Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Особенности построения источников питания мониторов



Введение

 

Наибольшее распространение в схемотехнике источников питания мониторов получил импульсный источник питания, содержащий стабилизатор напряжения, регулирующий элемент которого работает в ключевом режиме.

Использование этого режима позволяет значительно улучшить ряд показателей формирователей питающих напряжений.

Так, импульсный источник питания, по сравнению с линейным, обладает высоким коэффициентом полезного действия (0, 7...0, 8), меньшей рассеиваемой мощностью выходного транзистора, а, следовательно, и облегченным тепловым режимом всего монитора в целом, малыми размерами импульсного трансформатора и сглаживающего фильтра.

К достоинствам импульсных источников питания относится и возможность групповой стабилизации одновременно нескольких источников питания, а также способность работы в широких пределах изменения сетевого напряжения (от 100 до 260 В).

Недостатками импульсных источников питания считают: высокий уровень радиопомех при функционировании и отсутствие гальванической развязки от сети переменного тока.


1. Общие требования к источникам питания мониторов

 

Высокий уровень радиопомех при функционировании, отсутствие гальванической развязки от сети переменного тока и другие недостатки заставляют разработчиков радиоэлектронной аппаратуры принимать специальные меры по обеспечению целого ряда требований (по электромагнитному излучению, энергосбережению, электрической и пожарной безопасности и др.) по безопасной эксплуатации и ремонту мониторов.

Эффективность принимаемых мер регламентируется стандартами и оценивается соответствующими организациями, присваивающих сертификаты по направлениям.

Стандарты и организации, требованиями которых руководствуются при конструировании источников питания мониторов, приведены ниже.

ENERGY STAR EPA - простой стандарт американского ведомства по охране окружающей среды, который предписывает потребление мощности неработающим монитором максимум в 30 Вт.

VESA (Video Electronics Standards Association) - не заинтересованная организация, содействующая улучшению графических стандартов с выгодой для конечного пользователя.

DPMS (Display Power Management Signaling) - стандарт, предложенный VESA для продления срока службы монитора путем снижения потребляемой мощности монитора в то время, когда он не используется.

Видеографический адаптер, поддерживающий DPMS, использует строчный и кадровый синхроимпульсы для управления режимами работы монитора.

Благодаря этому, возможно реализовать 4 режима работы: основной или рабочий (NORMAL), готовность (STANDBY), ожидание (SUSPEND) и выключено (OFF).

В зависимости от настройки временных установок компьютера и не использовании компьютера монитор переводится в один из указанных режимов. Они различаются потребляемой мощностью от сети и временем возврата монитора в рабочее состояние (табл.1).

 

Таблица 1. Основные характеристики энергосберегающих режимов

Режим Мощность, Вт Время восстановления, с Потребители питания
Рабочий (NORMAL) < 100 0 Все включено и полностью работает
Готовность (STANDBY < 100 0 ЭЛТ включена, источник питания включен (режим сохранения экрана)
Ожидание (SUSPEND) < 7, 0 2 ЭЛТ выключена, источник питания выключен
Выключен (POWER OFF) < 2, 5 20 Включены вспомогатель ные цепи монитора

NUTEK ( The National Board for Industrial and Technical Development in Sweden) - шведский совет по промышленному и техническому развитию требует точно определенной трехступенчатой процедуры энергосбережения. В соответствии с требованиями NUTEK потребление энергии неработающим монитором не должно превышать 8 Вт, в режиме STANDBY 30 Вт, выключено (POWER OFF) - 15 Вт.

MPR - II - простейшая из норм шведского Совета по измерительной технике и испытаниям, ограничивает максимальный уровень электрических и магнитных полей.

TUV - организация в Германии TUV, по договору с изготовителем проводит экспертизу технической, электрической и пожарной безопасности, а также испытания на соответствие нормам MPR-II и некоторым ISO-стандартам.

TCO ( Tjanstemannes Central Organization) - шведский профсоюз служащих.

Его целью является ежегодная разработка и внедрение обновленных стандартов безопасности на рабочих местах, связанных с электронной обработкой данных.

Хотя ТСО и не является международным стандартом, тем не менее его придерживаются почти все производители электронного оборудования.

Стандарт распространяется на четыре области: эргономику, потребление энергии, излучение, экологию.

В эргономике устанавливают требования к яркости и контрастности изображения, ограничению мерцания, минимизации отражения света.

Так, в соответствии с ТСО-99, частота повторения кадров должна быть не менее 85 Гц (ТСО-95: 75 Гц), распределение яркости 1, 5: 1 (ТСО-95: 1, 7:

1), свечение экрана по всему изображению 100 кд/кв. м.

Требования энергопотребления: 15 Вт в режиме ожидания (STANDBAY), (ТСО-95: 30 Вт); 3 Вт в режиме выключения (OFF), (ТСО-95: 5 Вт), максимальное время возвращения устройства из режима STANDBAY в рабочий режим ограничено 3 с.

Электромагнитное излучение: при измерении на расстоянии 30 см в полосе частот 5 Гц...2 кГц напряженность переменного электрического поля должна быть не более 10 В/м, индукция переменного магнитного поля не более 200 нТл; в полосе частот 2...400 кГц напряженность не более 1 В/м, индукция - не более 25 нТл.

Экология. В процессе изготовления запрещено использование летучих углеводородов и других веществ, наносящих вред озоновому слою, а также растворителей, содержащих хлор, следует избегать использования тяжелых металлов.

Корпуса мониторов не должны содержать вещества, имеющие в своем составе хлор или бром, при горении которых могут выделяться оксины или фураны, пластмассовые детали массой более 5 г должны иметь ассортиментный код и т.д.

CENELEC - европейская организация по стандартизации в электротехнике (European Committee for Electrotechnical Standardization).

Организация отвечает за стандарты по безопасности и электромагнитному излучению электрического оборудования в ЕЭС.

IEC 555 - стандарт Международной электротехнической комиссии (МЭК), устанавливает максимальную величину гармонических искажений, которые компьютерное оборудование может вносить в потребительскую сеть переменного тока. Источники питания мониторов, удовлетворяющие IEC555, обладают коэффициентом мощности, близким к единице.

EN 61000-3-2 - стандарт, предназначенный для разработчиков источников питания с коррекцией коэффициента мощности, устанавливает пределы интенсивности гармонических составляющих потребляемого тока со второй по сороковую гармоники, распространяется на устройства с потребляемой мощностью, превышающей 75 Вт.

 


Источники питания на микросхемах КА3842, STR17006, STR81145

 

Для источников питания данного типа характерно наличие универсального переключателя входной выпрямительной цепи автоматического переключателя схемы выпрямления при изменении напряжения питания, реализованное на микросхеме STR81145, а также STR83145, STR84145.

Такое построение позволяет обеспечить работу источника питания в широком диапазоне изменений сетевого напряжения (85 В...265 В), не требуя от пользователя дополнительных коммутаций или переключений.

Второй особенностью источника питания является наличие дополнительного однотактного преобразователя, функционирование которого существенно для работы источника питания в режиме " выключено".

Источник питания мониторов SAMSUNG CST7677L/CST7687L

Общие сведения

Источник питания монитора SAMSUNG CST7677L/CST7687L состоит из двух однотактных преобразователей, обеспечивающих его работу в основном (рабочем) и энергосберегающих режимах монитора: готовность (ожидание), выключено. На рис.8 показана структурная схема источника питания. Основные цепи преобразователя приведены в табл.3.

Рис.8. Структурная схема источника питания монитора SAMSUNG CST7677L/CST7687L

Таблица 3. Назначение и состав цепей преобразователя

Функциональное назначение цепей Состав цепей
Заградительный фильтр LF601, С602... С604, R601
Сетевой выпрямитель D601, С608, С609, IC601, R607, С6Ю, С613, D602
Цепь запуска преобразователя 1 R604, R605, R623, R626, IC602, R618, С618, 0604
Цепь запуска преобразователя 2 Т603, IC605, С648, R642
Цепь включения режима POWER OFF 0609, IC606, 0608, D605
Цепь датчика тока R627, R619, С620
Вспомогательный источник T601, D604, С616, С614, BD603
Цепь регулирования IC603, IC602, D611, IC604, R632, R634, VR601, R638
Цепь демпфирования D608, R608, С607, С622, D610, R625
Цепь синхронизации R655, С627, T602, С623, R628, D607

Сетевой выпрямитель

Основное отличие этого выпрямителя от описанных ранее состоит в использовании автоматического переключателя входной выпрямительной цепи, выполненного на микросборке IC601 (рис.9) и элементах С610, С613, D601, С608, С609. Микросборка автоматически переключает схему выпрямителя в удвоитель напряжения при напряжении сети меньшем 141 В, а при напряжении большем, чем 149 В, - в мостовую схему выпрямления. Принципиальная схема источника питания представлена на рис.10.

