Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Установка на напорной линии и установка на всасывании



Общие понятия о насосах

ПОДАЧА (Q): Объем жидкости, поднимаемой насосом за единицу времени; не зависит от удельного веса и может изменяться при перекачке жидкости, чья вязкость больше вязкости воды.

АТМОСФЕРНОЕ ДАВЛЕНИЕ (Ра): Давление атмосферы на единицу площади.

ОТНОСИТЕЛЬНОЕ ИЛИ РЕАЛЬНОЕ ДАВЛЕНИЕ (Рr): Давление, соотнесенное с атмосферным давлением. Манометрами измеряется положительное давление, а вакуумметрами — отрицательное.

АБСОЛЮТНОЕ ДАВЛЕНИЕ (Pаbs): Давление, превышающее абсолютный ноль (полный вакуум) Pаbs = Ра + Рr.

ДАВЛЕНИЕ ПАРА (Tv): Давление, при котором жидкость при определенной температуре находится в стадии равновесия со своим газообразным состоянием (паром).

ПЛОТНОСТЬ: масса вещества на единицу объема.

УДЕЛЬНЫЙ ВЕС (γ ): Вес вещества на единицу объема. Удельный вес = плотность x сила притяжения.

ЗНАЧЕНИЕ УДЕЛЬНОГО ВЕСА: Насос может нагнетать жидкости с различным удельным весом, например, воду, алкоголь, серную кислоту и т. д. на одинаковую высоту, причем изменяться при этом будут только показатели давления разгрузки и поглощаемой мощности в прямой зависимости от удельного веса.

ВЫСОТА ВСАСЫВАНИЯ (На): Геометрическая высота, измеряемая от минимального уровня жидкости до оси насоса (см. прилагаемую схему).

ВЫСОТА НАГНЕТАНИЯ (Нi): Геометрическая высота, измеряемая от оси насоса до максимального уровня подъема (см. прилагаемую схему).

СУММАРНАЯ ГЕОМЕТРИЧЕСКАЯ ВЫСОТА (Нt): Нt = На + Нi

ПОТЕРИ НАПОРА (Рс): Высота, теряемая протекающей жидкостью в результате трения о трубы, клапана, фильтры, изгибы и другие приспособления.

ОБЩАЯ МАНОМЕТРИЧЕСКАЯ ВЫСОТА (Hm): Общая высота (или дифференциальное давление), которую должен преодолеть насос.

Рассчитывается по формуле: Hm = Нt + Pc+10/γ (P1-P2) где P1 — давление в напорном резервуаре, а P2 — давление во всасывающем резервуаре.

Если перекачивание осуществляется между открытыми резервуарами с одинаковым давлением (давление окружающей среды), как это обычно и случается, то значение Р1 - Р2 = 0. Следует рассчитать отдельно манометрическую высоту всасывания, чтобы убедиться в том, что насос будет производить всасывание без затруднений.

Установка на напорной линии и установка на всасывании

Мощность и КПД насоса

(Р1) Мощность, потребляемая от сети

Потребление мощности или активная мощность

Однофазные двигатели:

Трехфазовые двигатели:

(Р2) Номинальная мощность двигателя

Наибольшая мощность, развиваемая двигателем

Однофазные двигатели:

Трехфазные двигатели:

(РЗ) Мощность, поглощаемая осью двигателя

Для определенных условий работы

Где:

U — рабочее напряжение в вольтах;
I — ток на статоре в А;
cos φ — коэффициент нагрузки;
η m — КПД двигателя в %;
Q — подача м3/час;
Н — манометрическая высота в метрах водяного столба;
η h — гидравлическое КПД в %;
γ — удельный вес в кг/дм3.

Трубопровод, выбор диаметра

Выбор диаметра труб является техническим и экономическим решением. Следует иметь в виду, что во избежании излишних затрат энергии, потери давления, не должны быть чрезмерно высокими. Размер отверстий всасывающего и нагнетающего патрубков насосов указывают только на минимальный размер труб.

Выбор адекватных сечений должен осуществляться таким образом, чтобы максимальная скорость прохождения была следующей:

· на линии всасывания: 1, 8 м/сек;

· на линии нагнетания: 2, 5 м/сек.

Важно учитывать скорость потока, так как от этого зависит экономичность и продолжительность срока службы системы нагнетания:

· скорости меньше 0, 5 м/сек обычно приводят к осадконакоплениям;

· скорости свыше 5 м/сек могут вызвать абразивный износ.

