Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Кинетическая и агрегатная устойчивость коллоидных систем.



Следствием кинетических свойств коллоидных растворов является их кинетическая устойчивость, которая состоит в том, что концентрация коллоидных растворов одинакова по всему объему системы и при правильном хранении не изменяется во времени.

Общая пара электронов в случае ионной связи практически полностью смещена к аниону. Обычно это происходит в соединениях элементов с большой разностью электроотрицательности (например, в соединениях CsF, NaBr, K2O). Все эти соединения при обычных условиях представляют собой ионные кристаллы (кристаллы, построенные из катионов и анионов), например, кристаллы иодида калия или хлорида натрия.

      В металлах валентные электроны удерживаются атомами крайне слабо и способны мигрировать. Атомы, оставшиеся без внешних электронов, приобретают положительный заряд. Они образуют металлическую кристаллическую решётку.

      Совокупность обобществлённых валентных электронов (электронный газ), заряженных отрицательно, удерживает положительные ионы металла в определённых точках пространства - узлах кристаллической решётки, например, металла серебро.

       Внешние электроны могут свободно и хаотично перемещаться, поэтому металлы характеризуются высокой электропроводностью (особенно золото, серебро, медь, алюминий).

Окислительно – восстановительные процессы.

Термодинамика гальванического элемента.

Независимо от того, протекает ли реакция по химическому или электрохимическому пути, энергетические изменения в системе остаются одинаковыми. Электрохимические реакции, подобно химическим, рассматривают с позиций термодинамики и кинетики. Если химическую реакцию проводить в гальваническом элементе с очень малой скоростью, т.е. так, чтобы процесс практически не отклонялся от равновесного, то полезная работа электрического тока окажется равной максимальной работе реакции W = QE = -DG,

ЭДС гальванического элемента. Электрическая работа, получаемая с помощью гальванического элемента, будет максимальной, когда элемент работает в условиях, наиболее близких к обратимым. Максимальная разность потенциалов электродов данного гальванического элемента, которая определяется в условиях равновесия, называется его электродвижущей силой (ЭДС). Она равна разности равновесных потенциалов катода и анода элемента. При стандартных условиях:

Уравнение Нернста — уравнение, связывающее окислительно-восстановительный потенциал системы с активностями веществ, входящих в электрохимическое уравнение, и стандартными электродными потенциалами окислительно-восстановительных пар.

Стандартный водородный электрод — электрод, использующийся в качестве электрода сравнения при различных электрохимических измерениях и в гальванических элементах. Водородный электрод (ВЭ) представляет собой пластинку или проволоку из металла, хорошо поглощающего газообразный водород (обычно используют платину или палладий), насыщенную водородом (при атмосферном давлении) и погруженную в водный раствор, содержащий ионы водорода. Потенциал пластины зависит от концентрации ионов Н+ в растворе.

Стандартный электродный потенциал- это потенциал электрода при стандартных условиях, его обозначают символом Е°. Эти потенциалы определены для многих окислительно-восстановительных систем и обычно приводятся в химических справочниках.

Поляризация электрохимическая —отклонение стационарного потенциала электрода от значения под током. Не следует путать перенапряжение с поляризацией, так как поляризация относится к электроду, а перенапряжение к реакции.

Перенапряжение водорода на катоде есть величина отрицательная, но чем положительнее значение равновесного потенциала водорода, тем при менее отрицательном потенциале происходит выделение водорода на данном катоде. Отсюда вытекает, что чем больше концентрации ионов водорода в растворе, в котором протекает коррозия, тем положительнее потенциал разряда ионов водорода, больше установившаяся разность потенциалов и интенсивнее идет выделение водорода.

Электролиз это окислительно восстановительный процесс, протекающий на электродах при прохождении постоянного электрического тока через расплав или раствор электролита. Электролиз – дословно «лизис» - разложение, «электро» электрическим током.

       Электролиз раствора отличается от электролиза расплавов тем, что процессы протекают сложнее из – за непосредственные влияния воды.