 

Рис.9. Структурная схема STR81145

 

Рассмотрим его работу. Напряжение электрической сети переменного тока через разъем CN601, предохранитель F601, выключатель SW601, дроссель LF601, поступает на двухполупериодный выпрямитель D601.

Элементы LF601, С602... С604, образуют заградительный фильтр, предотвращающий проникновение в электрическую сеть импульсных помех, создаваемых источником питания для бытовой электронной аппаратуры. Выходное напряжение этого выпрямителя определяется суммарным напряжением на последовательно и согласно включенных конденсаторах С608, С609.

Роль чувствительного элемента напряжения питающей сети выполняет конденсатор С610, заряд которого осуществляется по цепи:

Ucem (выв. З D 601) - С610 - D 602 - R 606 - Ucem (выв.2 D 601).

 

При напряжении на конденсаторе С610 меньшем 141 В симистор микросборки замыкает контур заряда конденсаторов С608, С609, образуя режим удвоения напряжения.

Протекание тока через симистор микросборки IC601 в этом режиме удобно рассмотреть в различные полупериоды сетевого напряжения. Предположим, что на выводе 2 выпрямительной сборки D601 действует положительный полупериод напряжения, тогда конденсатор С608 заряжается по цепи:

+ Ucem (выв.2 D 601) - D 601 (выв.1) - С608 - IC 601 (выв. З выв.2) - Ucem ( выв.3 D 601).

 

При смене полярности полупериода сетевого напряжения на выводе 2 D601 происходит заряд конденсатора С609:

сети (выв.3 D 601) - IC 601 (выв.2 (г) выв. З) - С609 - D 601 (выв.4) - исети (выв.2 D 601)


Рис.10. Принципиальная схема источника питания монитора SAMSUNG CST7677L/CST7687L

 

В этом режиме напряжение питающей сети через конденсатор С612 подается на управляющий электрод для отпирания симистора.

При напряжении питающей сети большем 149 В в микросборке включается цепь " защелки", запускается внутренний генератор, гарантированное включение режима мостового выпрямления осуществляется схемой задержки с внешним элементом С613. Симистор начинает включаться с частотой 15 кГц, не влияя на заряд конденсаторов фильтра С608, С609. Элементы R607, С611 образуют фильтр импульсных помех, возникающих при работе симистора.

Выпрямитель D601 представляет собой мостовую выпрямительную сборку GBL06. Рабочее напряжение заряда конденсаторов С608, С609 соответствует +290...340 В. Разряд конденсаторов заградительного фильтра производится через резистор R601 при выключении монитора.

Устройство размагничивания ЭЛТ монитора подключено к выходу фильтра через реле RL601, терморезистор РТН601.

 

Цепи стабилизации и защиты

Режим стабилизации выходных напряжений источника питания осуществляется путем изменения длительности импульса, управляющего выходным преобразователем с помощью широтно-импульсного регулятора. Схема ШИМ-регулятора работает следующим образом. Длительность выходного импульса ШИМ регулятора (выв.6 IC602) определяется сигналами датчика напряжения на нагрузке и датчика тока регулятора. При этом транзистор силового ключа включается генератором, а выключается в момент сравнения напряжения на выходе усилителя сигнала рассогласования (выв.2 IC602) и напряжения датчика тока (выв. З IC602).

Рассмотрим процесс изменения длительности управляющего импульса. В измерительную цепь выходного напряжения включены оптрон IC603 и стабилизатор IC604. Напряжение на выходе источника питания пропорционально току, протекающего по цепи:

 

+ 16 В - 1С603 (выв.1-2) - R 631 - а-к IC 604 - корпус.

