Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Организация изучения основных алгоритмических конструкций в среде Лого Миры



Организация изучения основных алгоритмических конструкций в среде Лого Миры

 

ВЫПУСКНАЯ РАБОТА

 

Исполнитель: студентка 5 курса

Заочного отделения

Информатики и ВТ

Факультета УрГПУ

 

Научный руководитель:

Кандидат педагогических наук

Доцент кафедры информатики

и вычислительной техники

Учащийся должен:

· понимать сущность понятия алгоритма, знать его основные свойства, иллюстрировать их на конкретных примерах алгоритмов;

· понимать возможности автоматизации деятельности человека при использовании алгоритмов;

· знать основные алгоритмические конструкции и уметь использовать их при построении алгоритмов;

· записать на учебном алгоритмическом языке алгоритм простой задачи;

· уметь составлять программы на одном из языков программирования для решения вычислительных задач.

При изучении основ алгоритмизации в средней школе основное внимание в первую очередь должно уделяться:

· выявлению общих закономерностей и принципов алгоритмизации;

· основным этапам решения задач при помощи современных информационных технологий;

· анализу поставленной задачи, методам формализации и моделирования реальных процессов и явлений;

· выбору исполнителя поставленной задачи, исходя из тех рассуждений, что он является определенным объектом с присущими ему свойствами и набором действий, которые нуждаются в анализе для правильного и эффективного их использования;

· методам и средствам формализованного описания действий исполнителя, современным средствам их конструирования и реализации при помощи компьютера.

Главной целью изучения основ алгоритмизации в школе является:

· развитие алгоритмического, конструктивного и логического мышления учеников;

· формирование операционного типа мышления, которое направлено на выбор оптимального решения определенной поставленной задачей;

· развитие интеллектуальных умений через изучение технологии программирования;

· применение как универсального средства, которое может создавать себе интеллектуальных партнеров в любой сфере, где ученик может проявить себя как автор сценария, как программист;

· развитие алгоритмического мышления путем создания программ средствами языка в конкретной среде программирования;

· формирования приемов умственной деятельности (анализ, синтез, обобщение);

· развитие памяти, фантазии, интуиции.

Развитие этих специфических видов мышления делает весомый вклад в развитие общего научного мировоззрения и умственных способностей личности учащихся. [Копаев А.В., Триус Ю.В.]

В тоже время алгоритмизация, как раздел информатики, который изучает процессы создания алгоритмов, традиционно относится к теоретической информатике вследствие своего фундаментального характера. Следовательно, при развитии новых информационных технологий, и в частности технологий программирования, появляется возможность в пределах раздела " Основы алгоритмизации" давать общенаучные понятия информатики, и в то же время формировать и развивать умение, и навыки необходимые пользователю при работе с современным программным обеспечением, [ст.24], т.е. появляется возможность сделать раздел " Основы алгоритмизации" мостиком между теоретической и практической информатикой. Первые шаги в этом направлении уже сделаны. Стоит вспомнить работы А. Г. Кушниренка, Ю. А. Первина, А. Л. Семенова по внедрению " конструктивистской" парадигмы при изучении теоретической информатики. Одним из принципов этой парадигмы является самостоятельное добывание учениками знаний, которые формируются при работе с реальными и виртуальными объектами. Реализация этого принципа основывается на использовании творческих сред, таких как, например, Лого, Кумир, Роботландия.

Традиционно считалось, что знание языков программирования и умение ими пользоваться просто необходимо при работе с компьютером. Поэтому в школе учащихся обучают какому-нибудь алгоритмическому языку. А т.к. алгоритмические языки достаточно сложны, то это преподавание осуществлялось в старших классах. Сейчас появились различные адаптированные программные среды, в которых процесс программирования и составления алгоритмов доступен даже младшим школьникам. Это позволяет обучать основам программирования и построения алгоритмов, не вдаваясь в подробности того или иного сложного языка программирования. Наиболее благоприятной средой для изучения темы " Алгоритмизация" является среда Лого Миров. Она позволяет плавно перейти от игры к разработке серьезных алгоритмов, к созданию серьезных проектов. Причем сама среда такова, что нет необходимости искать побудительные мотивы для занятий в ней. Работа в редакторе форм, создание анимированных проектов привлекает учащихся, развивает их творческие способности и не надоедает им от урока к уроку. Наибольший интерес и понимание эта тема вызывает у школьников 5 класса. Там используется язык программирования Лого, который признан учебным для детей младшего и среднего школьного возраста. Уже в 5 и 6 классе, с его помощью, дети изучают все конструкции для структурного программирования: вызов процедур, ветвление, циклы. [Глинка Н.В.]

