропилинами вставляют из обрезков стропильных ног, но так, чтобы расстояние между ними (в свету) было не более 7 высот сплачиваемых досок. Тогда гибкость спаренной стропилины между вкладышами будет равна нулю, то есть стропильная нога будет работать, как цельная. Длина самих вкладышей может быть произвольной, но не менее 2 высот досок.

Рис. 44. Место установки дополнительных опор под диагональные стропила

Расчет сечения диагональных стропил можно произвести по формулам приведенным в книге В. Т. Гроздова «Деревянные наслонные стропила» (rar 860 kB), но как правило, они не нуждается в расчете. Сделанные из двух сечений рядовых стропильных ног они выдерживает ту нагрузку, на которую были рассчитаны рядовые стропила. Стропила, перекрывающие пролет до 7, 5 м, подпираются только подкосом в верхней части пролета. Если накосное стропило перекрывает пролет до 9 м, в нижней части (l/4) устанавливают еще одну опору: стойку (если позволяет перекрытие), либо шпренгельную ферму. Под стропило длиной более 9 м желательно ввести третью опору по центру, здесь можно установить только стойку, значит, перекрытие должно быть железобетонным и проверенным на сосредоточенную силу либо в его конструкцию включают балку, на которую можно будет опереть стойку.

Шпренгель, это балка из бруса, прокинутая на угол по пересекающимся наружным стенам. Чтобы балка особо не прогибалась (не «играла»), в шпренгельную конструкцию устанавливают два подкоса. Такая опора получила название шпренгельная ферма. В большинстве случаев при строительстве небольших загородных домов, эту ферму не нужно рассчитывать, ее элементы принимаются конструктивно из бруса или спаренных досок общим сечением 100х100 — для стоек, 50х100 — для подкосов и 100х150(h) мм — для балки.

рис. 45. Опирание накосных (диагональных) стропильных ног на прогон в центре вальмовой крыши

Опирание диагональной стропильной ноги в коньке зависит от расположения и количества промежуточных опор и конструкции основных наслонных стропил:

  • при наличии одного прогона посредине крыши диагональную стропильную ногу опирают на консоли прогона (рис. 45). Консоли выпускают сантиметров на 10–15 за подстропильную раму, лишнее потом проще отпилить, чем нарастить недостающее;
  • при наличии двух прогонов и стропил из досок, на прогоны устанавливается шпренгельная конструкция состоящая из горизонтальной балки и стойки, на которую крепится верх накосных стропил (рис. 46);
  • при наличии двух прогонов и стропил из брусьев, в коньке к стропилам пришивают прибоину (коротыш доски толщиной не менее 5 см) и опирают на нее накосные стропила.

рис. 46. Опирание накосных (диагональных) стропильных ног вальмовой крыши на шпренгель, при двух подстропильных рамах

Низ накосных стропил для посадки на шпренгель, консоль прогона или на прибоину, подрубается в горизонт и крепится гвоздями. При необходимости накосные стропила дополнительно прикрепляют к опорам металлическими хомутами или тугими проволочными скрутками.

Накосные стропила, расположенные в ендовах, подпереть шпренгельной фермой нельзя, так как угол стен, образующий ендову, внутренний, поэтому их подпирают стойками либо, если не позволяет перекрытие, подкосами. В этом случае, в отличие от диагонального стропила вальмы, максимальная нагрузка приходится на нижнюю часть стропильной ноги! Сюда и нужно упирать подкос (рис. 44). Однако угол наклона подкоса опертого низом в лежень получается слишком острым, поэтому подкос либо опирают низом в угол стен, либо ставят два подкоса (один от лежня, другой от угла стен) упирая их верхом друг в друга, либо пренебрегают точкой максимальной нагрузки и ставят один подкос от лежня с углом к горизонту 45–53°. Последний вариант, казалось бы, неправильный — подкос подпирает стропило совсем не там, где нам нужно. Но не будем забывать, что введение под балку третьей опоры, делает ее неразрезной и двухпролетной, что увеличивает ее несущую способность. Так, что установки подкоса по последнему варианту, чаще всего, бывает вполне достаточным для обеспечения несущей способности всей наслонной стропилины удвоенного сечения.

На практике нарожники стыкуют к наслонному стропилу простым запилом — подпиливают верх нарожника в одну плоскость к диагональной стропилине, стыкуют и пришивают 2–3 гвоздями. И я так делал, более того, никогда не видел, чтобы делали по-другому. Это совсем не значит, что мы делали правильно. Типовые узлы устройства стропильных крыш показывают, что нарожники нужно врубать в накосное стропило выбирая в нем гнезда. Это достаточно сложные узлы, которые можно упростить и даже увеличить жесткость и несущую способность накосной стропильной ноги. Жесткость стропила усиливается, если стыкование к нему нарожников делать не врубками, а устройством черепных брусков. Бруски сечением 50х50 мм нашиваются к низу стропильной ноги с обеих сторон. Шаг опирания нарожников нужно выбрать таким, чтобы они не приходили с двух сторон в одну точку стропила, а стыковались вразбежку (рис. 47). Иногда для этого приходится немного менять шаг установки нарожников относительно рядовых стропил. Установка опорных (черепных) брусков на накосную стропильную ногу делает ее сечение тавровым, что усиливает ее несущую способность и жесткость.