 

На вход схемы сравнения (выв.2 IC602) поступает информация о величине выходного напряжения с нагрузочного резистора R630 оптрона IC603 в этой цепи резистор R617 и конденсатор С619 составляют цепь частотной коррекции усилителя. Приемная часть оптрона питается опорным напряжением +5 В (выв.8 IC602), конденсатор С624 блокировочный. Фотодатчик питается напряжением +16 В. На управляющий электрод IC604 подводится напряжение с выпрямителя + 195 В через делитель R632, R634, R638, VR601, элементы D611, R650, С646, С629, R633 предназначены для уменьшения уровня импульсных помех в цепи регулирования выходного напряжения.

Обратная связь по току регулятора (первичная обмотка 5-9 импульсного трансформатора Т601) реализована подачей на вход датчика тока микросхемы (выв.3 IC602) импульсов тока с резистивного датчика тока R627 через высокочастотный фильтр R619, С620. Момент равенства этого напряжения и напряжения на выводе 2 IC602 соответствует появлению спадающего фронта выходного импульса (выв.6 IC602). При возрастании выпрямленного напряжения сети увеличивается падение напряжения на датчике тока R627. Вследствие этого увеличивается также напряжение на входе компаратора тока, компаратор тока сформирует выключающий сигнал ШИМ раньше. Ключевой транзистор Q604 в проводящем состоянии будет находиться меньшее время, следовательно, выходное напряжение не изменится (п.1.2).

Защита силового ключа от коммутационных импульсов, обусловленных

индуктивностью рассеяния обмоток импульсного трансформатора, и от превышения мгновенной мощности на стоке осуществляется цепочками демпфирования: R608, С607, D608 и R625, С622, D610.

Режим выключенного питания (POWER OFF) реализован на оптроне IC606, транзисторах Q608, Q609. Напряжение +5 В, поступающее на оптрон через резистор R647 со вспомогательного стабилизатора, является питающим для датчика. При подаче PWR SAVE на базу Q609 создаются условия для протекания тока по цепи:

 

+5 В - R 647 - IC 606 (выв.1-2) - к-э 0609 - корпус.

Фотоприемник оптрона открывает Q608, который перегружает опорное напряжение так, что напряжение на выводе 7 IC601 становится меньше +12 В и ШИМ-компаратор выключается.

Микросхема имеет встроенный компаратор защиты от перенапряжения, который снимает питание с ШИМ-формирователя не только при понижении питания, но и при превышении выходного напряжения микросхемы допустимого значения.

Перегорает сетевой предохранитель F 601 (3, 15А).

В этом случае необходимо проверить исправность элементов заградительного фильтра и сетевого выпрямителя (LF601, С602, С603, С604, D601, С608, С609), терморезистора РТН601, исправность микросборки IC601, проверить исправность транзистора Q604.

Выходные напряжения модуля питания отсутствуют .

Проверить наличие напряжения 290 В на выводах 1-4 выпрямителя D601. При его отсутствии проверить исправность элементов сетевого выпрямителя. Далее проверить напряжение питания микросхемы IC602 между выводами 7 и 5. При его отсутствии проверить исправность элементов R604, R605, IC606, Q608, IC601, элементов время задающей цепи R618, С618. При наличии напряжения питания + 12 В (источник питания выключен) проверить

исправность транзистора выходного каскада строчной развертки, исправность элементов цепи затвора силового ключа R623, R626, R627, исправность силового ключа Q604, элементов цепей демпфирования С607, С622, D608, D610, элементов цепи защиты IC606, D648, Q609, Q608, проконтролировать наличие +5 В, исправность цепи синхронизации Т602, С623, R628, D607.

В случае отсутствия напряжения одного или нескольких выходных выпрямителей следует начинать проверку работоспособности элементов тех вторичных выпрямителей и цепей нагрузки, в которых напряжения отсутствуют.

Конденсаторы

 

Конденсаторы наиболее часто делятся на категории по материалу диэлектрика, из которого они изготовлены.

Внимание. Конденсаторы различных типов имеют характеристики, делающие их пригодными для одних и непригодными для других применений.

Реальный конденсатор не является чистой емкостью, а обладает также, как показано на эквивалентной схеме рис.12, а, сопротивлением и индуктивностью. Индуктивность L создается как выводами, так и структурой самого конденсатора; R2 является сопротивлением параллельной утечки, и его величина зависит от объемного удельного сопротивления материала диэлектрика; R1 - эффективное (действующее) последовательное сопротивление конденсатора, зависящее от тангенса угла потерь диэлектрика конденсатора.

