Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Расчет оптических параметров кабеля



 

Основным элементом оптического кабеля является волоконный световод – круглый стержень из оптически прозрачного диэлектрика. Оптические волноводы из-за малых размеров поперечного сечения обычно называют волоконными световодами или оптическими волокнами (ОВ).

Оптическое волокно состоит из сердцевины, по которой распространяются световые волны и оболочки. Сердцевина служит для передачи световых волн. Назначение оболочки – создание лучших условий отражения на границе «сердцевина-оболочка» и защита от излучения энергии в окружающее пространство. С целью повышения прочности и тем самым надежности волокна поверх оболочки накладывается первичное защитное упрочняющее покрытие.

Для передачи электромагнитной энергии по световоду используется явление полного внутреннего отражения на границе раздела двух сред. Эффект полного внутреннего отражения реализуется в световодах при соблюдении условия:

,                                       (5.1.1)

где - показатель преломления сердцевины оптического волокна,

- показателя преломления оболочки оптического волокна.


На рисунке 8.1 изображено распространение лучей в оптическом волокне.

Рисунок 8.1 – Распространение лучей в оптическом волокне.

 

Луч полностью отражается на границе «сердцевина-оболочка» и остаётся внутри сердцевины (луч 3), когда угол падения ( ) меньше критического угла, который определяется соотношением [10]:

                           (5.1.2)

Величину называют апертурным углом.

Апертура - это угол между оптической осью и одной из образующих светового конуса, падающего в торец волоконного световода, при котором выполняется условие полного внутреннего отражения.

Наряду с понятием «угловая апертура» принято использовать понятие «числовая апертура» (Numerical Aperture).

Числовая апертура представляет собой синус максимального угла падения лучей на торец световода, при котором луч в световоде падает на границу «сердцевина-оболочка» под критическим углом

                      (5.1.3)

Числовая апертура равна:

Нормированная, или характеристическая, частота – один из важнейших обобщающих параметров, который связывает структурные параметры оптического волокна и длину световой волны, распространяемой в волокне. По значению нормированной частоты можно судить о режиме работы оптического волокна.

При  < 2, 405 – режим работы оптического волокна – одномодовый.

При  > 2, 405 – режим работы оптического волокна – многомодовый.

 

Нормированная частота определяется по формуле [10]:

,                                       (5.1.4)

где а – радиус сердцевины волокна, м;

λ – рабочая длина волны, м;

NA – числовая апертура.

Нормированная частота равна:

 = 1, 90

Из полученного результата 1, 90 < 2, 405 следует, что режим работы по оптическому волокну – одномодовый. Достоинством одномодовых систем является весьма широкий диапазон частот и большая пропускная способность.

Определим длину волны и частоту, для критического режима, когда поле выходит за пределы оптического волокна и энергия по световоду не распространяется.

Критическая длина волны определяется по формуле [10]:

,                                           (5.1.5)

где d – диаметр сердцевины оптического волокна, м;

Рnm – 2, 405 значение корня функции Бесселя;

n1 и n2 – показатели преломления сердцевины и оболочки.

Критическая длина волны равна:

 = 0, 83 мкм

 

Критическая частота определяется по формуле [10]:

,                              (5.1.6)

где Pnm – значение корня функции Бесселя;

с0 – скорость света, м/с;

d – диаметр сердцевины, м;

n1 и n2 – показатели преломления сердцевины и оболочки.

Гц

Расчет передаточных параметров оптического кабеля

Расчет затухания

 

Затухание и потери являются параметрами, определяющими дальность передачи по оптическому кабелю и его эффективность.

Затухание световодных трактов оптических кабелей (a), характеризуется собственными потерями в световодах (ac) и дополнительными потерями, обусловленными деформацией и изгибами световодов при наложении покрытий и защитной оболочки при изготовлении кабеля (aк). Суммарное затухание равно [10]:

a = aс + aк                                                                  (5.2.1)

Собственные потери волоконных световодов состоят в первую очередь из потерь поглощения (aп) и потерь рассеяния (aр).

Потери на поглощение существенно зависят от чистоты материала и при наличии посторонних примесей (aпр) могут быть значительными.

Собственное затухание рассчитывается по формуле [10]:

aс = aп + aр                                                                          (5.2.2)

Затухание в результате поглощения (aп) связано с потерями на диэлектрическую поляризацию, оно линейно растет с частотой, зависит от свойств материала световода (tgδ ) и определяется по формуле [10]:

,                               (5.2.3)

где n1 – показатель преломления сердцевины;

tgδ = 1∙ 10-12 – тангенс диэлектрических потерь материала

сердцевины оптического волокна;

λ - рабочая длина волны, км.

 

Затухание поглощения равно:

 = 0, 0261 дБ/км

Затухание вследствие рассеяния (aр) обусловлено неоднородностями материала ОВ, размеры которых меньше длины волны, и тепловой флуктуацией показателя преломления.

Затухание рассеяния определяется выражением [10]:

,                                      (5.2.4)

где Кр – коэффициент рассеяния, для кварца равен 0, 6 мкм4.

Затухание рассеяния равно:

 = 0, 104 дБ/км

Потери на рассеяние определяют нижний предел потерь оптического волокна.