рис. 47. Узлы накосных (диагональных) стропил вальмоваых крыш

В зависимости от принятой расчетной схемы: распорной или безраспорной, низ диагональных стропильных ног упирается непосредственно в мауэрлат или в балку, уложенную на угол стен, либо опирается на них. В этом смысле накосные стропила ничем не отличаются от обычных стропил. Они, как и обычные стропильные ноги, сделанные с тремя или двумя степенями свободы, могут передавать распор на стены или не передавать его.

Принято считать, что угол наклона диагональной стропильной ноги меняется относительно угла наклона рядовых стропил. Это действительно так, если рассматривать диагональную стропильную ногу как отдельный элемент. Однако если спроецировать ее поочередно на стропила скатов, которые она объединяет, то мы увидим, что углы образуемые проекциями равны углам скатов. Попробуйте нарисовать накосное стропило на чертеже фасада здания и вы убедитесь в этом сами. То, что углы проекций на скаты, равны углам скатов, очень важно понимать при строительстве крыши — отпадают ненужные вопросы.

При необходимости верхняя пласть накосной стропилины, уложенной на ребре крыши, стесывается под углом, а расположенные в ендове — желобком, для укладки на них обрешётки.

Установкой между рядовыми стропилами прибоины из доски толщиной не менее 5 см можно сделать так называемую датскую крышу (рис. 48). При необходимости места креплений прибоины к рядовым стропилам подпирают подкосами (подстропильными ногами), низ которых упирают в лежень или стойку либо вместо рядовых стропил устанавливают усиленную (спаренную) пару стропильных ног. В местах пересечения прибоины со стойкой или двумя стойками ее крепят к ним гвоздевым боем и подпирают коротышами (обрезками досок). Полученную на крыше вертикальную плоскость обшивают погонажным или листовым материалом и, чаще всего, используют для устройства на чердаке естественного освещения и вентиляции: монтируют под коньком окна.

рис. 48. Опирание накосных (диагональных) стропил для устройства Датской крыши

«Врезание» крыш друг в друга. Г- и Т-образные крыши. Ендовы

Архитекторы называют крышу пятым фасадом — это один из самых выразительных элементов дома. Однако здесь необходимо выдержать баланс между дизайнерским решением и функциональностью крыши. С инженерной точки зрения чем проще крыша, тем меньше хлопот она доставит в строительстве и последующей эксплуатации. При проектировании крыши по бюджетному варианту следует, по возможности, избегать большого количества ендов, высотных перепадов конька, башенок и арочных форм.

На рис. 1 представлены основные типы простых конструкций крыш, но это всего лишь эскиз. Для правильного построения крыши должен быть разработан план крыши и основные разрезы, учитывающие линейные размеры здания и высотные отметки.

Как построить план крыши? Рассмотрим это на примерах (рис. 49). Современные загородные дома редко имеют план прямоугольника, чаще всего они строятся в виде букв Г, Т или в форме креста. Бывают и другие планировочные решения, нам сейчас важнее разобраться с основными принципами построения плана крыши. Планировку дома можно мысленно разбить на прямоугольники. Самый большой прямоугольник условно назовем основным помещением, а прямоугольники поменьше — пристройками.

рис. 49. Построение плана крыши

Нарисовав план стен, отступают от линий стен на 50 см (нормативный свес крыши) и в масштабе рисуют внешний периметр крыши. Затем на основной крыше рисуем прогон ab, перпендикулярно ему рисуем прогоны на пристройках cd. Теперь если соединить углы смыкания основной крыши и пристроек, то получим линию ендовы — внутреннего угла пересечения крыш. Здесь будет сделаны накосные стропильные ноги.

При одинаковой высоте коньков крыши накосные стропила устанавливаются на всю длину ендовы и будут опираться на мауэрлат и прогон основной крыши, углы скатов основной крыши и пристроек будут разными. Скаты получатся одного уклона только если ширина пристроек будет равна ширине основного помещения.

Укорачивание прогонов cd со стороны точки с изменяет линии ендовы. Расположение ее в плане под углом 45° приводит к тому, что скаты основной крыши и пристроек получатся с одинаковым наклоном, но конек пристройки станет ниже конька основной крыши. Изменением угла наклона ендовы (в плане) можно изменить высоту конька пристройки до требуемой величины. Накосное стропило, установленное в ендове, в этом случае, будет опираться на мауэрлат и прогон пристройки.

Укорачивание прогона со стороны точки а или b либо с обеих сторон приводит к образованию на крыше вальм. То же самое можно сделать с прогоном cd, укорачивая его со стороны точки d получим вальму на пристройке. Кстати, можно и удлинять прогоны, тогда на крыше получим треугольные, увеличенные на коньке, свесы крыши. Если полностью «согнать» прогон, например, прогон ab, в одну точку, получим шатровую крышу, в которой накосные стропила будут сходиться и опираться на единственную стойку.

В чердачных крышах, на любой высоте конька, прогоны пристроек стыкуются со стойками подстропильной конструкции основной крыши и опираются на прибоины (рис. 50). Гвоздевое соединение прибоин со стойками рассчитывается на срез гвоздей либо прибоина делается на всю высоту стойки.

рис. 50. Вариант стыкования двух крыш. Ендовы

Нарожники так же, как и в случае вальмовых крыш опирают на диагональное стропило, на которое предварительно нашиваются опорные бруски. Правило установки нарожников прежнее: они должны устанавливаться вразбежку, а не сходиться в одной точке накосного стропила.

Нарожники так же, как и в случае вальмовых крыш опирают на диагональное стропило, на которое предварительно нашиваются опорные бруски. Правило установки нарожников прежнее: они должны устанавливаться вразбежку, а не сходиться в одной точке накосного стропила. Нарожники в ендовах, как все остальные стропила могут быть выполнены по безраспорному и распорному варианту. Распорные стропила соединенные между собой в коньковом узле, низом упираются в накосную стропилину ендовы и отдают на нее распор. Сама же накосная стропильная нога получает дополнительное сжимающее напряжение, которое при упирании ее низом в мауэрлат, а верхом в коньковый узел, дает на мауэрлат распор. Этот распор старается «распрямить» угол стыкования мауэрлатных балок. Распор можно снять схваткой расположенной по низу накосного стропила и стойки либо, в случае Г-образной крыши, по низу накосных стропилин ендовы и вальмы расположенной с другой стороны. Если схватка будет расположена выше, она будет сжатым ригелем и распора не снимет. При изменении нижнего узла накосной стропильной ноги ендовы с упора на опирание, распор на стены не пойдет, а схваткой можно перехватить распор, возникающий в аварийных ситуациях при просадке конька.

Иными словами диагональные стропила крыш (вальмовые или ендовые) ничем особенным от обычных стропил не отличаются. Если встать к ним фронтально, то мы увидим все те же рядовые стропила, только длиннее и немного по-другому загруженные. Следовательно, их нужно проектировать и устанавливать по тем же правилам, что и рядовые стропила, только рассматривать их проекцию и схватки устанавливать соответствующим образом.

ВИСЯЧИЕ СТРОПИЛЬНЫЕ СИСТЕМЫ

Простейшая ферма из висячих стропил представляют из себя треугольник: две стропильных ноги, упертые верхом друг в друга, и затяжки. Это распорная конструкция. Однако на стены здания распор не передается, он полностью нейтрализуется затяжкой. Если наслонные стропильные системы можно делать как распорными, так и безраспорными, с соответствующим креплением мауэрлатной балки, то висячие стропильные системы не передают на стены никаких горизонтальных усилий, только вертикальные. Хотя, сама по себе, треугольная схема, безусловно, является распорной системой. Другими словами, распор, возникающий в системе, в ней и остается, внешне никак себя не проявляя, что упрощает устройство узлов опирания на стены. Под висячие стропила (рис. 54) не обязательно укладывать мауэрлат. На гидроизоляционный слой достаточно подложить деревянную доску, которая нужна здесь для выравнивания ферм в горизонт и для того, чтобы не произошло смятие древесины (для увеличения площади опоры узла опирания фермы).

рис. 54. Схемы и элементы висячих несущих деревянных стропил

Конструктивные схемы висячих стропильных систем

Дощато-гвоздевая мансарда

Схема 4

В зданиях с небольшими нагрузками, например, в дачных домиках, мансарду можно изготовить из дощато-гвоздевых рам (рис. 67). Применяется наслонная стропильная система, расчет ведется обычным методом для однопролетных балок. Узлы соединения стропил с балками перекрытия этажа и мансарды рассчитываются на срез гвоздей от сжимающих сил, возникающих в стропильных гвоздях. Если расчет показывает большое количество гвоздей, устанавливают дополнительные усиливающие прибоины либо гвозди заменяются на болты. Напомним, что применение болтов или глухарей за счет появления отверстий уменьшает расчетную несущую способность древесины, ее нужно уменьшать введением коэффициента 0, 8.

 

рис. 67. Дощато-гвоздевая мансарда

Пространственная жесткость рам обеспечивается так же, как и для треугольных трехшарнирных арок (висячих стропильных систем) установкой парных ветровых связей — схваток и устройством обрешетки.

Скатные крыши

ФОРМЫ КРЫШ

Крыша — это верхняя ограждающая конструкция здания, служащая для обеспечения несущих, гидроизоляционных, а в совмещенных крышах и теплых чердаках (мансардах) еще и теплоизоляционных функций. Крыша должна выдерживать собственный вес, ветровые и снеговые нагрузки, соответствовать противопожарным нормам и нести декоративную миссию. Делают два вида крыш: чердачные и бесчердачные. В чердачных крышах между перекрытием и кровлей имеется помещение. В бесчердачных — перекрытие верхнего этажа и кровля объединены в одну конструкцию. Оба вида крыш делают утепленными или холодными.

Кровля — верхний элемент крыши, защищающий здание от внешних воздействий: дождя, снега, мороза, солнечной радиации, пыли, вредных веществ.

Чердак — это пространство между внутренними поверхностями крыши, наружными стенами и перекрытием верхнего этажа. Он обеспечивает вентилирование конструктивных элементов крыши. Чердачные крыши для большинства зданий выполняют холодными. Чердачная крыша защищает здание только от атмосферных осадков, а теплоизоляция здания делается на чердачном перекрытии.

Мансарда — жилой чердак. В жилых домах делается отапливаемой. Либо не отапливаемой — для летних домиков.

По форме крыши делятся на плоские и скатные (рис. 1).


рис. 1. Формы крыш

Плоские крыши делают с уклоном менее 2, 5%. Плоская крыша испытывает большие снеговые нагрузки, чем скатная. Поскольку в ней отсутствует стропильная система, эта нагрузка передается сразу на перекрытие, что предъявляет к нему повышенные требования по несущей способности. Перекрытие домов с плоскими крышами это, чаще всего, сборные или монолитные железобетонные конструкции, в отличие от крыш скатных, где перекрытие может быть деревянным. Отсутствие в плоской крыше стропильной системы лишает ее парусности от воздействия ветровых нагрузок.

В зависимости от формы крыши меняется весь облик здания, при этом внутренняя планировка не меняется или меняется незначительно.

Плоскость крыши по которой скатывается вода, называется скатом. Скатные крыши имеют уклон более 2, 5%, они подразделяются на:

  • односкатную, опирающуюся на две наружные стены разной высоты;
  • двускатную, опирающуюся на две наружные стены равной высоты. Треугольные торцовые стены, образующиеся при этой форме, называются щипцами, если они сделаны из досок, или фронтонами, если они сделаны из камня. Отсюда еще одно название этих крыш — щипцовые;
  • вальмовую или четырехскатную — крышу с треугольными скатами (вальмами) по торцовым сторонам. Если вальма не доходит до карниза, крыша называется полувальмовой;
  • шатровую, четыре ската которой выполнены в виде одинаковых треугольников, сходящихся в одной точке;
  • ломаную (мансардную), двускатную, каждая плоскость которой представляет два прямоугольника, соединенных между собой под тупым углом.

Особенности скатных крыш

Форма скатных крыш, чаще всего, образуется стропильной системой крыши. Стропило (или стропильная нога) — это деревянная или металлическая балка, основной несущий элемент крыши. В зависимости от способа укладки и условий работы, стропила подразделяют на наслонные и висячие (рис. 2).

рис. 2. Схемы стропильных и бесстропильных скатных крыш

Наслонные стропила получили свое название от слова настелить («наслонить», «наслать»). Их концы опираются либо на стены разной высоты — балки раскладывают на стенах с определенным расстоянием (шагом) между собой — либо, например, в двускатных крышах, один конец стропила лежит на внешней, а другой на внутренней стене или на специальной несущей конструкции, сделанной по этой стене. Стропильные ноги низом опертые врубкой в мауэрлат, а верхом друг в друга передают на стены горизонтальную нагрузку (распор) от веса крыши и снега. Для нейтрализации распора, мауэрлат уложенный на стенах, жестко закрепляется. Стропила упирающиеся в мауэрлат горизонтальной врубкой, а верхом друг в друга, наоборот, безраспорная конструкция, в которой крепление мауэрлата к стене производится конструктивно.

Висячие стропила верхними концами упираются друг в друга и под местом стыка не имеют опоры. Для нейтрализации распора в нижней части висячих стропил устанавливают дополнительный элемент — затяжку. Таким образом, висячие стропила образуют треугольник, нижний элемент которого работает на растяжение, а на стены передается только вертикальное напряжение от веса крыши и снега.

Форма скатных крыш не всегда определяется стропильной системой. Скаты крыш можно образовывать фронтонами стен и использованием слег. Слега — несущий элемент крыши — балка, уложенная параллельно верху стен. Такие крыши называются бесстропильными, а несущие фронтоны стен — самцами. Бесстропильные крыши, чаще всего, применятся в деревянном рубленом домостроении. Однако замена материала слег с дерева на металл позволят их использование в домах со стенами из мелкоштучных материалов.

Перечисленные на рисунке виды скатных крыш: с наслонными и висячими стропилами или бесстропильные системы, представлены, так сказать, в «чистом» виде. На практике, все они могут быть выполнены на крыше одного дома с использованием отдельных конструктивных элементов. Например, скаты крыши могут сформированы фронтонами стен, на которые будет опираться один конец слег, а другой их конец может быть уложен на несущую ферму из висячих стропил.

В зданиях, стены которых сделаны из кирпича, бетона, пеноблоков или других влагопередающих материалов, пятка стропильных ног опирается на стены через деревянную балку, называемую мауэрлатом. А он, в свою очередь, отделяется от стены слоем рулонной гидроизоляции из рубероида, гидроизола или других подобных материалов. Для вентилирования подкрышного пространства и профилактики загнивания стропил и мауэрлата, а также для осмотра и возможного ремонта, верх мауэрлата устанавливают на стены на высоте не менее 300 мм и не более 500 мм от перекрытия. В домах с бревенчатыми или брусчатыми стенами стропила могут соединятся врубками или скобами с переводами (балками), врубленными между последним и предпоследним венцом сруба.

В конструкциях крыш с наслонными стропилами под опирание верха стропил часто выполняют различные несущие деревянные конструкции: стойки или фермы. Под них, как и под мауэрлат, тоже делается гидроизоляция и укладывается деревянная балка, которую, в этом случае, называют лежнем. И мауэрлат, и лежень монтируются в горизонт, но они могут быть уложены на разных высотах. Низ лежня делают на высоте не более 400 мм от верха перекрытия.

Нагрузки, действующие на несущую конструкцию скатных крыш

На прочность и долговечность конструкций крыш существенное влияние оказывают снег, ветер, дождь, перепады температуры и другие физико-механические факторы, воздействующие на здание.