Скорость потока в трубопроводе рассчитывается по следующим формулам:

Где:

V — скорость в м/сек;
q — подача в л/м;
D — диаметр в мм;
Q — подача в м3/час.

Эквивалентность труб

Определение эквивалентности труб позволяет получить сведения о других системах трубопроводов.

При постоянном диаметре: Потеря давления прямо пропорциональна квадрату подачи:

При постоянной подаче: Потеря напора обратно пропорциональна диаметру труб, возведенному в пятую степень:

При постоянной подаче: Скорость циркуляции обратно пропорциональна сечению труб:

При постоянных потерях напора: Квадрат подачи пропорционален диаметру труб, возведенному в пятую степень:

Эквивалентные потери напора

С помощью последнего уравнения была рассчитана приводимая ниже таблица соответствия труб различного диаметра.

ПРИМЕЧАНИЯ

Площадь трубопровода большего диаметра меньше общей площади труб меньшего диаметра. Скорость прохождения жидкости по трубам большего диаметра превышает скорость циркуляции жидкости по трубам меньшего диаметра.

Потери давления

Потери давления во вспомогательных компонентах трубопровода. Соответствие линейным метрам прямого трубопровода. Значения даны приблизительно и зависят от качества арматуры.

Производители клапанов и задвижек сообщают нам значения коэффициента подачи (кп), что позволяет рассчитать потери давления; использование клапанов и задвижек с высоким кп имеет большое значение для сведения к минимуму потерь давления.

Коэффициент подачи кп — это подача воды в м3/час, которая при проходе через полностью открытый клапан приводит к потере давления в 1 кг/см2.

Эквивалентная длина

Длина трубопровода — 8 метров

Клапан дроссельный

(Эквивалент) — 30 метров

Изгибы в 90° (3× 3) — 9 метров

Диффузор конусный — 5 метров

Итого: 52 метра

Потери давления 52 метра х 1 % = 0, 52 метра

Общая манометрическая высота всасывания — 3, 52 метра

Кавитационный запас

Для нормальной работы насоса необходимо, чтобы допускаемый кавитационный запас насоса (NPSH D) превышал требуемый кавитационный запас насоса (NPSH R). В качестве предупредительной меры безопасности следует добавить дополнительный запас надежности в 0, 5 м к значению требуемого запаса, в результате чего мы получим:

NPSHD > NPSHR+ 0, 5 м

Если насос работает с повышенным всасыванием, происходит разряжение на входе во всасывающий патрубок, давление падает, появляются пузырьки-каверны и жидкость преобразуется в пар. Появление пузырьков, которые лопаются при входе в патрубок нагнетания, ведет к возникновению процесса кавитации, наносящего серьезные повреждения механическим частям насоса.

Нежелательные явления, вызываемые кавитацией, — это разрушение внутренних поверхностей насоса, вибрация и шумы. Чрезмерная кавитация, как правило, сопровождается сильным шумом и повреждением насоса; средняя кавитация ведет к небольшому снижению подачи, высоты, производительности и преждевременному износу.

NPSH (Net Positive Suction Head) или чистая позитивная высота всасывания представляет собой разницу между осевым давлением жидкости при нагнетании и давлением насыщенного пара при температуре перекачивания.

Существуют два вида NPSH:

Расчётный NPSH является характеристикой установки, независимой от вида насоса и выводится путем применения принципа сохранения энергии между свободной поверхностью жидкости и всасыванием:

Требуемый NPSH является параметром насоса, указываемый производителем и выражающийся следующим уравнением:

Всасывающий трубопровод

Правильно подобранные размеры и обвязка всасывающего трубопровода гарантируют нормальную работу насоса.

Если закачиваемая жидкость однородна, то скорость во всасывающем трубопроводе следует ограничить значением в 1, 8 м/сек.

Если забор ведется из коллектора двумя или более насосами, рекомендованная скорость течения не должна превышать 0, 9 м/сек.

В ответвлениях, находящихся под углом в 30°-45° по отношению к основной магистрали, рекомендованная скорость потока может быть увеличена до 1, 5 м/сек.

Если диаметр всасывающего отверстая насоса меньше диаметра всасывающего трубопровода, то следует установить эксцентрический конусный диффузор, присоединив его прямым участком к верхней части трубопровода; если же источник снабжения расположен выше насоса, то прямым участком диффузор присоединяется к нижней часта.