Раздел " Алгоритмизация" является одной из важнейших тем школьного курса информатики. Она красной ниточкой проходит через весь курс, усложняясь от класса к классу. Если на начальном этапе - это игра в алгоритмы, то в дальнейшем - это самостоятельное составление алгоритмов разного вида с использованием различных сред, в том числе и языков программирования.

Выбор начального языка программирования имеет принципиальное значение, так как от этого во многом зависит методика изучения курса, содержание и последовательность предъявления учебного материала, система учебно-познавательных заданий и, главное, вся дальнейшая работа по овладению программированием для решения реальных практических задач на ЭВМ. [Иванова Л.В. Юрзанова Т.К.]

Структура Лого подчинена методической системе, позволяющей последовательно вводить новые понятия, формировать умения и навыки операционного стиля мышления. Среди достоинств этого языка выделяем такие, как близость синтаксиса к естественному языку, приспособленность к интерактивному режиму работы, ориентация на формирование самых общих представлений о программировании, наличие системы графических примитивов, возможность использования процедур, позволяющих реализовать идеи структурного программирования. Наличие в Лого присущих всем алгоритмическим языкам арифметических и логических операций, большого количества стандартных функций позволяет перейти на заключительном этапе обучения к более сложным элементам программирования.

Лого–среды позволяют совершенно в новом ракурсе взглянуть на преподавание основ программирования. Являясь прекрасным образцом мультимедийных сред, адаптированных для обучения, они позволяют организовать обучение программированию на основе математических задач, а на этапах мультипликации: от разработки сценария до “оживления” и озвучивания персонажей. В них не только сохранены и расширены возможности изучения основных алгоритмических конструкций (ветвления, различные циклы, организация диалога), но и имеется разнообразный спектр атрибутов увлекательного программирования различных вычислительных задач. [Иванова Л.В, Юрзанова Т.К.]

Тема " Алгоритмизация" в школах РФ изучается с 5-х по 11 класс. В 5-х - 7-х классах учащиеся знакомятся с основными алгоритмическими конструкциями.

Обучение строится на последовательности решаемых задач, которые подбираются по следующим принципам:

1. От простого к сложному;

2. Новизна;

3. Наследование.

 Алгоритмические конструкции вводятся по мере необходимости при решении конкретных задач.

Например, при изучении циклических алгоритмов вначале дается построение многоугольников, увеличивая количество их сторон, и, подводя к мысли, что, чем больше сторон у многоугольника, тем он больше напоминает окружность. Затем учащиеся приходят к выводу, что, используя линейный алгоритм такой многоугольник построить невозможно, необходимы новые знания.

Как итог изучения темы " Алгоритмизация" в среде LOGO, в 7-ом классе несколько уроков отводится для анимации. В этом разделе внимание учащихся акцентируется на работе в программном режиме, закрепляются навыки работы с процедурами и другими алгоритмическими конструкциями. Рисуя, учащиеся не только усваивают алгоритмические конструкции и их реализацию в различных средах, но и лучше понимают ЭВМ как формального исполнителя и то, что из принципа формального исполнения следует, что ни исполнитель, ни ЭВМ не могут совершать ошибок. Все ошибки (синтаксические, семантические и логические) совершает человек. Так как в 8-х - 11-х классах школьники уже знакомы с алгоритмическими конструкциями, преподавание можно вести от теории к практике, дополняя данные ранее определения алгоритмов, и изучать их реализацию на языке программирования.


