Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Химические свойства древесины



Химический состав древесины и коры. Древесина в основном состоит из органических веществ. Элементарный химический состав древесины всех пород практически одинаков. Органическая часть абсолютно сухой древесины (высушенной при 103оС) содержит в среднем 49-50 % углерода, 43-44 % кислорода, около 6 % водорода и 0,1-0,3 % азота.

Неорганическая часть может быть выделена в виде золы путем сжигания древесины. Количество золы в древесине около 0,2-1 %. В состав золы входят кальций, калий, натрий, магний, в меньших количествах фосфор, сера и другие элементы. Они образуют минеральные вещества, большая часть которых нерастворима в воде. Среди растворимых первое место занимают щелочные – поташ и сода, а из нерастворимых – соли кальция.

Химические элементы образуют сложные органические соединения. Главные из них – целлюлоза, лигнин, гемицеллюлоза, входящие в состав клеточных стенок древесины. Остальные вещества называются экстрактивными. Это смолы, дубильные и красящие вещества.

Кора по элементарному составу мало отличается от древесины, но в ней больше минеральных веществ. Химический состав коры некоторых пород приведен в таблице 2.1 [1].

Таблица 2.1 – Химический состав коры, %

Вещества

Сосна

Ель

Береза

Луб Корка Луб Корка Луб Корка
Целлюлоза 18,2 16,4 23,2 14,3 18,5* 3,4*
Лигнин 17,1 43,6 15,6 27,4 20,3 1,3
Пентозаны 12,1 6,8 9,7 7,1 20,2 1,1
Гексозаны 16,3 6,0 9,3 7,7 -- --
Суберин 0,0 2,9 0,0 2,8 1,2 38,7
Экстрактивные: растворимые в воде растворимые в спирте растворимые в эфире 20,8 3,9 -- 14,2 3,5 -- 33,1 1,7 -- 27,9 2,6 -- -- 13,7 1,7 -- 5,6 38,1

* Включая гексаны

Из данных таблицы 2.1 видно, что соотношение между основными органическими веществами в коре иное, чем в древесине, здесь значительно меньше целлюлозы. Кроме того, в наружной части коры содержится суберин, которого нет в древесине.

Целлюлоза представляет собой линейный полимер – полисахарид. Формула целлюлозы (С6Н10О5)n, где n – степень полимеризации. В клеточной стенке целлюлоза находится в соединении с другими веществами. Целлюлоза – вещество белого цвета, плотность 1,54-1,58 г/см3. В древесине хвойных пород целлюлозы содержится больше (41-58 %), чем в древесине лиственных пород (39-47 %).

Целлюлоза очень стойкое вещество, не растворяется в воде, спирте, эфире, ацетоне. На этом свойстве основаны промышленные способы получения целлюлозы из древесины.

Лигнин – высокомолекулярное соединение ароматической природы, плотность 1,25-1,45 г/см3. Лигнин по сравнению с целлюлозой содержит большее количество углерода (целлюлоза 44 %, лигнин 60-65 %) и меньше кислорода. Лигнин менее стойкое вещество, при нагревании растворяется в щелочах и кислотах, находит применение в виде пылевидного топлива, в производстве крепителей формовочных земель в литейном деле, пластических масс, ванилина, активированного угля и др.

Гемицеллюлозы объединяют группу полисахаридов, входящих в состав клеточной стенки, но отличающихся от целлюлозы химическими и физическими свойствами. В группу гемицеллюлоз входят пентозаны и гексозаны. По сравнению с целлюлозой у гемицеллюлоз невысокая степень полимеризации, чем и объясняется повышенная растворимость их в разбавленных щелочах и легкая гидролизуемость.

Содержание указанных веществ в древесине хвойных и лиственных пород приведено в таблице 2.2 [2].

Таблица 2.2- Содержание органических веществ в древесине хвойных и лиственных пород

Вещество

Содержание, %

в хвойных в лиственных
Целлюлозы 41 – 58 39 – 47
Лигнина 28 – 34 17 – 27
Гемицеллюлозы 15 – 23 20 – 38
В том числе: пентозаны гексозаны 5 – 12 9 – 17 15 – 30 до 8

Из данных таблицы 2.2 видно, что наибольшее количество целлюлозы, лигнина и гексозанов содержат хвойные породы, а гемицеллюлозы и пентозанов – лиственные породы.