Образование вихрей в резервуаре всасывания

Зачастую требуется, чтобы насос производил забор из резервуара со всасывающим трубопроводом, погруженным на минимальную глубину.

Для предотвращения образования вихрей следует рассчитать минимальную глубину погружения по формуле:

SM = V2/2g + 0, 1

где:

SM — Минимальное погружение (м);
V — Скорость всасывания (м/сек);
g — Ускорение свободного падения (9, 81 м/с2).

Если поток жидкости всасывающего или нагнетательного трубопровода располагается над уровнем жидкости радиально, то есть опасность образования воздушных пробок и появления дополнительных скоростей, что мешает нормальной работе насоса.

Если невозможно обеспечить необходимую высоту жидкости, то установка разделительных перегородок, противовихревых пластин и разделителей, а также правильно подобранные скорости и т.д. могут помочь в разрешении большинства этих проблем.

Следует избегать резких переходов сечений между входом в насос и резервуаром. Переход должен быть постепенным и достигается с помощью установки конусов с наклоном в 45° причем в этих случаях скорость потока в нижней части должна быть меньше 0, 3 м/сек.

Особенно не рекомендуется прокладка трубопровода небольших размеров прямо от резервуара к насосам, установленным поблизости от входа.

В этих случаях, чтобы дойти до всех насосов поток должен резко менять свое направление.

Нежелательно также концентрировать насосы в резервуаре, так как это вызывает образование обширных вихревых зон за ними.

Расчет давления

Давление при запуске = Геометрическая высота + Общие потери давления в установке + Необходимое давление в наиболее неблагоприятной точке.

Давление при остановке = давление при запуске + 15-30 метров.

Рb = На + Нg + Рс + Рr

Где:

Рb = минимальное давление при запуске;
На = Высота всасывания;
Нg = геометрическая высота;
Рс = потери давления;
Рr = остаточное давление.

ПРИМЕЧАНИЕ:

Потери давления не должны превышать 10-15 % от геометрической высоты.

Минимальное давление при запуске:

Получаем прибавлением 15 метров к геометрической высоте от минимального уровня воды или от основания насосов и до потолка самого высокого этажа плюс потери давления. Объем резервуара должен быть равен или больше величины, получаемой при перемножении коэффициента на количество единиц жилья. Не рекомендуется устанавливать инжекторы, если рабочее давления превышает 8 кг/см2.

Максимальное давление при запуске:

Давление при остановке будет на 15-30 м больше давдения приnbsp; запуске. Максимальное давление в точке потребления не должно превышать 5 кг/см2.

Резервный или напорный бак

Согласно техническому кодексу строительства (статья Закона), принятому в Испании, перед установкой повышения давления (при всасывании) следует установить РЕЗЕРВНЫЙ ИЛИ ПОДПОРНЫЙ БАК, емкость которого рассчитывается согласно требованиям стандарта UNE 100.030: 2.005:

V = Q x t x 60

Где:

V = Объем (л);
Q = Подача (л/сек);
t = Время (15-20 мин).

Регулируемая установка повышения давления: можно обойтись без подпорного бака. В этом случае следует включить в установку повышения давления устройство, отключающее всасывание и останавливающее насосы при падении давления в трубопроводе снабжения.

Пример расчета установки повышения давления

Подача

1. По нижеприведенной таблице подсчитаем номинальную подачу и количество точек потребления на единицу жилья:

2. Коэффициент одновременности для единицы жилья можно рассчитать по следующей формуле: (n — число точек потребления на единицу жилья):

3. Экономичная подача для одной единицы жилья равна: Экономичная подача = К х номинальная подача.

4. Подсчитаем коэффициент при одновременном водоснабжении всех видов жилья по формуле: (N: Общее кол-во единиц жилья):

5. Общая подача для снабжения всех единиц жилья определяется следующим образом:
Общая подача (L/S) = Кол-во единиц жилья х Экономичная подача х Kv

Резервуары

Объем резервуара, где:

к = 0, 33 (для мембранных баков)
к = 0, 45 (для оцинкованных баков с компрессором).
к = 1 (для оцинкованных баков с инжектором).
и:

Где:

Vd — Объем резервуара в м3;
Vu — Полезный объем резервуара в м3;
Qm — Средняя подача (Qa + Qp)/2 в м3/час;
Qa — Подача при давлении запуска в м3/час;
Qp — Подача при давлении остановки в м3/час;
Рр — Давление при остановке в кг/см2;
Ра — Давление при запуске в кг/см2;
N — Частота запусков/час.