Технология решения вычислительных задач

Под процессами решения вычислительных задач на ЭВМ надо понимать совместную деятельность человека и компьютера. Условно данный процесс можно представить в виде нескольких последовательных этапов. На долю человека приходятся этапы, связанные с творческой деятельностью-постановкой, алгоритмизацией и программированием задач, анализом результатов, а на долю компьютера - этапы обработки информации в соответствии с разработанным алгоритмом.

Рассмотрим, из чего складывается процесс решения вычислительных задач на ЭВМ, какие пройти этапы, чтобы достичь конечной цели – решить задачу. Следует заметить, что приведенные ниже последовательность действий ориентирована на решение задач любой сложности. Для простейших задач некоторые этапы, возможно, не понадобятся. Для более сложных задач некоторые этапы могут существенно усложниться

Этапы решения задачи на ЭВМ

1. Постановка задачи 2. Математическая формализация (описание задачи) 3. Построение алгоритма Работа без применения ЭВМ
4. Составление программы на языке программирования 5. Отладка и тестирование программы 6. Проведение расчетов и анализ результатов Работа на ЭВМ

Команды управления пером

PU PEN UP ПОДНЯТЬ ПЕРО
PD PEN DOWN ОПУСТИТЬ ПЕРО

Двигаясь по рабочему полю Черепашка оставляет за собой прямую линию словно рисует пером. Пером можно управлять, используя вышеперечисленные команды.

Команды поворота Черепашки

RT RIGHT НАПРАВО
LT LEFT НАЛЕВО

Эти команды требуют обязательного параметра - угла поворота в градусах. Например, LT 90 (Черепашка поворачивается налево на 90 градусов), RT 120 (Черепашка поворачивается направо на 120 градусов).

Команды работы с цветом

До сих пор Черепашка рисовала белым по черному. В нашем распоряжении есть еще 14 цветов - всего их 16, оттенков 123. Цвета пронумерованы от 0 до 139. Номер черного цвета - 9; номер белого - 0. Чтобы изменить цвет Черепашки (и цвет ее пера), нужно дать команду:

SETC SET_COLOR НОВ_ЦВЕТ

и через пробел указать номер цвета. Например, после выполнения команды SETC 15 Черепашка станет красной, и будет оставлять такой же след. Для закраски частей экрана служит команда FILL (КРАСЬ). Черепашка, получив эту команду, заливает экран той же краской, какой покрашена сама (если перо Черепашки опущено). Чтобы Черепашка закрасила контур, необходимо выполнить следующие действия:

поднять перо
переместить Черепашку внутрь контура
опустить перо
дать команду FILL


Черепашка может рисовать на экране. Чтобы наглядно представить это себе говорят, что она таскает за собой перо. Иногда говорят, что она чертит линии на песке своим хвостом. Вы можете использовать любое из этих представлений, говорите так, как вам больше нравиться. Если перо (хвост) опущено, то она оставляет след, если поднято - то при передвижении следа не остается.

Команда SETPENSIZE [ширина] - устанавливает размера пера. Перо всегда имеет прямоугольную форму. Например, setpensize 4

Стирание графики

Для того, чтобы стереть рисунок, но сохранить положение Черепашки, применяется команда:

CLEAN   СОТРИ

Для восстановления исходного состояния графического экрана – рисунок стирается, Черепашка в исходном состоянии:

CLEARSCREEN CS СГ

Команда REPEAT (повторить)

При написании программ нередко приходится многократно повторять одни и те же команды. Для того, чтобы ускорить процесс написания программ предусмотрен специальный оператор цикла. Он позволяет строить программу из более крупных " блоков", избегая переписывания повторяющихся команд.

Циклом (повтором) называется такая форма организации действий, при которой одна и та же последовательность действий совершается несколько раз до тех пор, пока выполняется необходимое число раз.

В языке Лого оператором цикла является команда REPEAT (повторить).

REPEAT число раз [ действие 1, ..., действие n ]

ПОВТОРИ число раз [ действие 1, ..., действие n ]

Здесь можно выделить такие составные части:

· Собственно оператор REPEAT (повторить);

· Указатель количества повторений (число раз);

· Указатель начала цикла ( [ );

· Повторяющаяся цепочка команд (действие 1, ..., действие n);

· Указатель конца цикла ( ] ).

Прочитав, в наборе команд REPEAT Черепашка ищет указание числа повторений. Запомнив его место, Черепашка будет выполнять команды, пока не встретит указатель конца цикла - правую квадратную скобку. После этого Черепашка возвращается к началу цикла и проверяет, выполнила ли она цикл заданное число раз. Если нет, то она продолжает выполнять цикл, в противном случае (если она уже выполнила цикл задуманное число раз) Черепашка начинает выполнять команды, расположенные после квадратных скобок. Таким образом, тело цикла выполняется задуманное число раз.

Построение процедур (подпрограмм)

Любое изображение, которое нарисует Черепашка, можно получить с помощью базовых команд. Но бывает необходимо выполнить несколько раз большие фрагменты программы. Чтобы избежать утомительного повтора, можно этот фрагмент оформить как (подпрограмму) процедуру для многократного использования. Для этого сначала этому фрагменту дают новое название, а затем используют его как имя команды для вызова в программе.

ТО < имя команды > < описание фрагмента > END ЭТО < имя команды > < описание фрагмента > КОНЕЦ

Таким образом, можно определить любую процедуру, при этом следует соблюдать следующие правила:

· нельзя называть процедуры словами, за которыми в Лого закреплено определенное значение, такие слова называются служебными.

· название должно содержать не больше 15 символов и состоять из одного слова.

В остальном слова могут быть любыми.

Обязательно:

· Сначала идут все процедуры, потом - основная программа.

· ТО... END - только для подпрограмм.

· Основная программа оформляется как подпрограмма. Для запуска ее необходимо указать только имя.

Команды изменения переменных

Переменные величины

В курсе школьной математики изучают переменные величины, и числа в математике часто обозначаются буквами.

Например: x=a+b, где a и b – переменные.

В языке Лого переменная - это любая последовательность символов (букв и цифр), начинающаяся с буквы. Она не должна содержать в себе пробел и должна быть больше 16 символов.

Признаком переменной является символ ": ", с которого обязательно начинается переменная. Например: : A: N1: INZ5

Оператор присваивания

: < переменная> = < арифметическое выражение>

Арифметическое выражение включает в себя константы, переменные, знаки арифметических действий ( +, -, *, / ) и скобки.

: А = 25 : N =: N + 1 : B = 125 * (: M + 1 ) / 100 : C = 270 *: N

В Лого работает только целая арифметика. Поэтому, результатом деления является целая часть частного.

Команды и процедуры с параметрами

В Лого переменные могут использоваться в качестве параметров движения Черепашка, для управления последовательностью действий Черепашка, в процедурах с параметрами и в рекурсивных командах.

Базовые команды Черепашка (FORWARD, RIGHT, REPEAT и пр.) состоят из команды (оператора) и параметра (операнда). В качестве параметров использовали число (пример " квадрат", здесь три команды с параметром: REPEAT 4, FORWARD 50, RIGHT 90). Можно в качестве параметра команды использовать переменную, а не число. Допустим, нужно нарисовать квадраты с разной (переменной) стороной. В этом случае в команде FORWARD в качестве параметра используем переменную: FORWARD: X

Команда выбора (ветвление) в Лого

В некоторых случаях необходимо определить условие тех или иных действий, выполняемых Черепашка. Для этого используется команда выбора IF (ЕСЛИ)

IF < условие> [ < команда или серия команд, если условие выполняется > ] [ < команда или серия команд, если условие не выполняется > ] ЕСЛИ < условие> [ < команда или серия команд, если условие выполняется > ] [ < команда или серия команд, если условие не выполняется > ]

Условие имеет вид отношения, при этом используются обозначения:

< - меньше, < = - меньше или равно,

- больше, > = - больше или равно,

= - равно, < > - не равно.