Экстрактивные вещества получают путем экстракции водой и органическими растворителями. Водой извлекаются из древесины дубильные вещества, камеди и красящие вещества. Активную часть дубителей составляют таниды. Они содержатся в ядре дуба (6-11 %) и каштана (6-13 %), а также в коре ивы, лиственницы, дуба, ели, пихты (от 5 до 16 %). Дубильные вещества растворимы в воде и спирте, легко окисляются в присутствии щелочей. Дубильные вещества используются в кожевенной промышленности при выделке кож из сырых шкур животных. Это придает коже стойкость против гниения, эластичность, способность не разбухать.

Камеди представляют собой водорастворимые смолы. Красящие вещества желтого, коричневого, красного и синего цвета содержатся в полостях клеток древесины (больше в ядре) и коры.

Суберин. Это смесь веществ, включающая органические кислоты и их метиловые эфиры. Суберин находится только в коре и вызывает опробковение клеточных стенок корки.

Химический состав древесины основных пород приведен в таблице 2.3 [2].

Таблица 2.3 – Химический состав древесины основных пород, %

Порода

Целлюлоза

Лигнин

Пентозаны

Гексозаны

Зола

Экстрактивные вещества, растворимые

в эфире в воде
Сосна 51,9 28,2 11,2 9,3 0,2 1,6 0,6
Ель 58,3 29,0 10,1 9,8 0,2 1,1 1,8
Лиственница сибирская 45,8 29,5 9,3 -- 1,0 1,8 5,1
Пихта 48,0 29,9 5,3 17,8 0,7 0,9 1,4
Кедр 50,0 30,1 8,6 11,8 0,1 2,4 1,5
Дуб 38,9 23,8 28,8 -- 0,3 0,6 1,8
Бук 42,2 20,8 29,3 7,6 0,5 0,5 0,6
Береза 46,8 21,2 32,9 -- 0,4 3,0 1,5
Клен 41,5 23,1 25,6 7,7 0,3 0,3 0,5
Осина 52,4 20,3 22,6 0,5 0,2 1,6 2,2

Из данных таблицы 2.3 видно, что древесина хвойных пород отличается несколько большим содержанием целлюлозы, а лиственных – высоким содержанием пентозанов.

Получение и использование целлюлозных материалов. В основе ряда широко применяемых материалов лежит целлюлоза. Ее можно получить, удалив из клеточных стенок древесины все остальные вещества. В процессах варки, воздействуя на древесину различными агентами, растворяют сопровождающие вещества, отличающиеся меньшей химической стойкостью.

В промышленности используют кислотные, щелочные и нейтральные способы получения целлюлозы.

Кислотные способы. К этой группе относят сульфитный и бисульфитный способы. При сульфитном способе в качестве сырья используется древесина малосмолистых хвойных пород (ели, пихты) и ряда лиственных пород.

Короткие окоренные бревна (балансы) на рубильных машинах перерабатываются в щепу. Щепа загружается в вертикальные варочные котлы вместимостью до 400 м3. В котел подается сульфитная варочная кислота, представляющая собой раствор сернистой кислоты, содержащий некоторое количество бисульфита кальция Ca (HSO3)2. Кальциевое основание (CaO) может быть заменено магниевым, натриевым или аммонийным. Варка ведется при 130-150оC и давлении 0,5-1 МПа в течение 5-12 часов. В результате варки получают целлюлозу и перешедшие в раствор органические вещества – сульфитный щелок. Целлюлозу промывают, очищают от сучьев, щепы, песка; отбеливают хлорсодержащими веществами. На специальных машинах целлюлозу обезвоживают и превращают в плотную ленту, которую затем разрезают на листы и упаковывают в пачки. В таком виде техническая целлюлоза поступает на бумажные фабрики и другие предприятия.

Сульфитный щелок используется для получения путем биохимической переработки белковых кормовых дрожжей, этилового спирта и других продуктов. Химической переработкой из щелока можно получить ванилин, фенолы, ароматические кислоты.

Бисульфитный способ позволяет использовать для получения целлюлозы древесину практически любых пород. Варка щепы проводится в водном растворе бисульфата натрия, магния или аммония. Оборудование и технология во многом похожи с применяемыми при сульфитном способе. Однако температура процесса варки выше (155-165оС).