Снеговая нагрузка

Точную нагрузку от веса снегового покрова, требуемую для расчета несущей способности стропильных систем в конкретном месте строительства, нужно выяснить в районных строительных организациях или установить по СНиП 2.01.07-85 «Нагрузки и воздействия», а конкретно, по картам, вложенным в «Изменения к СНиП 2.01.07-85» (pdf 6, 4 MB). Необходимо обратить ваше внимание на то, что изменения к СНиПу вступили в силу с 2008 г. и в них переизданы ряд карт, в том числе и карта районирования снегового покрова. «Изменения», это практически новый СНиП, заменяющий СНиП 1985 года. В новой редакции СНиП границы районирования не совпадают со старой картой, а расчет нагрузки от веса снегового покрова гармонизирован со структурой Европейских норм.

На рис. 3 показаны нагрузки от веса снегового покрова для расчета по второй группе предельных состояний (с коэффициентом 0, 7). Полная снеговая нагрузка (без коэффициента 0, 7) по карте районирования, приведена в таблице 1.

Расчетный вес снегового покрова Q на 1 м2 горизонтальной поверхности земли

(таблица 1)

 

Снеговые районы Российской Федерации 1 2 3 4 5 6 7 8
Q, кПа (кг/м2) 0, 8 (80) 1, 2 (120) 1, 8 (180) 2, 4 (240) 3, 2 (320) 4, 0 (400) 4, 8 (480) 5, 6 (560)

рис. 3. Районирование территории Российской Федерации по расчетному значению веса снегового покрова.

Расчет несущих конструкций зданий и сооружений выполняют по методу предельных состояний, при которых конструкции теряют способность сопротивляться внешним воздействиям, либо получают недопустимые деформации или местные повреждения.

Предельных состояний, по которым производится расчет несущих конструкций крыши, может быть два:

Первое предельное состояние достигается в том случае, когда в строительной конструкции исчерпана несущая способность (прочность, устойчивость, выносливость), а попросту, происходит разрушение конструкции. Расчет несущих конструкций ведется на максимально возможные нагрузки. Это условие записывается формулами: , означающими, что напряжения развивающиеся в конструкции при приложении нагрузки не должны превышать предельно допустимых

Второе предельное состояние характеризуется развитием чрезмерных деформаций от статических или динамических нагрузок: в конструкции происходят недопустимые прогибы, раскрываются узлы сочленений. Однако в целом конструкция не разрушается, но дальнейшая ее эксплуатация без ремонта невозможна. Это условие записывается формулой: f < fнор, означающей, что прогиб появляющийся в конструкции при приложении нагрузки не должен превышать предельно допустимого прогиба. Нормируемый прогиб балки, для всех элементов крыши (стропил, прогонов и брусков обрешетки) составляет L/200 (1/200 длины проверяемого пролета балки L), см.

Расчет стропильной системы скатных крыш ведется по обоим предельным состояниям. Цель расчета: не допустить разрушения конструкций либо их прогиба выше допустимого предела. Для снеговых нагрузок, действующих на крышу, несущий каркас крыши рассчитывается по первой группе состояний — на полный вес снегового покрова Q. Эту величину принято называть расчетной нагрузкой т.к. в данном случае речь идет только о весе снега, то ее можно обозначить, как Qр.сн.. Для расчета по второй группе предельных состояний: вес снега учитывается с коэффициентом 0, 7 т.е. расчет ведется на снеговую нагрузку равную 0, 7Q — эту величину можно обозначить, как Qн.сн. (расчетная нормативная нагрузка от веса снега).

В зависимости от уклона крыши и направления преобладающих ветров снега на крыше может быть значительно меньше и, как ни странно, больше, чем на плоской поверхности земли. При возникновении в атмосфере таких явлений, как снежный буран или метель, снежинки, подхваченные ветром, переносятся на подветренную сторону. После прохождения препятствия в виде конька крыши скорость движения нижних потоков воздуха снижается по отношению к верхним и снежинки оседают на крышу. В результате с одной стороны крыши снега лежит меньше нормы, а с другой больше (рис. 4).

рис. 4. Образование снеговых «мешков» на крышах с уклонами скатов от 20 до 30°

Снижение и увеличение снеговых нагрузок, зависящих от направления ветра и угла наклона скатов, учитываются коэффициентом µ. Например, на двухскатных крышах с углом скатов выше 20° и меньше 30° с наветренной стороны будет лежать 75%, а с подветренной 125% от того количества снега, который лежит на плоской поверхности земли. Значение других коэффициентов µ приведено в СНиП 2.01.07-85 и на рисунке 5.

рис. 5. Схемы нормативных снеговых нагрузок и коэффициенты µ

Толстый слой снега, скапливающийся на крыше и превышающий средненормативную толщину, называется снеговым «мешком». Они скапливаются в ендовах — местах, где пересекаются две крыши и в местах с близко расположенными слуховыми окнами. Во всех местах, где высока вероятность возникновения снегового «мешка», ставят спаренные стропильные ноги и выполняют сплошную обрешетку. Также здесь делают подкровельную подложку, чаще всего из оцинкованной стали, вне зависимости от материала основного покрытия кровли.

Снеговой «мешок», образующийся с подветренной стороны, постепенно сползает и давит на свес кровли, пытаясь обломить его, поэтому свес кровли не должен превышать размеры, рекомендуемые изготовителем кровельного покрытия. Например, для обычной шиферной кровли его принимают равным 10 см.

Направление преобладающего ветра определяется по розе ветров для данного региона строительства. Таким образом, после проведения расчета с наветренной стороны будут установлены одиночные стропила, с подветренной — спаренные. Если данные по розе ветров отсутствуют, для расчета нужно выбрать максимальную нагрузку, словно все скаты крыши находятся с подветренной стороны и на них лежит снега больше, чем на земле.

С увеличением угла наклонов скатов снега на крыше остается меньше, он сползает под собственным весом. При углах скатов, равных или больше 60°, снега на крыше совсем не остается. Коэффициент µ в этом случае равен нулю. Для промежуточных значений углов скатов µ находится методом прямой интерполяции (усреднением). Так, например, для скатов с углом наклона 40° коэффициент µ будет равен 0, 66, для 45° — 0, 5, а для 50° — 0, 33.

Таким образом, требуемые для подбора сечения стропил и шага их установки, расчетная и расчетная нормативная нагрузки от веса снега учитывающие углы наклонов скатов (Qр.сн и Qн.сн), рассчитываются как произведение полной нагрузки от веса снега (Q) и коэффициента µ:

Qр.сн = Qхµ — для первого предельного состояния (расчет на прочность);
Qн.сн = 0, 7Qхµ — для второго предельного состояния (расчет на прогиб)

Для расчета по первому предельному состоянию полную снеговую нагрузку (Q) берем из таблицы 1. Для расчета по второму предельному состоянию, табличные данные веса снегового покрова умножаем на коэффициент 0, 7 либо не производим этого арифметического действия и сразу выбираем нагрузку по карте рис. 3.

В регионах строительства, где средняя скорость ветра трех зимних месяцев превышает 4 м/с, на пологих крышах с уклоном от 12 до 20% (примерно от 7 до 12°), происходит частичный снос снега с крыши. В этом случае расчетная величина нагрузки от веса снега должна быть уменьшена применением коэффициента c = 0, 85. Во всех других случаях, для скатных крыш применяется коэффициент c = 1. Окончательные формулы определения расчетной нагрузки и расчетной нормативной нагрузки от веса снега, учитывающие наклон скатов и ветровой снос снега, будут выглядеть так:

Qр.сн = Qхµхc — для первого предельного состояния (расчет на прочность);
Qн.сн = 0, 7Qхµхc — для второго предельного состояния (расчет на прогиб)

Снижение снеговой нагрузки c=0, 85 не распространяется: на крыши зданий в районах со среднемесячной температурой воздуха в январе выше -5°С, так как периодически образующаяся наледь препятствует сносу снега ветром; на крыши зданий, защищенных от прямого воздействия ветра соседними более высокими зданиями или лесом, удаленными менее чем на 10h, где h — разность высот соседнего и проектируемого зданий; Скорость ветра и среднесуточная температура января определяется по картам «Изменения к СНиП 2.01.07-85» (рис. 6 и 7).

рис. 6. Районирование территории Российской Федерации по средней скорости ветра, м/с, за зимний период

Нагрузки, действующие на несущую конструкцию скатных крыш



Ветровая нагрузка

При боковом давлении ветра воздушный поток сталкивается со стеной и крышей здания (рис. 8). У стены дома происходит завихрение потока, часть его уходит вниз к фундаменту, другая по касательной к стене ударяет в карнизный свес крыши. Ветровой поток, атакующий скат крыши, огибает по касательной конек кровли, захватывает спокойные молекулы воздуха с подветренной стороны и устремляется прочь. Таким образом, на крыше возникают сразу три силы, способные сорвать ее и опрокинуть — две касательные с наветренной стороны и подъемная сила, образующаяся от разности давлений воздуха, с подветренной стороны. Еще одна сила, возникающая от давления ветра, действует перпендикулярно склону (нормаль) и старается вдавить скат крыши внутрь и сломать его. В зависимости от крутизны скатов нормальные и касательные силы изменяют свое значение. Чем больше угол наклона ската кровли, тем большее значение принимают нормальные силы и меньшее касательные, и наоборот, на пологих крышах большее значения принимают касательные, увеличивая подъемную силу с подветренной и уменьшая нормальную с наветренной стороны.

рис. 8. Ветровые нагрузки, возникающие от давления воздушных масс

Расчетное значение средней составляющей ветровой нагрузки w в зависимости от высоты z над поверхностью земли следует определять по формуле: Wр = Wхk(z)хc, где W — расчетное значение ветрового давления, определяется по карте приложения в «Изменениях к СНиП 2.01.07-85» (рис. 9); k — коэффициент, учитывающий изменение ветрового давления для высоты z, определяется по таблице 2; c — аэродинамический коэффициент, учитывающий изменение направления давления нормальных сил в зависимости от того с какой стороны находится скат по отношению к ветру, с подветренной или наветренной стороны (рис 10).

рис. 9. Районирование территории Российской Федерации по расчетному значению давления ветра

Коэффициент k(z) для типов местности (таблица 2)

 
Высота z, м А Б В
не более 5 0, 75 0, 5 0, 4
10 1, 0 0, 65 0, 4
20 1, 25 0, 85 0, 55
Типы местности: А – открытые побережья морей, озер и водохранилищ, пустыни, степи, лесостепи, тундра; Б – городские территории, лесные массивы и другие местности, равномерно покрытые препятствиями высотой более 10 м; В – городские районы с плотной застройкой зданиями высотой более 25 м      


рис. 10. Значения аэродинамических коэффициентов ветровой нагрузки

Знак «плюс» у аэродинамических коэффициентов определяет направление давления ветра на соответствующую поверхность (активное давление), знак «минус» — от поверхности (отсос). Промежуточные значения нагрузок следует находить линейной интерполяцией. При затруднении в использовании таблиц 3 и 4 изображенных на рисунке 10, нужно выбирать наибольшие значения коэффициентов для соответствующих углов наклона скатов крыш.