Воздушные пробки в резервуаре влияют на объем резервуара и на его полезный объем. Контроль за скоростью помогает сберегать энергию, сокращать пространство и избегать преждевременного износа и эффекта гидравлического удара. Расчет устройства повышения давления требует детальной проработки, когда речь идет о снабжении водой таких объектов, как: жилые кварталы, школы, казармы, больницы, поливные хозяйства, магазины, рынки, плавательные бассейны, заводы, очистительные сооружения, гостиницы, офисные здания.

Пример применения

· если известны значения подачи и высота подъема вязкой жидкости, следует обратиться к графику и найти поправочные коэффициенты;

· располагая этими данными, можно определить соответствующие значения для воды и выбрать насос;

· используя кривую характеристики для воды и применив соответствующие коэффициенты, получаем новые значения для вязкой жидкости.

Рассчитать параметры насоса, способного при подаче в 150 м3/час поднять вязкую жидкость на высоту 28, 5 mса.

Вязкость 200 cSt, удельный вес 0, 9 кг/дм3.

Чтобы найти поправочный коэффициент, используйте кривую 1, 0 х Q:

fQ = 0, 95 fH = 0, 91 fη = 0, 62

Найдя коэффициенты, рассчитаем значения для воды:

Q = 150/0, 95 = 158 m 3 /h
Н = 28, 5/0, 91 = 31, 3 mca

Исходя из полученных величин, выберем насос типа FNF 80-160 с диаметром 173 мм, совершающий 2.900 оборотов в минуту; по кривой для воды, определим величину подачи, высоту нагнетания и производительность.

Применив различные поправочные коэффициенты, получим новые условия эксплуатации насоса для перекачки вязких жидкостей. Ниже приводится график, на котором в краткой форме отображены наши расчеты.

Гидравлический удар

Под гидравлическим ударом понимается повышенное давление, отмечаемое в трубопроводе при любом изменении скорости жидкости, циркулирующей по трубам, (при открытии или закрытии клапана, запуске или остановке насоса и т. д), в результате которого происходит изменение кинетической энергии движущейся жидкости. При остановке насоса гидравлический удар проявляется вначале появлением разрежения, за которым следует резкое повышение давления. Время остановки Т равняется времени, прошедшему с момента прекращения подачи энергии, открытия или закрытия клапана и до момента прекращения циркуляции жидкости. Формула Mendiluce позволяет нам рассчитать время остановки с достаточно высокой степенью точности:

Где:

L — протяженность трубопровода (т);
V — Скорость жидкости (м/сек);
g — скорость свободного падения (м/сек2);
Hm — Манометрическая высота (mса).

Для плоскостей с углом наклона более 50% следует применять особые меры предосторожности при вычисления силы гидравлического удара; рекомендуется применять только формулу Allievi, так как в подобных случаях остановка происходит слишком резко. Не забудьте, что манометрическая высота при расчете Т замеряется непосредственно за насосом и, следовательно, надо учитывать глубину уровня зеркала воды в скважине, когда речь идет о погружных насосах. L. Allievi пришел к выводу, что гидравлический удар вызывает колебания, которые распространяются по всей длине трубопровода со скоростью, равной:

Где:

а — скорость распространения (м/сек);
D — диаметр труб (мм);
е — толщина стенок труб (мм).

Коэффициент К представляет в основном эффект инерции в движущихся частях насоса и его величины варьируются в зависимости от длины линии нагнетания.

Коэффициент С выведен опытным путем и зависит от наклона (Нm/L)

Подсчет К1:
К1 = 10 10/ E

Где Е — коэффициент эластичности труб (кг/м2).

Практические значения К, для труб из разных материалов:

Сталь — 0, 5;
Чугун — 1;
Цемент — 5;
Фиброцемент — 5, 5;
Полиэстер — 6, 6;
ПВХ — 33, 3.

В работах по гидравлике рекомендуется для расчета сверхдавления использовать следующие формулы:

и, следовательно, необходимо применять формулу Allievi, если круговое перемещение воды продолжается, всегда есть промежуточная точка, для которой будет верно

и к этой зоне следует применить формулу Michaud.