Трансформаторы и дроссели

 

Представляют собой частные случаи катушек индуктивности с магнитным сердечником.

В реальной катушке провод, из которого она навивается, обладает последовательным сопротивлением, а между витками обмотки имеется распределенная емкость.

Две катушки индуктивности, связанные друг с другом через общий магнитный сердечник, образуют трансформатор.

При этом реальные трансформаторы (в отличие от идеальных) имеют между вторичными и первичными обмотками емкость.

Эквивалентная схема катушки индуктивности показана на рис.12, 6. Межвитковая емкость представлена здесь в виде шунтирующего конденсатора с сосредоточенными параметрами, так что на некоторой частоте имеется параллельный резонанс.

Эта частота резонанса определяет верхнюю частоту, на которой можно использовать катушку индуктивности.

Другой важной характеристикой катушек индуктивности является их чувствительность к паразитным магнитным полям и способность генерировать эти поля.

Поэтому к силовым импульсным трансформаторам ИБП предъявляют жесткие требования по обеспечению электромагнитной совместимости, по индуктивности рассеяния обмоток при условии обеспечения хорошего потокосцепления между обмотками, а также по конструкции с высокой прочностью изоляции (как правило, пробивное напряжение не менее 2кВ). Эти требования прежде всего обусловлены прямоугольностью формы напряжения с большой частотой (около З0кГц), а также большой амплитудой импульсов в каждом полупериоде напряжения.

Импульсные трансформаторы предназначены для передачи кратковременных электрических импульсов достаточно большой мощности.

Возникающие при этом искажения плоской части импульса определяются конечной величиной индуктивности первичной обмотки L1, а искажения фронта - индуктивностью рассеяния Ls.

Эти искажения фронтов импульсов вызываются паразитными колебаниями, возникающими в контуре, образованном индуктивностью рассеяния Ls и собственной емкостью С0.

Поэтому при выполнении импульсного трансформатора принимаются специальные меры для уменьшения этих паразитных параметров.

Меры эти в основном сводятся к следующему.

Обмотки располагают таким образом, чтобы между их выводами было приложено в процессе работы возможно меньше импульсное напряжение. Рекомендуется обмотку с меньшим числом витков располагать внутри, а с большим числом витков - снаружи катушки.

Для получения малой величины индуктивности рассеяния одну из обмоток наматывают в два слоя, между которыми помещают вторую обмотку.

В некоторых импульсных трансформаторах первичная и вторичная обмотки наматываются одновременно двумя проводами, так что витки одной обмотки располагаются между витками другой.

В качестве межслоевой и межобмоточной изоляции обычно используются пленки неорганических диэлектриков.

Сами трансформаторы пропитывают компаундами или лаками.

В силовых импульсных трансформаторах ИВП персональных компьютеров находят широкое применение Ш-образные ферритовые магнитопроводы, наиболее технологичные для процесса намотки обмоток и характеризующиеся высоким коэффициентом их заполнения.

Исходя из вышесказанного, можно сделать неутешительный вывод о том, что при выходе из строя силового импульсного трансформатора его ремонт или изготовление нового - дело весьма сложное и требует специального оборудования, материалов, оснастки и высокой квалификации.

Кроме того импульсный трансформатор является оригинальной неунифицированной деталью, которая разрабатывается и применяется для данной конкретной схемы ИВП и, как правило, не подходит для других схем.

При нарушении хотя бы одного из вышеперечисленных параметров в результате ремонта импульсного трансформатора, он будет работать неудовлетворительно, что приводит к нарушению оптимального соотношения потерь мощности на элементах ИВП и скорому повторному выходу ИБП из строя.

К счастью, силовые импульсные трансформаторы необратимо выходят из строя довольно редко, что объясняется их высокой надежностью, которая заложена в технологии их изготовления, т.к импульсный трансформатор является одним из самых ответственных элементов схемы ИБП.

Рассмотрим теперь основные особенности построения трансформаторов тока, которые используются во многих схемах ИБП в качестве датчика схемы токовой защиты.

Характерной особенностью трансформатора тока в отличие от трансформатора напряжения является то, что вторичная обмотка его должна быть обязательно замкнута на нагрузку, сопротивление которой не превышает определенного значения.