Крутые крыши ветер старается опрокинуть, а пологие — сорвать и унести. Для того чтобы этого не произошло нижний конец стропильных ног крепят проволочной скруткой к ершу, забитому в стену (рис. 11). Ерш — это металлический штырь с насечкой против выдергивания, который изготавливают кузнечным способом. Поскольку достоверно неизвестно с какой стороны будет дуть сильный ветер, стропила прикручивают по всему периметру здания через одно, начиная с крайних, — в районах с умеренными ветрами и каждое — в районах с сильными ветрами. В некоторых случаях этот узел может быть упрощен: ерш не устанавливается, а проволока с выпущенными концами закладывается в кладку стен в период их возведения. Такое решение допустимо, если оба конца проволоки выпускается внутрь чердака и не портят внешний вид фасада здания. Обычно для крепления стропил используется стальная предварительно отожженная (мягкая) проволока диаметром от 4 до 8 мм.

рис. 11. Пример решения карнизного узла наслонных стропил скатной крыши

Общая устойчивость стропильной системы обеспечивается раскосами, подкосами и диагональными связями (рис. 12). Устройство обрешетки также способствует общей устойчивости стропильной системы.

рис. 12. Пример обеспечения пространственной жесткости стропильной системы

Нагрузки, действующие на несущую конструкцию скатных крыш


От веса кровли

На выбор сечения стропил и шага их установки существенное влияние оказывает собственный вес кровли, материал которой, в свою очередь, зависит от уклона скатов крыши.

Скаты одной кровли обычно устраивают с одинаковым уклоном, который выбирают в зависимости от кровельного материала, способа его укладки, архитектурных требований и экономических соображений, а также от района строительства. С крутых кровель, с уклоном 45° и более, быстро удаляется атмосферная вода и снег, что учитывают при строительстве зданий в районах с большим количеством осадков. Но с увеличением уклона повышается стоимость кровли. Например, при возведении кровли с уклоном 45° требуется в полтора раза больше материала, чем для плоской, а при уклоне крыши в 60° — в два раза больше. В тех районах страны, где бывают сильные ветры, наиболее рационально устраивать пологие кровли, так как ветровая нагрузка на скаты таких кровель меньше и наоборот, в заснеженных районах с несильными ветрами, лучше делать крутые скаты, уменьшая снеговую нагрузку за счет скатывания снега.

Уклон скатов крыш в различных нормативных документах выражается по разному: в виде безразмерных величин (отношения высоты к половине пролета), в процентах и градусах (рис. 13). Самое понятное определение уклона в виде безразмерных единиц. Когда крыша строится, то конечно же, никто не измеряет наклон скатов в градусах транспортиром. Если при строительстве отсутствует проектная документация, задающая высоту устройства конька, поступают проще: измеряют пролет здания, находят центр и от него вверх с помощью ровной деревянной рейки выносят высоту равную, например, половине пролета (уклон 1: 1) или трети половины пролета (уклон 1: 3), или любую другую. Процентное определение уклона, на взгляд многих строителей, только запутывает работу.

рис. 13. Взаимосвязь между безразмерной величиной уклона скатов крыши, углом в градусах и процентах

На уклон скатов крыши влияет и вид кровельного материала, так как при строительстве необходимо учитывать размер кровельного материала, способ его крепления, технологичность укладки и предусмотреть дальнейшую его ремонтопригодность и доступность обслуживания. Для скатных крыш применяют различные кровельные материалы: стальные оцинкованные листы, плоские и волнистые асбестоцементные и битумные листы, керамическую, цементную и металлическую черепицу, рубероид и другие. Выбор кровельного материала определяет величину угла наклона крыши. Чем плотнее материал кровли и герметичнее его стыки, тем меньше может быть уклон крыши, и наоборот, чем мельче размеры штучного кровельного материала, например, черепицы, тем круче должна быть крыша. Это объясняется не только большим количеством соединений малоразмерных деталей, а значит, возможным протеканием, но и большим весом кровли. Чем тяжелее кровельный материал, тем больший угол наклона нужно придать скатам. Рекомендуемые уклоны скатных крыш приведены в таблице 5.

Рекомендуемые уклоны скатных крыш (таблица 5)

 
Материал скатной кровли Уклон крыши Масса 1 м2, кг
Волнистые а/ц листы: среднего профиля от 1: 10 до 1: 2 11
усиленного профиля от 1: 5 до 1: 1 13
Волнистые целлюлозно-битумные листы от 1: 10 и более 6
Мягкая (гибкая) черепица от 1: 10 и более 9–15
Из оцинкованной жести: с одинарными фальцами от 1: 4 и более 3–6, 5
с двойными фальцами от. 1: 5 и более 3–6, 5
Керамическая черепица от 1: 5 до 1: 0, 5 50–60
Цементная черепица от 1: 5 до 1: 0, 5 45–70
Металлочерепица от 1: 5 и более 5

Необходимо отметить, что в таблице приведены рекомендованные практикой и нормативными документами уклоны скатов кровель из различных материалов и их усредненный вес на квадратный метр. Однако рынок строительных материалов намного богаче, фирмы-изготовители кровельных материалов постоянно совершенствуют свою продукцию: снижают вес и модернизируют технические характеристики изделий. При выборе конкретного материала на кровлю лучше использовать техническую документацию фирмы-изготовителя.