Максимальное давление будет равно сумме статического давления или геометрической высоты и максимального превышения давления + Δ Н.

Н max = Hg +Δ Н

Минимальное давление будет равно разнице между статическим давлением или геометрической высотой и минимальным превышением давления — Δ Н.

Н min = Hg — Δ Н

Как при длинных, так и при коротких линиях нагнетания гидравлический удар может достичь значений, превышающих статическое давление и, следовательно, в трубопроводе происходит разрежение и давление падает ниже атмосферного, что может привести к разрыву трубы. Следует упомянуть, что обычно трубопровод рассчитан с таким запасом прочности, чтобы выдерживать разрежение около 1 кг/см2, то есть много выше, чем это бывает на практике.

Защита от гидравлического удара

Гидравлический удар можно ослабить или избежать, применив специальные устройства, такие как, например:

· инерционные круги;

· уравновешивающие отводы;

· воздушные баки;

· жидкостные амортизаторы;

· предохранительный клапан;

· вантузы;

· обратные клапаны;

· обратные клапаны с переходниками;

· обратные клапаны противовихревые.

В какой-то степени устранить удар помогают статические пускатели, которые меняют скорость потока

Выбор силового кабеля

При выборе силового кабеля следует учитывать следующие факторы:

· максимально допустимая сила тока для проводников из меди с изоляцией из EPDM, согласно нормам для низкого напряжения (ННН).

· максимальное падание напряжения не должно превышать 3% от величины номинального напряжения.

· температура окр. среды 40 °С.

Расчет делается по следующим формулам:

Где:

S — сечение кабеля в мм2;
I — номинальная сила тока двигателя в амперах;
L — длина кабеля в метрах;
cos φ — коэффициент мощности при полной нагрузке;
Δ U — Падение напряжения в сети на 3%.

Пример: для 230 V = 6, 9 V
для 400 V= 12 V
С — Электропроводимость (56 м/мм2 для Сu и 34 м/мм2 для AI).

Напряжение в сети

Запуск

Электродвигатель

Обмотка Соединение

230 В

Прямой 230 / 400 Треугольник
Звезда-Треугольник 230 / 400 Звезда-Треугольник

400 В

Прямой

230 / 400 Звезда
400 / 692 Треугольник
Звезда-Треугольник 400 / 692 Звезда-Треугольник

Соединение Треугольник

V: Напряжение в сети. Схема соединений

 

Соединение Звезда

V: Напряжение в сети. Схема соединений

Соединение Треугольник-Звезда

Переключение Звезда-Треугольник осуществляется на электрощите управления.

 

Общие понятия о насосах

ПОДАЧА (Q): Объем жидкости, поднимаемой насосом за единицу времени; не зависит от удельного веса и может изменяться при перекачке жидкости, чья вязкость больше вязкости воды.

АТМОСФЕРНОЕ ДАВЛЕНИЕ (Ра): Давление атмосферы на единицу площади.

ОТНОСИТЕЛЬНОЕ ИЛИ РЕАЛЬНОЕ ДАВЛЕНИЕ (Рr): Давление, соотнесенное с атмосферным давлением. Манометрами измеряется положительное давление, а вакуумметрами — отрицательное.

АБСОЛЮТНОЕ ДАВЛЕНИЕ (Pаbs): Давление, превышающее абсолютный ноль (полный вакуум) Pаbs = Ра + Рr.

ДАВЛЕНИЕ ПАРА (Tv): Давление, при котором жидкость при определенной температуре находится в стадии равновесия со своим газообразным состоянием (паром).

ПЛОТНОСТЬ: масса вещества на единицу объема.

УДЕЛЬНЫЙ ВЕС (γ ): Вес вещества на единицу объема. Удельный вес = плотность x сила притяжения.

ЗНАЧЕНИЕ УДЕЛЬНОГО ВЕСА: Насос может нагнетать жидкости с различным удельным весом, например, воду, алкоголь, серную кислоту и т. д. на одинаковую высоту, причем изменяться при этом будут только показатели давления разгрузки и поглощаемой мощности в прямой зависимости от удельного веса.

ВЫСОТА ВСАСЫВАНИЯ (На): Геометрическая высота, измеряемая от минимального уровня жидкости до оси насоса (см. прилагаемую схему).

ВЫСОТА НАГНЕТАНИЯ (Нi): Геометрическая высота, измеряемая от оси насоса до максимального уровня подъема (см. прилагаемую схему).