В результате, собственные потери мощности в ОВ составят:

aс = 0, 0261 + 0, 104 = 0, 130 дБ/км

Дополнительные потери в оптических кабелях (aк) обусловлены деформацией оптических волокон в процессе изготовления кабеля - скруткой, изгибами волокон и так далее.

 

В общем случае дополнительные потери определяются, как:

                                    (5.2.5)

В процессе изготовления волокна их классифицируют по следующим семи составляющим:

a1 – возникает вследствие приложения к ОВ термомеханических

 воздействий в процессе изготовления кабеля;

a2 – вследствие температурной зависимости коэффициента

 преломления материала ОВ;

a3 – вызывается микроизгибами ОВ;

a4 – возникает вследствие нарушения прямолинейности ОВ (скрутка);

a5 – возникает вследствие кручения ОВ относительно его оси;

a6 – возникает вследствие неравномерности покрытия ОВ;

a7 – возникает вследствие потерь в защитной оболочке ОВ.

 

При соблюдении норм технологического процесса изготовления доминируют потери на микроизгибы.

Потери на микроизгибы и потери в защитных оболочках сравнительно невелики и составляют 0, 1 дБ/км.

 

Расчетное суммарное затухание кабеля равно:

 

a = 0, 130 + 0, 1 = 0, 23 дБ/км


Расчет дисперсии

 

При прохождении импульсных сигналов по световоду изменяется не только амплитуда импульсов, но и их форма – импульсы уширяются. Это явление называется дисперсией (τ ).

Дисперсия – это рассеивание во времени спектральных или модовых составляющих оптического сигнала, которое приводит к увеличению длительности импульса оптического излучения при распространении его по ОВ, рисунок 8.2.

 

 

 


Рисунок 8.2 – Искажение формы импульсов вследствие дисперсии.

Полная классификация составляющих дисперсии оптического волокна приведена на рисунке 8.3.

 

Рисунок 8.3 – Классификация составляющих дисперсии оптического волокна.

Модовая (межмодовая) дисперсия обусловлена наличием большого числа мод, каждая из которых распространяется со своей скоростью, и имеет место только в многомодовом волокне.

Основной причиной возникновения хроматической (частотной) дисперсии является некогерентность источников излучения, реально работающих в спектре длин волн. Хроматическая дисперсия складывается из волноводной (внутримодовой) (τ вв), материальной (τ мат) и профильной (τ пр):

τ хрмат + τ вв + τ пр                                                      (5.2.6)

 

Волноводная (внутримодовая) дисперсия обусловлена процессами внутри моды. Она характеризуется направляющими свойствами сердцевины ОВ, а именно: зависимостью групповой скорости моды от длины волны оптического излучения, что приводит к различию скоростей распространения частотных составляющих излучаемого спектра.

Материальная дисперсия обусловлена зависимостью показателя преломления сердцевины и оболочки от длины волны оптического излучения.

К основным причинам возникновения профильной дисперсии относятся поперечные и малые продольные отклонения геометрических размеров и формы волокна. Они могут возникать в процессе изготовления ОВ, строительства и эксплуатации ВОЛC.

Материальную, волноводную, профильную дисперсии определим по формулам [10]:

τ мат=∆ λ   М(λ ),                                  (5.2.7)

τ вв=∆ λ    В(λ ),                                   (5.2.8)

τ пр=∆ λ    П(λ ),                                   (5.2.9)

где ∆ λ = 0, 5 ширина спектра источника излучения, нм

(для выбранной системы передачи);

М(λ )=-18 пс/нм∙ км удельная дисперсия материала;

В(λ )=12 пс/нм∙ км удельная волноводная дисперсия;

П(λ )=5, 5 пс/нм∙ км удельная профильная дисперсия.

По формулам (5.2.7; 5.2.8; 5.2.9) рассчитаем материальную, волноводную, профильную дисперсии:

τ мат=0, 5 ∙ (-18)=-9 пс/км,

τ вв= 0, 5 ∙ 12=6 пс/км,

τ пр=0, 5 ∙ 5, 5=2, 75 пс/км

Поляризационная модовая дисперсия возникает вследствие различной скорости распространения двух взаимно перпендикулярных поляризационных составляющих моды. Главная физическая причина появления PMD – некруглость профиля сердцевины одномодового волокна.

PMD типового волокна, как правило составляет от 0, 5 до 0, 2 .

Поляризационная модовая дисперсия начинает сказываться только при скорости передачи выше 2, 5 Гбит/с, поэтому при расчете ее не учитываем.

Результирующая хроматическая дисперсия равна:

 

τ хр = -9 + 6 + 2, 75 = - 0, 5 пс/км

 

Полоса частот DF, пропускаемая световодом определяет объем информации, который можно передать по ОВ. Так как импульс на приеме приходит искаженным (вследствие различия скоростей распространения в ОВ отдельных частотных составляющих сигнала), то происходит ограничение полосы пропускания сигнала. Дисперсия (t) связана с полосой пропускания следующим соотношением [10]:

                                   (5.2.10)

 

Определим полосу пропускания волоконного световода:

 = 880 ГГц∙ км


Поделиться:



Последнее изменение этой страницы: 2019-10-03; Просмотров: 358; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.036 с.)
Главная | Случайная страница | Обратная связь