В случае записи условных операторов нужно:

· не забывать про квадратные скобки;

· записывать по одному оператору на строке.

В этом случае запись условного оператора становится более наглядной и человеку удобно читать и понимать программу, может иметь место многократная вложенность команд IF.

Рекурсия

В предыдущих разделах были использованы подпрограммы-процедуры, которые вызывались по мере необходимости. Рассмотрим процедуру, которая называется рекурсией. Суть рекурсии заключается в том, что в ходе ее выполнения процедура сама вызывает себя.

Заметим, что такая возможность имеется далеко не во всех языках программирования. К, примеру, Бейсик рекурсии не имеет, а в Лого - это наиболее употребляемый прием.

Функция

Можно провести аналогию с обычной записью математических выражений и порядком их вычисления.

В число Лого входят операции (стандартные функции) SQRT, SIN, COS (извлечение квадратного корня, синус и косинус от градусного аргумента). А вот стандартная функция тангенс отсутствует. Для описания функций служит специальная команда – OP (out put – вывести, считать результатом). Она прекращает выполнение процедуры и возвращает значение аргумента.

Диагностика ошибок

Если при выполнении программы или команды возникла ошибка, то на экране появляется текст (в поле команд) - это диагностическое сообщение об ошибке, которое выводится на русском языке. Место ошибки в программе указывается после перехода в текстовый экран и нажатием клавиши < Enter>.


2.2. Запись основных алгоритмических конструкций в среде Лого Миры и их использование для решения вычислительных задач

Понятие алгоритма

Понятие алгоритма такое же основополагающее для информатики, как и понятие информации. Именно поэтому важно в нем разобраться.

В математике для решения типовых задач используются определенные правила, описывающие последовательности действий. Например, правила сложения дробных чисел, решения квадратных уравнений и т. д. Обычно любые инструкции и правила представляют собой последовательность действий, которые необходимо выполнить в определенном порядке. Для решения задачи надо знать, что дано, что следует получить и какие действия и в каком порядке следует для этого выполнить. Предписание, определяющее порядок выполнения действий над данными с целью получения искомых результатов, и есть алгоритм.

Алгоритм заранее заданное понятное и точное предписание возможному исполнителю совершить определенную последовательность действий для получения решения задачи за конечное число шагов.

Понятие алгоритма является не только одним из главных понятий информатики, но одним из главных понятий современной науки. Более того, с наступлением эры информатики алгоритмы становятся одним из важнейших факторов цивилизации [56].

Исполнитель алгоритма

Исполнитель алгоритма это некоторая абстрактная или реальная (техническая, биологическая или биотехническая) система, способная выполнить действия, предписываемые алгоритмом.

Исполнителя характеризуют:

· среда;

· элементарные действия;

· система команд;

· отказы.

Среда (или обстановка) — это " место обитания" исполнителя. Например, для исполнителя Черепашка среда — это бесконечное поле. Края поля тоже часть среды, а их расположение и положение самой Черепашки задают конкретное состояние среды.

Система команд. Каждый исполнитель может выполнять команды только из некоторого строго заданного списка — системы команд исполнителя. Для каждой команды должны быть заданы условия применимости (в каких состояниях среды может быть выполнена команда) и описаны результаты выполнения команды. Например, команда Черепашки " ВПЕРЕД" может быть выполнена, если рядом с Черепашкой нет края поля. Ее результат — смещение Черепашка на один шаг вперед.

После вызова команды исполнитель совершает соответствующее элементарное действие.

Отказы исполнителя возникают, если команда вызывается при недопустимом для нее состоянии среды.

В информатике универсальным исполнителем алгоритмов является компьютер.

Свойства алгоритма

Основные свойства алгоритмов:

Понятность — исполнитель алгоритма должен понимать, как его выполнять. Иными словами, имея алгоритм и произвольный вариант исходных данных, исполнитель должен знать, как надо действовать для выполнения этого алгоритма.

Дискретность (прерывность, раздельность) — алгоритм должен представлять процесс решения задачи как последовательное выполнение простых (или ранее определенных) шагов (этапов).

