Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Физические свойства фенолов.



Фенол (бензенол) – кристаллическое вещество, с температурой плавления 43 0С, температурой кипения 181 0С, растворяется в воде (при 15 0С – около 8%). С водой дает гидрат (температура плавления 16 0С), называемый обычно карболовой кислотой. Небольшие количества воды сильно снижают температуру плавления фенола. Он обладает характерным запахом. Фенол вызывает ожоги на коже. Является одним из первых примененных в медицине антисептиков. Фенол содержится в моче человека и животных, так как белковые аминокислоты, содержащие бензольное кольцо, при расщеплении в организме дают фенол.

ДЕСТРУКТИВНЫЕ МЕТОДЫ

Парофазное окисление

 

Термическое парофазное окисление проте­кает при температурах 800,,, 1000°С и заключа­ется в испарении сточной воды в печи при избытке воздуха [6]. Сущность данного метода заключается в окислении фенолов кислородом воздуха при повышенной температуре. Применение катализато­ров позволяет снизить температуру процесса до 350,,, 450°С. В качестве катализаторов исполь­зуют алюмосиликатные носители с нанесенны­ми на их поверхность платиной или палладием. Можно применять медно-оксидные и медно-хромоксидные катализаторы [6, 7], но они менее активны по сравнению с платиновыми и палладиевыми.

Степень окисления составляет 96-100%. При температуре 350-400°С очистка осуществ­ляется полностью. Снижение температуры приводит к уменьшению глубины окисления. Процесс протекает при небольшом избытке воздуха (1.3 раза).

Процесс глубокого окисления чувствителен к действию ряда соединений, содержащих серу, мышьяк, свинец, хлор и фосфор, которые яв­ляются дезактивирующими ядами и снижают срок службы катализатора.

Существенным недостатком процесса считают большие энер­гозатраты, связанные с переводом сточных вод в парообразное состояние. Поэтому целесооб­разно использовать этот процесс в следующих случаях:

- где водяные пары, загрязненные углеводородами, уже имеют необходимую температуру;

-  или в тех случаях, когда требует­ся получать высокочистую воду (без примесей органических веществ и тяжелых металлов) в небольших количествах и для специальных целей;

-  для небольшого количества сточных вод содержащих высокотоксичные органические примеси, извлечение и обезвреживание которых другими методами невозможно;

-  при извлечении ценных минеральных примесей;

-  в случае наличия горючих производственных отходов, которые могут быть использованы вместо топлива.

Жидкофазное окисление

 

Жидкофазное окисление нефтепродуктов кислородом воздуха осуществляется при тем­пературе 200…300°С и давлении 10…15 МПа;

Время экспозиции составляет 30…60 мин. При этом окисляются 80…100% органических и элементоорганических соединений. Диапазон концентраций веществ, подаваемых на окисле­ние, может быть достаточно высоким - от сотен мг/л до нескольких г/л, причем без уве­личения времени пребывания в реакторе [7].

С целью ускорения процесса и повышения глубины деструкции углеводородов жидкофазное окисление проводят в щелочной и слабо­щелочной среде; при этом на скорость окисле­ния может оказывать влияние и вид щелочного агента. Большую роль играет температура процесса. С повышением температуры сущест­венно возрастает глубина окисления. С ростом давления увеличивается растворимость кисло­рода в воде, что приводит к ускорению реак­ции. Поэтому процесс жидкофазного окисления проводят при высоких давлениях.

Параметры процесса определяются видом загрязнений. Так, в случае фенолов степень окисления 97…99% достигается при температу­ре 250…300°С. Избыток кислорода должен составлять 1.1…1.5 по отношению к стехиометрическому.

При окислении фенольной сточной воды максимальное количество летучих с паром кислот (в пересчете на уксусную кислоту) образуется при температуре около 200 0С. Окисление фенолов в присутствии щелочи позволяет получать 3-4 % -ные растворы ацетата натрия и других солей [21].

Применение катализаторов при жидкофазном окислении позволяет снизить температуру процесса до 180°С и давление - до 1.7 МПа [7]. В процессе жидкофазного окисления фенола в воде на оксиде меди, нанесенном на активный оксид алюминия, при температуре 130…145°С, давлении 1.0…1.3 МПа и времени контакта 45…90 мин была достигнута полная его деструкция [8].

В качестве катализаторов используют в ос­новном металлы переменной валентности, их оксиды и соли. Чаще всего это металлы VIII группы, а также Си, Мп и их соеди­нения. Катализаторы в реакционную среду вводят в виде диспергированных чистых ме­таллов или нанесенные на оксид алюминия или активированный уголь. Соли могут быть ис­пользованы как растворенные гомогенные катализаторы или как гетерогенные.

Применение каталитических систем позво­ляет разрушить практически все встречающие­ся в стоках органические соединения. В резуль­тате обработки происходит глубокое окисление органических веществ до С02 и Н2 О.

Метод жидкофазного окисления обладает следующими преимуществами - отсутствие необходимости испарения воды, универсальность (наряду с фенолами возможно удаление из сточных вод и других веществ).