В вес кровли входит вес обрешетки. Обрешеткой называют несущий элемент кровли, к которому собственно крепится сама кровля. Различают два вида обрешеток: сплошная и разреженная (рис. 14). Чтобы определить требуемый вид обрешетки и шаг установки решетин, нужно заранее определиться с видом кровельного покрытия.

рис. 14. Обрешетки скатных крыш

Разреженная обрешетка делается под жесткие кровельные материалы, то есть под те материалы, которые сами способны нести на себе снеговую и ветровую нагрузку и при этом не прогибаться и, тем более, не разрушаться. Разреженную обрешетку выполняют из деревянных жердей или пиленых брусков. В настоящее время в продаже появились П-образные оцинкованные металлические решетины. Шаг установки решетин и размер их сечения зависят от вида кровельного материала.

Под кровли из крупноразмерных штучных элементов: асбестоцементные листы среднего и унифицированного профиля длиной до 1, 3 м и цементноволокнистые листы шаг раскладки обрешетки выбирают таким, чтобы под каждым листом оказалось три решетины. Обычно шаг решетин составляет 60 см под асбестоцементные и цементноволокнистые листы любой унифицированной длины. Сечение решетин обычно принимается 60х60 мм, можно и меньше, например, 40х60 мм, но тогда их нужно устанавливать чаще. Под волнистые целлюлозобитумные листы типа ондулин шаг обрешетки выбирается от имеющегося уклона скатов крыши. Он выбирается размером 45 см для уклонов от 1: 6 до 1: 4 и 60 см — для уклонов более 1: 4. Для крыш с уклоном скатов менее 1: 6 под ондулин делается сплошная обрешетка.

Под кровли из малоразмерных штучных элементов, например, из черепицы, шаг обрешетки принимается таким, чтобы каждая отдельная черепица легла на две решетины. Он может составлять от 16 до 40 см. Самый распространенный шаг примерно 33 см. При расчете веса кровельного покрытия лучше заранее определиться с выбором типа черепицы и уточнить шаг обрешетки. Обрешетку под черепицу при однослойном покрытии стелют из обрезных брусков сечением 50х50 или 50х60 мм, при двухслойном или тяжелой штампованной черепицей — сечением 60х60 мм.

При устройстве кровель из стального профилированного настила и его разновидности металлочерепицы, шаг решетин выбирается исходя из несущей способности материала. Обычно он составляет 35–40 см и равен поперечному шагу профиля металлочерепицы. Для обрешетки используются доски шириной примерно 100 мм.

Под мягкие кровельные материалы делается сплошная обрешетка. Применяемый для определения типа обрешетки термин — «сплошная» совсем не означает, что доски решетин прибиваются впритирку друг к другу. Обычно таким образом крепятся только две верхних и две нижних решетины, остальные образуют между собой зазор от 2 до 5 см. Решетины могут быть изготовлены из окромленого (ровного обрезанного с двух сторон по длине) или не кромленого теса толщиной 2–2, 5 см. При применении не кромленых досок их располагают по скату кровли по типу комель к вершине, обзол с не кромленого теса должен быть обязательно снят.

Обрешетку под стальную кровлю выполняют сплошной или разреженной. Разреженную обрешетку делают из брусков сечением 50х50 мм, досок — 50х120 (140) мм, сплошную — из досок толщиной 30–40 мм. Бруски располагают через 200–250 мм друг от друга. Через каждые 1, 4 м прибивают доски такой же толщины, как бруски, шириной до 140 мм (более широкие доски могут коробиться), которые необходимы для стыковки на них лежачих фальцев картин. Верх крыши — конек сбивают из досок шириной 200 мм.

В последнее время при использовании новейших кровельных покрытий стали часто использоваться контробрешетки. Контробрешеткой называют вторую, чаще всего сплошную обрешетку, выполненную под углом к первой. Угол наклона контробрешетки делают примерно равным 45°. Наклон решетин не только увеличивает пространственную жесткость крыши, но и позволяет сделать практически любую кровлю, за исключением, пожалуй, только черепичной, но при желании можно сделать и ее.

Сплошная обрешетка из досок в настоящее время почти не применяется ее заменили на сплошную обшивку скатов влагостойкой фанерой или плитами OSB (табл. 6).

Рекомендуемая толщина сплошных обрешеток (таблица 6)

 

Шаг стропил, мм Толщина фанеры, мм Толщина OSB 3, мм Толщина досок, мм
600 900 1200 1500 12 18 21 27 12 18 21 27 20 23 30 37

Приблизительный вес материала кровельного покрытия можно принять по таблице 5, а вес обрешетки нужно рассчитать исходя из выбранного материала и конструкции кровли. Для деревянных обрешеток применяются бруски хвойных пород. Объемный вес одного кубометра древесины равен 500–550 кг/м3. Если будет использована фанера или OSB, то их объемный вес равен 600–650 кг/м3.

Нагрузки, действующие на несущую конструкцию скатных крыш


Поделиться:



Последнее изменение этой страницы: 2019-05-04; Просмотров: 1699; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.414 с.)
Главная | Случайная страница | Обратная связь