СУММАРНАЯ ГЕОМЕТРИЧЕСКАЯ ВЫСОТА (Нt): Нt = На + Нi

ПОТЕРИ НАПОРА (Рс): Высота, теряемая протекающей жидкостью в результате трения о трубы, клапана, фильтры, изгибы и другие приспособления.

ОБЩАЯ МАНОМЕТРИЧЕСКАЯ ВЫСОТА (Hm): Общая высота (или дифференциальное давление), которую должен преодолеть насос.

Рассчитывается по формуле: Hm = Нt + Pc+10/γ (P1-P2) где P1 — давление в напорном резервуаре, а P2 — давление во всасывающем резервуаре.

Если перекачивание осуществляется между открытыми резервуарами с одинаковым давлением (давление окружающей среды), как это обычно и случается, то значение Р1 - Р2 = 0. Следует рассчитать отдельно манометрическую высоту всасывания, чтобы убедиться в том, что насос будет производить всасывание без затруднений.

Установка на напорной линии и установка на всасывании

Мощность и КПД насоса

(Р1) Мощность, потребляемая от сети

Потребление мощности или активная мощность

Однофазные двигатели:

Трехфазовые двигатели:

(Р2) Номинальная мощность двигателя

Наибольшая мощность, развиваемая двигателем

Однофазные двигатели:

Трехфазные двигатели:

(РЗ) Мощность, поглощаемая осью двигателя

Для определенных условий работы

Где:

U — рабочее напряжение в вольтах;
I — ток на статоре в А;
cos φ — коэффициент нагрузки;
η m — КПД двигателя в %;
Q — подача м3/час;
Н — манометрическая высота в метрах водяного столба;
η h — гидравлическое КПД в %;
γ — удельный вес в кг/дм3.

Трубопровод, выбор диаметра

Выбор диаметра труб является техническим и экономическим решением. Следует иметь в виду, что во избежании излишних затрат энергии, потери давления, не должны быть чрезмерно высокими. Размер отверстий всасывающего и нагнетающего патрубков насосов указывают только на минимальный размер труб.

Выбор адекватных сечений должен осуществляться таким образом, чтобы максимальная скорость прохождения была следующей:

· на линии всасывания: 1, 8 м/сек;

· на линии нагнетания: 2, 5 м/сек.

Важно учитывать скорость потока, так как от этого зависит экономичность и продолжительность срока службы системы нагнетания:

· скорости меньше 0, 5 м/сек обычно приводят к осадконакоплениям;

· скорости свыше 5 м/сек могут вызвать абразивный износ.

Скорость потока в трубопроводе рассчитывается по следующим формулам:

Где:

V — скорость в м/сек;
q — подача в л/м;
D — диаметр в мм;
Q — подача в м3/час.

Эквивалентность труб

Определение эквивалентности труб позволяет получить сведения о других системах трубопроводов.

При постоянном диаметре: Потеря давления прямо пропорциональна квадрату подачи:

При постоянной подаче: Потеря напора обратно пропорциональна диаметру труб, возведенному в пятую степень:

При постоянной подаче: Скорость циркуляции обратно пропорциональна сечению труб:

При постоянных потерях напора: Квадрат подачи пропорционален диаметру труб, возведенному в пятую степень:

Эквивалентные потери напора

С помощью последнего уравнения была рассчитана приводимая ниже таблица соответствия труб различного диаметра.

ПРИМЕЧАНИЯ

Площадь трубопровода большего диаметра меньше общей площади труб меньшего диаметра. Скорость прохождения жидкости по трубам большего диаметра превышает скорость циркуляции жидкости по трубам меньшего диаметра.

Потери давления

Потери давления во вспомогательных компонентах трубопровода. Соответствие линейным метрам прямого трубопровода. Значения даны приблизительно и зависят от качества арматуры.

Производители клапанов и задвижек сообщают нам значения коэффициента подачи (кп), что позволяет рассчитать потери давления; использование клапанов и задвижек с высоким кп имеет большое значение для сведения к минимуму потерь давления.

Коэффициент подачи кп — это подача воды в м3/час, которая при проходе через полностью открытый клапан приводит к потере давления в 1 кг/см2.


Поделиться:



Последнее изменение этой страницы: 2019-10-05; Просмотров: 309; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.125 с.)
Главная | Случайная страница | Обратная связь