Если анод не растворим, то рассматривается очерёдность процессов

1) CL, Br, Y
S, CN, CNS
A: Br - 2e à Br2

2) 4OH - 4e à 2H2O + O2

3) 2H2O - 4e à 4H + O2

На катоде происходит тот процесс, потенциал которого больше.

Растворимые и не растворимые аноды.

НЕ РАСТВОРИМЫЕ                                                                РАСТВОРИМЫЕ

С, Pt, Pb, нержавеющая сталь                                                                    Ni – 2e à Ni2+

Электрохимическая коррозия

Электрохимическая коррозия - самый распространенный вид коррозии. Электрохимическая коррозия возникает при контакте металла с окружающей электролитически проводящей средой. При этом восстановление окислительного компонента коррозионной среды протекает не одновременно с ионизацией атомов металла и от электродного потенциала металла зависят их скорости. Первопричиной электрохимической коррозии является термодинамическая неустойчивость металлов в окружающих их средах. Ржавление трубопровода, обивки днища морского суда, различных металлоконструкций в атмосфере - это, и многое другое, примеры электрохимической коррозии.

Кислородный электрод.

Кислородный электрод состоит из свинцового анода и серебряного катода К. Свинцовый анод, покрытый пористой полиэтиленовой мембраной, помещен внутрь катода - полого серебряного перфорированного цилиндра, покрытого полиэтиленовой мембраной, которая проницаема для кислорода, но непроницаема для воды и мешающих ионов. Внешнее поляризующее напряжение не требуется. Работа электрода основана на диффузии кислорода через газопроницаемую мембрану и последующем восстановлении кислорода на катоде.

Водородная и кислородная деполяризация.

Частицы, участвующие в катодном восстановлении при коррозии, называют деполяризатором. Это связано с тем, что поглощение электронов на катоде оттягивает их с анода и уменьшает поляризацию его двойного электрического слоя. Это способствует активизации анодного процесса, т.е. интенсифицирует коррозию.

Наиболее распространенными деполяризаторами являются молекулы растворенного в воде кислорода (О2), сами молекулы воды (Н2О) и катионы водорода (Н+).

Различают два вида процессов деполяризации – с поглощением кислорода ( кислородная деполяризация ) и с выделением водорода ( водородная деполяризация ).

Термодинамика электрохимической коррозии металлов.

Стремлением металлов переходить из металлического состояния в ионное для различных металлов различно. Вероятность такого перехода зависит также от природы коррозионной среды. Такую вероятность можно выразить уменьшением свободной энергии при протекании реакции перехода в заданной среде при определенных условиях. Но прямой связи между термодинамическим рядом и коррозией металлов нет. Это объясняется тем, что термодинамические данные получены для идеально чистой поверхности металла, в то время как в реальных условиях корродирующий металл покрыт слоем продуктов взаимодействия металла со средой.

Для расчетов изменения свободной энергии реакции при электрохимической коррозии металла используют величины электродных потенциалов. Следовательно, для электрохимического растворения металла необходимо присутствие в растворе окислителя (деполяризатора, который бы осуществлял катодную реакцию ассимиляции электронов), обратимый окислительно - восстановительный потенциал которого положительнее обратимого потенциала металла в данных условиях.

ОВР

Окислительно-восстановительные реакции – это реакции, протекающие с изменением степеней окисления атомов элементов, входящих в состав молекул реагирующих веществ.

Окислитель - это атом, молекула или ион, который принимает электроны и понижает свою степень окисления, т.е. восстанавливается.

Восстановитель - это атом, молекула или ион, который отдаёт электроны и повышает свою степень окисления, т.е. окисляется.

Степень окисления — вспомогательная условная величина для записи процессов окисления, восстановления и окислительно-восстановительных реакций. Она указывает на состояние окисления отдельного атома молекулы и представляет собой лишь удобный метод учёта переноса электронов: она не является истинным зарядом атома в молекуле.


Поделиться:



Последнее изменение этой страницы: 2019-10-04; Просмотров: 192; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь