Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Изучение современного напряженного состояния земной коры и литосферы
В последние годы справедливо придается большое значение изучению современного напряженного состояния земной коры и всей литосферы, и соответствующие исследования ведутся в международном масштабе. Существует три основных метода определения знака и ориентировки напряжений в земной коре (литосфере): 1) метод определения характера смещений в очагах землетрясений (сейсмофокальный механизм); 2) изучение ориентировки и знака перемещений по геологическим индикаторам — сколовым трещинам, штрихам и бороздам на зеркалах скольжения и т.д.; 3) изучение напряженного состояния пород в буровых скважинах и горных выработках (штольнях, шахтах). Для определения фокальных механизмов землетрясений необходимо иметь данные регистрации соответствующего землетрясении на нескольких сейсмостанциях, находящихся на разных азимутальных направлениях от эпицентра землетрясения. На сейсмограммах, записанных на этих станциях, следует обратить внимание на знак первых вступлений продольных волн. Если первое колебание направлено вверх, это означает, что первой пришла волна сжатия, если вниз — волна разрежения (растяжения). Далее необходимо нанести полученные данные на стереограмму, центром которой является эпицентр землетрясения. На этой стереограмме должны быть затем обозначены плоскости, проходящие через ее центр и разграничивающие области сжатия и растяжения. Эти плоскости носят название нодальных, т.е. узловых, плоскостей и должны быть взаимно перпендикулярны. Они и отвечают плоскостям, вдоль которых могло произойти смещение во время данного землетрясения (рис. 4.4). Выбор той или другой возможной плоскости делается исходя из степени согласованности с данными о смещениях на поверхности или о закартированных геологических разрывах. Характер смещений устанавливается по распределению областей сжатия и растяжения на стереограмме (см. рис. 4.4): при взбросе в центре стереограммы располагается область сжатия, по периферии — растяжения; при сбросе наблюдается обратная картина; при сдвиге стереограмма распадается на чередующиеся квадранты сжатия и растяжения. В случае негоризонтальной ориентировки двух или всех трех осей напряжений «картинка» утрачивает симметричное расположение областей сжатия и растяжения относительно вертикальной оси стереограммы. Следующая группа методов основана на использовании чисто геологических индикаторов. Эта группа включает три метода (Л.А. Сим). Один из них — анализ ориентировки сопряженных сколовых трещин — был предложен М.В. Гзовским. Условиями получения правильных результатов при применении этого метода являются наличие следов перемещений но трещинам и использование лишь одновозрастных систем. При соблюдении утих условий положение оси сжатия определяется по биссектрисе острого угла между сколовыми трещинами, оси растяжения — по биссектрисе тупого угла, а промежуточной оси — по линии пересечения трещин. Другой метод, называемый кинематическим, заключается в использовании в качестве индикатора вектора перемещений штрихов и борозд на зеркалах скольжения в горных породах. Метод наиболее полно разработан в России О.И. Гущенко, а за рубежом — французским геологом Ж. Анжелье. В этом методе изучаются штрихи и борозды, наблюдаемые на зеркалах скольжения, образующихся при сдвиговых смещениях, ориентированных, как правило, вдоль вектора касательных напряжений. Некоторую трудность вызывает, однако, однозначное определение направления перемещения по плоскости сместителя (сброс или взброс, правый или левый сдвиг и т. п.); для решения этой альтернативы необходимо привлечение других геологических данных. В связи с этим предпочтение следует отдавать изучению смещений по региональным разрывам, по которым имеется наиболее полная геологическая информация (данные картирования). Третий метод — структурно-парагенетический, или комплексный. Он использует две категории индикаторов тектонических напряжении: 1) минерализованные жилы, дайки магматических пород; 2) плоскости рассланцевания, кливажа, сколовые трещины, стилолитовые швы. Условиями правильного применения метода являются одновозрастность изучаемых индикаторов и принадлежность их к структурным ансамблям одного ранга. Индикаторы первой категории позволяют, по данным Л.А. Сим, уверенно находить положение оси растяжения и менее уверенно — оси сжатия. Индикаторы второй категории, напротив, дают возможность более точно определять ось сжатия, чем ось растяжения. Метод был успешно применен Л.М. Расцветаевым, Л.А. Сим и др. Иллюстрацией итогов подобных исследований в сочетании с применением кинематического метода могут служить построения Л.А. Сим для европейского севера России и прилегающих зарубежных территорий (рис. 4.5). Наиболее интересный и важный результат заключается в том, что этот обширный регион, принадлежащий одной литосферной плите — Евразийской, по характеру полей напряжения разделяется на несколько блоков — субплит: Балтийский щит с ориентировкой напряжений, связанной с раздвижением Северо-Атлантического хребта, Русскую и Тимано-Печорскую плиты — с раздвижением хребта Гаккеля в Арктическом океане; в обеих субплитах преобладают сдвиговые перемещения, а в Уральском возрожденном орогене — взбросовые, с осью сжатия, ориентированной вкрест его простирания. Изучение напряженного состояния земной коры в скважинах основано на наблюдениях как естественных деформаций ствола скважины, так и искусственно вызванных деформаций пород слагающих этот ствол. В первом случае с помощью либо магнитно ориентированного специального «четырехрукого» прибора, либо акустического телевизионного устройства устанавливается искажение поперечного сечения ствола скважины или сдвиговое нарушение этого ствола, и по ним определяется ориентировка оси максимального сжимающего напряжения. В другом случае производится закупорка участка ствола скважины и с помощью закачки воды в нем повышается давление до тех пор, пока не происходит «гидроразрыв» и образуются трещины, ориентированные вдоль минимального сжимающего напряжения. Эти трещины иногда являются возобновлением ранее существовавших в породах вокруг ствола скважины. Обе эти методики в настоящее время широко применяются в разных странах. Для изучения напряженного состояния пород в горных выработках используются трехмерные измерения в образцах этих пород, изолированных от окружающего их объема. В России такие исследования проводились на Кольском полуострове и на Урале, проводились они и в Киргизии. В 1986 г. в рамках Международной программы «Литосфера» группой ученых из 18 стран под общим руководством американского геофизика Мэри Лу Зобак в целях изучения в первую очередь внутриплитной геодинамики было предпринято составление Мировой карты (World Stress map — WSM) с использованием всех перечисленных выше методов их изучения. В 1989 г. были опубликованы первые результаты этой работы, в 1992 г. — карта, для составления которой было использовано более 4400 пунктов наблюдений, К большому сожалению, почти вся территория бывшего Советского Союза осталась на этой карте, воспроизведенной на рис. 4.6, большим белым пятном, за исключением Урала, Байкальской рифтовой зоны и частично Верхояно-Колымской области, хотя, как указывалось выше, некоторые исследования в этом направлении велись также на Кольском полуострове и в Киргизии. Что же было выявлено в результате проведенного обобщения? Авторы этого обобщения, и прежде всего сама М.Л. Зобак, различают региональное (первого порядка) и локальное (второго порядка) поля напряжений. Региональные напряжения — это напряжения сжатия, они обнаруживают закономерную ориентацию, согласующуюся либо с направлением расхождения литосферных плит от осей спрединга срединно-океанских хребтов, либо с направлением, перпендикулярным к простиранию коллизионных орогенов. Соответственно в Северной Европе, в частности в Скандинавии, напряжения ориентированы нормально к простиранию Срединно-Атлантического хребта, а в Западной Европе, в Англии, Франции, Германии, — нормально к простиранию Альпийского орогена. Эффект коллизии наблюдается также по другую сторону альпийского пояса в Северной Африке и Индостане. Ориентировка первого типа свидетельствует, что ведущая роль в смещении литосферных плит принадлежит их расталкиванию на осях спрединга (ridge push) наряду с затягиванием плит в зоны субдукции (slab pull) и их волочением (drag). Локальные отклонения от регионального поля напряжений отмечены прежде всего в рифтовых зонах. Это касается, в частности, Восточно-Африканской рифтовой системы, области Бассейнов и Хребтов в Североамериканских Кордильерах и Байкальском рифтовой системы. Утолщение коры, как в Андах или Тибете, или утонение литосферы также ведет к преобладанию растяжения и нормального сбросообразования в фокальных механизмах. Отклонения от регионального поля напряжений наблюдается и в связи с мощным осадконакоплением на пассивных окраинах континентов — растяжение под окраинами, сжатие на прилегающей океанской плите. По оценке М.Л. Зобак, величина локального стресса может быть равна величине регионального стресса или превосходить ее до 2,5 раз. Исследования типа проведенных Л.А. Сим на севере европейской территории России являются существенной детализацией глобального обобщения, позволяющей, как мы видели выше, выделить в пределах литосферных плит области — субплиты — с напряжениями разных знаков и ориентации. Все это очень важно для понимания внутриплитной тектоники и сейсмичности. Таким образом, изучение напряженного состояния земной коры и литосферы удачно дополняет материалы регистрации современных тектонических движений и дает возможность получить более полную картину современной тектонической активности и геодинамики. ГЛАВА 5 Рис. 5.2. Геометрическая правильность размещения глобальной системы современных рифтов относительно оси вращения Земли, по Е.Е. Милановскому, А.М. Никишину (1988): Современная тектоническая активность распределена крайне неравномерно и сосредоточена главным образом на границах литосферных плит. Двум главным видам этих границ (см. гл. 3.1 соответствуют и главные геодинамические обстановки. На дивергентных границах развивается рифтогенез, которому посвящена настоящая глава, здесь же мы рассмотрим активность трансформных границ, поскольку они связаны в первую очередь с рифтовыми зонами океанов. Конвергентное взаимодействие литосферных плит выражается субдукцией, обдукцией и коллизией (см. гл. 6). Сведения о сравнительно слабых, но важных по своим геологическим последствиям внутриплитных тектонических процессах будут даны в главе 7. Термином рифтовая долина (англ., rift — расщелина) Дж. Грегори в конце прошлого века обозначил ограниченные сбросами грабены Восточной Африки, образующиеся в условиях растяжения. Впоследствии Б. Уиллис противопоставил их рампам — грабенам, зажатым между встречными взбросами. Понятие, имевшее вначале главным образом структурное содержание, в дальнейшем, особенно в последние десятилетия, обогащалось представлениями о геологических условиях и вероятных глубинных механизмах формирования этих линейных зон растяжения, о характерных магматических и осадочных образованиях и, таким образом, наполнялось генетическим содержанием. Складывалось современное понимание рифтогенеза, которое четверть века назад вошло в концепцию тектоники плит как один из важнейших ее элементов. При этом оказалось, что большинство рифтовых зон (в новом, широком их понимании) находится в океанах, однако там рифты как структуры, контролируемые сбросами, имеют подчиненное значение, а главным способом реализации растягивающих напряжений служит раздвиг. |
Последнее изменение этой страницы: 2019-05-08; Просмотров: 139; Нарушение авторского права страницы