Разомкнутое состояние вторичной обмотки является аварийным режимом. Поясним это подробнее.

Т.к. ток первичной обмотки не изменяется при разрыве цепи вторичной обмотки, в отличие от трансформатора напряжения, то переменный магнитный поток в сердечнике имеет очень большую амплитуду из-за того, что отсутствует встречный компенсирующий магнитный поток, порождаемый током вторичной обмотки.

Скорость изменения магнитного потока при смене полярности тока, протекающего через первичную обмотку, также очень велика.

Поэтому будет очень велика ЭДС, наводимая этим потоком на разомкнутой вторичной обмотке. Величина этой ЭДС такова, что может привести к пробою изоляции.

Для безопасности работы в случае повреждения изоляции между первичной и вторичной обмотками, вторичная обмотка должна быть обязательно заземлена.

Кроме того, большая амплитуда переменного магнитного потока в сердечнике приводит к значительному возрастанию потерь на его перемагничивание. Поэтому трансформатор начинает сильно перегреваться.

В схеме ИБП PS-6220C, например, функцию нагрузки вторичной обмотки трансформатора тока Т4 выполняет резистор R42 (470 Ом) Трансформатор тока в рассматриваемом классе ИБП в основном имеет две конструктивные реализации. В одном варианте он представляет собой трансформатор на Ш-образном ферритовом сердечнике, на среднем керне которого расположен каркас с намотанной на него вторичной обмоткой. Первичная обмотка расположена поверх вторичной и представляет из себя один виток монтажного провода в пластмассовой изоляции (рис.14, а, б).

 

Рис.14. Встречающиеся на практике конструкции трансформатора тока на Ш-образном (а) и на кольцевом (б, в) сердечнике.


В другом варианте вторичная обмотка наматывается на кольцевой ферритовый сердечник, а первичной обмоткой является вывод конденсатора, который включен последовательно с первичной обмоткой силового трансформатора (рис.14, в).

Однако встречаются и другие варианты конструктивного исполнения трансформатора тока.

Дроссели выходных фильтров (кроме дросселя групповой стабилизации) представляют собой катушки индуктивности с однорядной намоткой из медного провода большого сечения на незамкнутом ферритовом сердечнике цилиндрической формы (ферритовые стержни).

Большое сечение провода объясняется значительной величиной выходных токов ИБП, а незамкнутая форма сердечника - работой дросселя с большим током подмагничивания.

Замкнутая форма сердечника в этом случае привела бы к вхождению его в магнитное насыщение и потере дросселем фильтрующих свойств.

Неисправности индуктивных элементов можно подразделить на:

обрыв в обмотке;

межвитковое замыкание;

межобмоточное замыкание (только для трансформаторов), замыкание (пробой) обмотки на сердечник;

потеря сердечником магнитных свойств (из-за перегрева, механических повреждений и т.д.).

Выход из строя выходных дросселей фильтров в ИБП явление крайне редкое из-за их высокой надежности.

Выход из строя трансформаторов часто можно определить при внешнем осмотре по потемнению отдельных участков наружной изоляции, появлению пузырьков воздуха под изоляцией, вспениванию и выделению из под изоляции пропиточного компаунда.

Целостность обмоток на " обрыв", а также наличие межобмоточного замыкания и замыкания какой-либо из обмоток на сердечник легко проверяются с помощью омической " прозвонки".

Остальные из перечисленных выше неисправностей поддаются обнаружению крайне сложно, так как омическое сопротивление обмоток трансформатора очень мало (единицы и даже доли Ом! ).

Если есть подозрение на межвитковое замыкание или на потерю сердечником магнитных свойств, то трансформатор нуждается в замене на аналогичный.

 

Диоды

 

Диоды, применяемые в рассматриваемом классе ИБП, можно условно подразделить на:

силовые выпрямительные низкочастотные (диоды входного сетевого моста и схемы пуска);

силовые выпрямительные высокочастотные вторичной стороны;

высоковольтные высокочастотные (рекуперационные диоды транзисторного инвертора);

низковольтные высокочастотные (применяемые в согласующем каскаде и сигнальных цепях защиты, а также схеме образования сигнала PG).