Определенность — каждое правило алгоритма должно быть четким, однозначным и не оставлять места для произвола. Благодаря этому свойству выполнение алгоритма носит механический характер и не требует никаких дополнительных указаний или сведений о решаемой задаче.

Результативность (или конечность) состоит в том, что за конечное число шагов алгоритм либо должен приводить к решению задачи, либо после конечного числа шагов останавливаться из-за невозможности получить решение с выдачей соответствующего сообщения, либо неограниченно продолжаться в течение времени, отведенного для исполнения алгоритма, с выдачей промежуточных результатов.

Массовость означает, что алгоритм решения задачи разрабатывается в общем, виде, т.е. он должен быть применим для некоторого класса задач, различающихся лишь исходными данными. При этом исходные данные могут выбираться из некоторой области, которая называется областью применимости алгоритма. [Светозарова Г.И., Мельников А.А., Козловский А.В.]

Способы записи алгоритмов

На практике наиболее распространены следующие формы представления алгоритмов:

· словесная (запись на естественном языке);

· графическая (изображения из графических символов);

· программная (тексты на языках программирования).

Процедуры с параметрами

Процедура без параметра

 

Рассмотрим применение процедуры без параметра на уже решенном примере 3.

Процедура вызывается только с помощью имени, стоящего после ЭТО (ТО). Для этого используется процедура без параметра.

Процедура с параметром


Теперь в список команд Черепашки добавим переменную величину: х, которая позволит изменять размер начального значения: х.

Такой параметр в заголовке процедуры называется формальный параметр - та же самая переменная " х". При вызове же процедуры нужно будет указать соответствующее значение - так называемый фактический параметр. Например, " уравнение 100". Следовательно, начальное значение переменной: х=100.

Рассмотрим чуть подробнее, что происходит при исполнении процедуры с параметром. Переменную можно представить в виде ящика, на котором наклеена табличка с именем. В этот ящик может поместиться одно значение. Компьютер в любое время может посмотреть, что там находится, а может и поменять хранящееся значение. Допустим, если дать команду уравнение 100.

В заголовке процедуры после ее имени стоит ": х". Поэтому число 100 компьютер положит в " ящик" с такой " табличкой". Теперь начинается выполнение самой процедуры. Черепашка начинает выполнять цикл. Встретившись с командой " пусть “х: х + 1", она смотрит, какое значение " лежит в ящике", и подставляет его в эту команду. Само значение переменной при этом не меняется.

Процедура может иметь не один параметр, а несколько. Рассмотрим пример 9.


Пример 9. Вычислить

 

В этом случае при запуске процедуры количество фактических параметров и их порядок должны соответствовать формальным. Если их будет меньше, Лого выдаст сообщение:

Если больше –

 


Рекурсия

В Лого все процедуры равноправны. Допускается, что одна процедура может вызывать вторую, вторая – третью и так далее. Кроме того, в Лого допускается, что процедура может вызывать процедуру со своим собственным именем. Такой вызов процедурой самой себя называется рекурсией.

а) Процедура, обращающаяся сама к себе

 

Пример 10. Составить процедуру А, бесконечно печатающую слово «ПРИВЕТ»:

Процедура А печатает в текстовом окне слово «ПРИВЕТ» и вызывает процедуру А, которая печатает в текстовом окне слово «ПРИВЕТ» и вызывает процедуру А и т.д. Слово «ПРИВЕТ» будет печататься до тех пор, пока пользователь не прервет программу. Такого типа программы называют программами рекурсивного вызова самой себя или бесконечным циклом. Более интересный результат получится, если при рекурсивном вызове изменить значение параметра.

 

Пример 11. Используя уравнение х+3 рассчитать и нарисовать траекторию движения Черепашки:

б) Управляемая рекурсия

Для остановки программы в нужный момент можно применить условие и команду STOP (СТОП).

 

Пример 12. Ввести коэффициенты А, В, С. Если А< 200, вычислить Х=А.В-В.С. В противном случае остановить программу.