Щелочные способы. К этой группе относятся сульфатный и натронный способы. Для получения целлюлозы сульфатным способом может быть использована древесина любых пород, в том числе и высокосмолистых (сосна и др.) измельченная в щепу древесина варится в растворе, содержащем едкий натрий NaOH и в 3 раза меньше сернистого натрия Na2S. Варка ведется в котлах вместимостью 75-160 м3 при 170-180оС и давлении 0,8-1 МПа в течение 3-5 часов. По окончании процесса варочный раствор приобретает черный цвет и называется черным щелоком. Черный щелок уваривают для компенсации потерь Na2S, смешивают с сульфатом натрия Na2SO4 и прокаливают. При этом органическая часть щелока сгорает (используется как топливо), а минеральная употребляется для приготовления варочного раствора (белого щелока). Остальные операции такие же, как и при получении сульфитной целлюлозы. Варка может осуществляться не только в котлах, но и в высокопроизводительных аппаратах непрерывного действия. Для получения высококачественной целлюлозы, идущей на химическую переработку, древесину подвергают предгидролизу (пропаркой, водной варкой при 170оС или другим способом) с целью удаления большей части гемицеллюлоз. Выход целлюлозы сульфатным способом составляет 40-50 %.

Сульфатный способ позволяет получать более прочные волокна, необходимые для производства корда и других целей. К достоинствам этого способа относится также предусмотренная технология регенерации щелока. Это дает возможность проводить процесс по замкнутой схеме, сводя к минимуму загрязнение водоемов.

В качестве побочных продуктов при сульфатном производстве целлюлозы улавливают скипидар и снимают с поверхности охлажденного щелока сульфатное мыло, разложение которого минеральной кислотой дает таловое масло. Этот продукт применяют при выработке хозяйственного мыла, приготовления олифы, смазочных масел. Из талового масла получают канифоль, фитостерин, используемый для лечения атеросклероза, кожных и других заболеваний, а также ряд продуктов, применяемых в производстве ядохимикатов, моющих средств, эмульгаторов и т.д. Часть щелочного лигнина без ущерба для основного производства может быть использована в качестве наполнителя для синтетического каучука, для замены фенола при получении пластмасс, в шинной, керамической и других отраслях промышленности. Из предгидролизата можно получать кормовые дрожжи. Второй щелочной способ получения целлюлозы – натронный. Основан на применении в качестве реагента едкого натра; потери щелочи возмещаются добавкой соды.

Нейтральный способ. Этот способ используется для получения из древесины лиственных пород целлюлозы с весьма большим содержанием сопутствующих веществ. Варочный раствор, содержащий сульфит натрия Na2SO3 или сульфат аммония (NH4)2SO3, имеет близкую к нейтральной реакцию, поэтому способ называют моносульфитным или нейтрально-сульфитным. Варка проводится в котлах периодического или непрерывного действия при конечной температуре 160-180оС, давлении 0,65-1,25 МПа и длится 0,2-6 часов. Основной недостаток – невозможность использования древесины хвойных пород.

Для всех применяемых в промышленности способов получения целлюлозы характерно образование отходов, в той или иной мере загрязняющих окружающую среду соединениями серы. Поэтому особенно важны разработки бессернистой технологии целлюлозы.

Гидролиз древесины. При взаимодействии водных растворов кислот с древесиной происходит гидролиз ее полисахаридной части. Целлюлозы и гемицеллюлозы при гидролизе превращаются в простые сахара. Полученные сахара идут на биохимическую переработку. Эти сахара (например, глюкоза, ксилоза и др.) можно подвергать химической переработке, получая такие продукты, ксилит, сорбит и др. Сырьем для гидролизной промышленности служат главным образом отходы лесопиления и деревообработки, низкокачественная древесина. Гидролиз древесины можно осуществлять разбавленными минеральными кислотами (серной, соляной) при высокой температуре или теми же, но концентрированными кислотами при нормальной температуре.

В промышленности применяется способ гидролиза разбавленной до 0,5-0,6 % серной кислоты. Сырье в виде смеси опилок и щепы поступает в гидролизаппарат вместимостью 18-160 м3. Сюда же подается горячий раствор серной кислоты. При 140-160оС происходит осахаривание (гидролиз) гемицеллюлоз. Затем при 180-190оС начинается гидролиз целлюлозы. Одновременно с подачей серной кислоты отбирают гидролизат – кислый водный раствор простых сахаров. В конце процесса в гидролизаппарат подается горячая вода для удаления сахаров и серной кислоты, пропитывающих нерастворимый осадок – лигнин. Этот побочный продукт может быть использован для получения смол, пластмасс, антисептиков, стимуляторов роста растений, удобрений, активированного угля, топлива и др.

При охлаждении гидролизата образуются пары, из конденсата которых получают фурфурол, представляющий собой бесцветную маслянистую жидкость с запахом печеного хлеба. Он применяется в производстве пластмасс, синтетических волокон (нейлона), смол, для очистки смазочных масел, изготовления медицинских препаратов (фурацилина и др.), красителей, средств для борьбы с сорняками, грибами и насекомыми, а также и для других целей. Фурфурол можно получать в качестве основного продукта при гидролизе богатых пентозанами древесины лиственных пород (березы, осины) и сельскохозяйственных растительных отходов.

Нейтрализованный известковым молоком гидролизат (сусло) поступает в бродильное отделение. Там под действием ферментов винокуренных дрожжей содержащиеся в сусле гексозы (глюкоза и сахара из гексозана) сбраживаются и образуют этиловый спирт, а также углекислый газ, который улавливается и используется для получения жидкой углекислоты и сухого льда.

Термическое разложение древесины. Разложение древесины происходит при нагреве ее без доступа воздуха. Этот процесс называется сухой перегонкой. При температуре 120-250оС происходит удаление воды и частичное разложение гемицеллюлоз (при температуре 150-270оС). Затем при 275-450оС происходит распад веществ, слагающих древесину. При этом происходит бурное выделение тепла. Последняя стадия протекает при температуре 450-550оС с дополнительным подводом тепла извне. В результате сухой перегонки образуются твердые (уголь), жидкие (жижка) и газообразные продукты.

Древесный уголь содержит 80-97 % углерода. Он не содержит вредных примесей (серы и фосфора). Древесный уголь обладает высокой сорбционной способностью. Его применяют в металлургии при выплавке цветных металлов и ферросплавов; в виде, обработанных паром, порошкообразных углей для очистки промышленных растворов и сточных вод, обесцвечивания соков и рафинируемых масс в сахарной промышленности и т.п. он идет для производства сероуглерода, необходимого для получения вискозного волокна, и целлофана. Промышленность полупроводников использует особо чистый кремний, для получения которого необходим древесный уголь. Он также применяется для производства электродов, цементации (придания твердости стальным деталям), в медицине, в качестве топлива, кормовой прикормки для скота, для производства пластмасс и для других целей.

Жижка представляет собой жидкий дистиллят – раствор продуктов разложения древесины. При отстаивании жижки образуются два слоя: верхний – водный и нижний – смоляной. Из отстойной и растворенной в сырой жижке смолы получают антиокислитель бензина, антисептики (креозот), фенолы для производства пластмасс, крепители литейных земель, понизители вязкости бурильных растворов, и другие продукты. Из водного слоя выделяют уксусную кислоту, метиловый спирт, растворители (ацетон, метилацетат и др.). Газы, получаемые при сухой перегонке древесины, используют в качестве топлива для обогрева реторт (аппаратов для сухой перегонки).

Сжигание древесины. Окисление древесины в процессе горения происходит при ее энергохимической переработке и при использовании в качестве топлива. Качество топлива оценивается теплотой сгорания (теплотворной способностью).

Массовая теплота сгорания древесины представляет собой количество тепла, выделяемое при полном сгорании единицы массы – 1 кг древесины. Теоретически массовую теплоту сгорания можно определить по химическому составу. Точно определить теплоту сгорания можно в лабораторных условиях в калориферах.

Элементарный химический состав древесины практически одинаков. Поэтому теплота сгорания единицы массы древесины почти не зависит от природы и в абсолютно сухом состоянии колеблется в пределах 19,6- 21,4 МДж/кг.

Обычно дрова оценивают не по массе, а по объему, и необходимо знать теплоту сгорания единицы объема (1 м3) древесины. Умножив теплоту сгорания единицы массы на плотность древесины, получают теплоту сгорания единицы объема. Объемная теплота сгорания зависит от породы, т.е. чем выше плотность древесины, те6м выше ее теплота сгорания. Например, для древесины дуба объемная теплота сгорания равна 13*103 Мдж/м3, для осины – 7,4*10 м 3 МДж/м3. теплота сгорания также зависит от влажности древесины, с увеличением которой она уменьшается.


Поделиться:



Последнее изменение этой страницы: 2019-05-08; Просмотров: 248; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.021 с.)
Главная | Случайная страница | Обратная связь