Выпрямительные низкочастотные диоды для входного выпрямительного моста выбираются при замене по следующим основным параметрам:

постоянному обратному напряжению Uo6p. (не менее 400В);

среднему прямому току Iпр. (не менее 2-4А в зависимости от мощности блока);

импульсному прямому току Iи. пр. (не менее 70-100А).

Для силовых выпрямительных высокочастотных диодов, кроме того, важным параметром служит время восстановления обратного сопротивления диода teoc, которое определяет длительность режима " сквозных токов" в схеме выпрямления. Это увеличивает коммутационные потери не только в диодах выпрямителя, но и в транзисторах инвертора. При этом элементы источника оказываются в режиме короткого замыкания, что создает условия для коммутационных выбросов на фронтах переключения, ведущих к отказу источника. Время teoc. должно быть в три-четыре раза меньше времени выключения транзистора и соответствовать teoc. = 0, 3 - 0, 5мкс. Вторым важным параметром этих диодов является прямое падение напряжений Unp., от значения которого зависит КПД выпрямителя. Это напряжение должно быть по возможности меньшим.

Сравнительно меньшее значение Unp. получается у диодов с барьером Шоттки. У данного типа диодов Unp. составляет 0, 4-0, 6В при токах до 100А, а время восстановления не более 0, 1мкс. Недостатком диода является большой обратный ток и малое допустимое обратное напряжение (20 - 40В).

Для остальных диодов определяющим параметром является teoc.

Мощные выпрямительные диоды в каналах выработки +5В и +12В стоят на радиаторах, т.е. для обеспечения температурного режима работы этих диодов надо обеспечить хороший теплоотвод!

Характерной ошибкой ремонтников при замене вышедших из строя зарубежных диодов является незнание одной характерной особенности. Исторически сложилось так, что у диодов, выпускаемых отечественной промышленностью метка, как правило, наносится со стороны анода. Зарубежные диоды, как правило, имеют метку у катода.

Поэтому ремонтник, извлекая неисправный диод из платы, устанавливает на его место диод отечественного производства, стараясь при этом сохранить расположение метки.

В результате диод оказывается запаян " наоборот", что приводит к выводу ИБП из строя.

Однако необходимо отметить, что и для зарубежных, и для отечественных диодов расположение меток может быть и противоположным.

Поэтому необходимо перед установкой диода на плату разобраться в расположении выводов с помощью омметра, не доверяясь справочникам, в которых иногда встречаются досадные ошибки! Иногда ошибки при маркировке диодов бывают допущены на заводе изготовителе.

Практически встречающиеся неисправности диодов можно разделить на:

обрыв;

короткое замыкание (пробой);

уменьшение обратного сопротивления (утечка);

увеличение прямого сопротивления.

Все эти неисправности легко обнаруживаются при помощи омметра после выпаивания диода из схемы.

Обращаем Ваше внимание на то, что иногда утечка диода проявляется только под напряжением!

Большие сложности возникают при выходе из строя стабилитронов и тиристоров в ИБП, которые обычно являются пороговыми и исполнительными элементами различных защитных схем.

Определение их типов и параметров часто бывает затруднено из-за отсутствия справочной информации и принципиальных схем на ИБП.

Произвольный подбор этих элементов чреват выходом из строя элементов ИБП, которые еще не " сгорели". Поэтому при таких сложных случаях необходимо " снять" принципиальную схему с печатной платы ИБП и тщательно проанализировать принцип ее работы, после чего попробовать подобрать элемент со сходными параметрами, либо попытаться достать аналогичный зарубежный элемент.

 

Транзисторы

 

Транзисторы, применяемые в рассматриваемом классе ИБП, можно условно подразделить на:

силовые высокочастотные (большой мощности);

сигнальные высокочастотные (малой мощности).

Силовые высокочастотные транзисторы применяются в качестве ключей полумостового инвертора и рассчитаны на работу со значительными токами и напряжениями.

Сигнальные транзисторы используются во всех остальных функциональных узлах схемы ИБП.

Во всех схемах рассматриваемого класса ИБП в качестве силовых ключей используются исключительно биполярные транзисторы обратного типа проводимости (n-p-п).

В качестве сигнальных используются транзисторы как прямого (p-n-р), так и обратного типа проводимости. При замене сигнальных транзисторов следует учитывать не только цифровое обозначение транзисторов, но и буквенные обозначения, которые нанесены на корпус. Транзисторы с разными буквенными обозначениями имеют различные параметры (прежде всего - коэффициент усиления по току)!