Если при очередном вызове параметр А оказался больше 200, то программа остановится. В противном случае последует запрос и ввод коэффициентов А и В, расчет значения Х и новый вызов с увеличенным параметром.

в) Косвенная рекурсия

Если процедура вызывает сама себя не непосредственно, а через другую процедуру, то это называется косвенной рекурсией.


Пример 13. Вычислить значения у=sin(a) и х=cos(a), установив между ними взаимосвязь и не превышать значения 1.

Эти две процедуры (вычисления sin(a) b cos(a)) работают так: первая вызывает вторую, а вторая – первую. В результате получается один из примеров косвенной рекурсии.
Решение задачи с использованием основных базовых структур

и операторов языка Лого на примере экологической задачи

Пример 14. Расположенный на берегу реки металлургический завод осуществил сброс вод, в результате чего концентрация вредных веществ в реке резко увеличилось. С течением времени эта концентрация, естественно, уменьшается. Требуется сообщить, каков будет уровень загрязнения реки через N суток, до тех пор, пока концентрация не станет нормой.

Сначала построим математическую модель изучаемого явления. Специалистам-экологам установлена следующая приближенная закономерность: в каждом конкретном случае можно указать такое число K> 1, что концентрация примесей C уменьшается в К раз за сутки. При этом коэффициент К зависит от района, где протекает река, типа примесей и т. п. Значение К можно узнать из соответствующего справочника. Эту закономерность примем в качестве исходного предположения для рассматриваемой математической модели.

Исходными данными будут начальная концентрация С вредных веществ в реке, предельно допустимая концентрация D и коэффициент К. Результат – последовательностью значений концентрации вредных веществ через сутки, двое суток и т. д. Связь между исходными данными и результатом дается следующими соотношениями:

где - концентрация вредных веществ через N суток после сброса.

Руководствуясь этой математической моделью, составим блок-схему, где C - начальное значение концентрации,

D – предельно допустимая концентрация, K – коэффициент, Z – ограничения количества шагов для расчета, H – точность подсчета в сутках, N - количество суток.


Составим программу на языке Лого и произведем расчеты для свинца при C=10 мг/л, D=0.03 мг/л, K=1.12. [Гейн А.Г. стр.71]

 

Полученные расчеты дают возможность увидеть нормальную концентрацию свинца С= 0.027 в воде на 52 сутки.


2.3. Методические рекомендации

Аннотация

Данная выпускная работа на тему: “Организация изучения основных алгоритмических конструкций в среде Лого Миры”.

Объект исследования – процесс обучения базовому курсу информатики.

Предмет исследования – методика преподавания алгоритмизации на базе языка Лого.

Цель работы – определение роли и месте вычислительных задач, решаемых в среде Лого Миры при изучении алгоритмизации.

Основные задачи исследования:

· Освоить среду Лого Миры

· Определить банк традиционно решаемых вычислительных задач при изучении алгоритмизации.

· Разработка программ для решения вычислительных задач на языке Лого.

· Анализ решение вычислительных задач на языке Лого.

Таким образом, цель данной выпускной работы достигнута.

Выпускная работа будет полезна как студентам при подготовке к теоретическим, так и к практическим занятием по изучению среды Лого Миры и программированию на языке Лого, так и преподавателям, использующим пакет Лого Миры в своей работе. Так же поможет преподавателям разнообразить свои уроки, сделать их более эффективными в развитии познавательных процессов логического мышления, внимания, воображения, памяти, как младшего, так и старшего возраста.

 

 

Организация изучения основных алгоритмических конструкций в среде Лого Миры

 

ВЫПУСКНАЯ РАБОТА

 

Исполнитель: студентка 5 курса

Заочного отделения

Информатики и ВТ

Факультета УрГПУ

 

Научный руководитель:

Кандидат педагогических наук

Доцент кафедры информатики

и вычислительной техники


Поделиться:



Последнее изменение этой страницы: 2019-10-03; Просмотров: 163; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.098 с.)
Главная | Случайная страница | Обратная связь