К недостаткам жидкофазного окисления следует отнести сложное аппаратурное оформ­ление процесса: насосы и компрессоры высоко­го давления, необходимость применения доро­гостоящих конструкционных материалов и высоколегированных сталей по всему тракту высокого давления, образование накипи на теплопередающих поверхностях.

Озонирование

 

Озонирование - широко используемый спо­соб глубокой очистки воды от фенолов, а также от других нефтепродуктов. Озон обладает большой окислительной способ­ностью, оказывает сильное бактерицидное действие, устраняет неприятный запах и прив­кус и возвращает воде естественный цвет.

Окислительные свойства озона в воде могут проявляться в реакциях прямого окисления, озонолиза, катализа, окисления радикалами и полимеризации. Прямому окислению подвер­гаются некоторые органические соединения. Каталитическое действие озона заключается в инициировании реакций окисления растворен­ным в воде кислородом.

Окисление озоном протекает по месту двойной связи бензольного кольца и параллельно окисляется гидрокисльный радикал с последующей рекомбинацией пероксирадикалов, пероксид водорода реагирует с озоном, образуя воду и кислород.

Для ускорения процесса инициирования целесообразно окисление проводить в щелочной среде. Чем выше величина показателя рН среды, тем больше степень окисляемости озоном. Оптимальное значение рН для окисления фенолов концентрацией менее 50 мг/л – равно 11.4 [30], результаты опытов приведены в таблице (2).

Таблица 2.

Результаты окисления озоном фенолов в водном растворе

(начальная концентрация фенолов в воде 100 мг/л, рН = 12).

Фенол

о-Крезол

м-Крезол

Расход озона, мг/л Содержание фенола, мг/л Расход озона, мг/л Содержание о-Крезола, мг/л Расход озона, мг/л Содержание м-Крезола, мг/л
0 54 110 180 220 260 96 47 12 0, 4 0, 2 0, 1 0 49 100 150 200 240 99 46 11 1, 7 0, 2 0, 1 0 57 110 150 200 260 99 41 2, 7 0, 4 - -

 

 

Метод озонирования позволяет эффективно очищать воду от фенолов, при этом образуются альдегиды, щавелевая и дикарбоновые кислоты, гидропероксид, диоксид углерода и вода. Озон может быть применен для глубокой очистки слабо концентрированных сточных вод, содержащих биологически трудно окисляемые вещества. С помощью озониро­вания можно достичь очистки сточных вод до уровня 0.05 мг/л и ниже. При озонировании фенольных сточных вод содержащих другие примеси углеводородов образующихся при обессоливании - обезвоживании нефтепродуктов расход озона значительно возрастает по сравнению с расходом на озонирование чистых водных растворов, и достигает 5…10 г озона и более на 1 г фенола [21].

В работе [10] отмечается, что степень очистки нефтесодержащих сточ­ных вод, имеющих сложный состав, с помощью озонирования может колебаться в пределах 50…75%. Причем в озонируемой воде остаются промежуточные продукты окисления углеводо­родов, не поддающиеся дальнейшему разруше­нию и являющиеся более опасными, чем ис­ходные вещества. Время контакта очищаемой воды, содержащей не более 0.5 мг/л нефтепро­дуктов, с озоном в реакторе должно быть не менее 13-15 мин. При несоблюдении этого условия реакция окисления идет не до конца, т.е. не до образования С02 и Н 2О, и выделяются очень опасные кислородсодержащие органиче­ские соединения. При окислении озоном бром-фтор-хлорорганики образуются бромистая, фтористая и соляная кислоты, а в случае хлорорганики - фосген, являющийся боевым отравляющим веществом.

Процесс озонирования осуществляют в барботажных ваннах или смесителях, в которых вода смешивается с озонируемым воздухом или кислородом [13, 14]. Для производства 1 кг озона требуется 15 кВт электроэнергии. Расход электроэнергии на 1 кг окисленного фенола составляет 50-100 кВт ч, в чистом водном растворе [31].

Преимуществом данного метода очистки можно считать то, что в воду не вносятся химические реагенты.

К недостаткам процесса озонирования сле­дует отнести: малое время жизни молекул озона; низкий коэффициент полезного действия озонаторов; высокую стоимость озона; необхо­димость применения коррозионно-стойких ма­териалов для оборудования; токсичность озона (ПДК в воздухе 0.0001 мг/л); образование при окислении высокомолекулярных соединений промежуточных токсичных органических веществ; высокую чувствительность к наруше­ниям технологических параметров озонирова­ния (скорости прокачки воды и составу загряз­нений); недопустимость присутствия в озони­руемой воде клеточной массы водорослей и микроорганизмов, поскольку высвобождаемые белковые соединения и аминокислоты в ходе дальнейшего озонирования могут образовывать высокотоксичные соединения.

 


Поделиться:



Последнее изменение этой страницы: 2019-10-03; Просмотров: 75; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.013 с.)
Главная | Случайная страница | Обратная связь