Практически встречающиеся неисправности транзисторов можно разделить на:

обрыв одного или обоих переходов;

короткое замыкание (пробой) по одному или обоим переходам;

уменьшение обратного сопротивления (утечка) одного или обоих переходов;

пробой по участку коллектор-эмиттер при целостности переходов коллектор-база и эмиттер-база. Все эти неисправности легко обнаруживаются при помощи омметра после выпаивания транзистора из схемы, т.к. каждый из переходов транзистора аналогичен диоду.

 


Интегральные стабилизаторы

 

 

Рис.15. Интегральные линейные регуляторы напряжения LM7805, LM7812.

 

Эти микросхемы содержат встроенную защиту от перегрузки по току и тепловую защиту от максимально допустимой температуры кристалла (175°С), что существенно повышает надежность микросхем.

Типовая схема включения этих стабилизаторов приведена на рис.17.

Конденсатор С1 - обычный фильтрующий конденсатор, который должен иметь емкость 1000мкф на 1А тока нагрузки.

Конденсатор С4 используется для сглаживания переходных процессов при внезапных повышениях потребляемого тока и должен иметь емкость примерно 100мкф на 1А тока нагрузки.


Рис.16. Выход ИМС 7805 на режим стабилизации при подаче входного напряжения.

Рис.17. Типовые схемы включения трехвыводных интегральных стабилизаторов положительного (а) и отрицательного (б) напряжений.

 

В рассматриваемом классе ИБП используются, в основном, для стабилизации отрицательных выходных напряжений трехвыводные интегральные стабилизаторы напряжения типа 7905, 7912 или 7805, 7812.

Структурная схема трехвыводных интегральных стабилизаторов 7805 (К142ЕН5А) и 7812 (К142ЕН8Б) приведена на рис.14.

Основные параметры этих стабилизаторов напряжения приведены в табл.6.

Входной конденсатор С2 устраняет генерацию при скачкообразном включении входного напряжения (Uex), которая возникает в стабилизаторе из-за влияния монтажных емкости и индуктивности соединительных проводов, образующих паразитный колебательный контур (рис.15),

Выходной конденсатор СЗ служит для защиты от переходных помеховых импульсов.

Обычно С2 и СЗ имеют емкость от 0, 1 до 1 мкф и должны монтироваться как можно ближе к корпусу стабилизатора. Амплитуда высокочастотных колебаний может превышать максимально допустимое входное напряжение, что приводит к пробою микросхемы, поэтому наличие и исправность С2 является обязательным условием для работы схемы.

Иногда между входом и выходом интегрального стабилизатора включается диод (рис.16). В его отсутствии после выключения из сети ИБП конденсатор, стоящий на выходе стабилизатора разрядится через стабилизатор, что может привести к выходу его из строя.

Минимальное входное напряжение интегрального стабилизатора должно превышать выходное на 2, 5В, т.е. для стабилизатора с фиксированным выходным напряжением +5В, например, минимальное входное напряжение составляет +7.5В.

Цоколевка корпусов интегральных стабилизаторов этих серий приведена на рис.80.

 


Заключение

Наибольшее распространение в схемотехнике источников питания мониторов получил импульсный источник питания, содержащий стабилизатор напряжения, регулирующий элемент которого работает в ключевом режиме.

Использование этого режима позволяет значительно улучшить ряд показателей формирователей питающих напряжений.

Так, импульсный источник питания, по сравнению с линейным, обладает высоким коэффициентом полезного действия (0, 7...0, 8), меньшей рассеиваемой мощностью выходного транзистора, а, следовательно, и облегченным тепловым режимом всего монитора в целом, малыми размерами импульсного трансформатора и сглаживающего фильтра.

К достоинствам импульсных источников питания относится и возможность групповой стабилизации одновременно нескольких источников питания, а также способность работы в широких пределах изменения сетевого напряжения (от 100 до 260 В).

Недостатками импульсных источников питания считают: высокий уровень радиопомех при функционировании и отсутствие гальванической развязки от сети переменного тока.


Поделиться:



Последнее изменение этой страницы: 2019-10-04; Просмотров: 204; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.117 с.)
Главная | Случайная страница | Обратная связь