Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Операции объединения, пересечения, взятия разности. Совместимость по объединению



Операции объединения отношений. Все, что относится к операции объединения, верно и для операций пересечения и взятия разности отношений. Смысл операции объединения в реляционной алгебре в целом остается теоретико-множественным.

В теории множеств:

результатом объединения двух множеств A{a} и B{b} является такое множество C{c}, что для каждого с либо существует такой элемент a, принадлежащий множеству A, что c=a, либо существует такой элемент b, принадлежащий множеству B, что c=b;

пересечением множеств A и B является такое множество C{c}, что для любого c существуют такие элементы a, принадлежащий множеству A, и b, принадлежащий множеству B, что c=a=b;

разностью множеств A и B является такое множество C{c}, что для любого c существует такой элемент a, принадлежащий множеству A, что c=a, и не существует такой элемент b, принадлежащий B, что c=b.

 

 

Рисунок 25 – Иллюстрация результатов теоретико-множественных операций

 

Но если в теории множеств операция объединения осмысленна для любых двух множеств-операндов, то в случае реляционной алгебры результатом операции объединения должно являться отношение. Если в реляционной алгебре допустить возможность теоретико-множественного объединения двух произвольных отношений (с разными заголовками), то, конечно, результатом операции будет множество, но множество разнотипных кортежей, т. е. не отношение. Если исходить из требования замкнутости реляционной алгебры относительно понятия отношения, то такая операция объединения является бессмысленной.

Эти соображения подводят к понятию совместимости отношений по объединению: два отношения совместимы по объединению в том и только в том случае, когда обладают одинаковыми заголовками. В развернутой форме это означает, что в заголовках обоих отношений содержится один и тот же набор имен атрибутов, и одноименные атрибуты определены на одном и том же домене (эта развернутая формулировка, вообще говоря, является излишней, но она пригодится нам в следующем абзаце).

Если два отношения совместимы по объединению, то при обычном выполнении над ними операций объединения, пересечения и взятия разности результатом операции является отношение с корректно определенным заголовком, совпадающим с заголовком каждого из отношений-операндов. Напомним, что если два отношения «почти» совместимы по объединению, т. е. совместимы во всем, кроме имен атрибутов, то до выполнения операции типа объединения эти отношения можно сделать полностью совместимыми по объединению путем применения операции переименования.

Для иллюстрации операций объединения, пересечения и взятия разности предположим, что в базе данных имеются два отношения СЛУЖАЩИЕ_В_ПРОЕКТЕ_1 и СЛУЖАЩИЕ_В_ПРОЕКТЕ_2 с одинаковыми схемами {СЛУ_НОМЕР, СЛУ_ИМЯ, СЛУ_ЗАРП, СЛУ_ОТД_НОМЕР} (имена доменов опущены по причине очевидности). Каждое из отношений содержит данные о служащих, участвующих в соответствующем проекте. На рис. 26 показано примерное наполнение каждого из двух отношений (некоторые служащие участвуют в обоих проектах).

Рисунок 26 – Примерное наполнение отношений СЛУЖАЩИЕ _В_ПРОЕКТЕ_1 и СЛУЖАЩИЕ _В_ПРОЕКТЕ_2

 

Тогда выполнение операции СЛУЖАЩИЕ_В_ПРОЕКТЕ_1 UNION СЛУЖАЩИЕ_В_ПРОЕКТЕ_2 позволит получить информацию обо всех служащих, участвующих в обоих проектах. Выполнение операции СЛУЖАЩИЕ_В_ПРОЕКТЕ_1 INTERSECT СЛУЖАЩИЕ_В_ПРОЕКТЕ_2 позволит получить данные о служащих, которые одновременно участвуют в двух проектах. Наконец, операция СЛУЖАЩИЕ_В_ПРОЕКТЕ_1 MINUS СЛУЖАЩИЕ_В_ПРОЕКТЕ_2 выработает отношение, содержащее кортежи служащих, которые участвуют только в первом проекте. Результаты этих операций показаны на рис. 27.


Рисунок 27 – Результаты выполнения операций UNION, INTERSECT и MINUS

 

Заметим, что включение в состав операций реляционной алгебры трех операций объединения, пересечения и взятия разности является, очевидно, избыточным, поскольку, например, операция пересечения выражается через операцию взятия разности. Тем не менее Кодд в свое время решил включить все три операции, исходя из интуитивных потребностей далекого от математики потенциального пользователя системы реляционных БД.

Операция расширенного декартова произведения и совместимость отношений относительно этой операции

Другие проблемы связаны с операцией взятия декартова произведения двух отношений. В теории множеств декартово произведение может быть получено для любых двух множеств, и элементами результирующего множества являются пары, составленные из элементов первого и второго множеств. Если говорить более точно, декартовым произведением множеств A{a} и B{b} является такое множество пар C{< c1, c2> }, что для каждого элемента < c1, c2> множества C существуют такой элемент a множества A, что c1=a, и такой элемент b множества B, что c2=b.

Поскольку отношения являются множествами, для любых двух отношений возможно получение прямого произведения. Но результат не будет отношением! Элементами результата будут не кортежи, а пары кортежей.

Поэтому в реляционной алгебре используется специализированная форма операции взятия декартова произведения – расширенное декартово произведение отношений. При взятии расширенного декартова произведения двух отношений элементом результирующего отношения является кортеж, который представляет собой объединение одного кортежа первого отношения и одного кортежа второго отношения.

Более точное определение операции расширенного декартова произведения: Пусть имеются два отношения R1{a1, a2, …, an} и R2{b1, b2, …, bm}. Тогда результатом операции R1 TIMES R2 является отношение R{a1, a2, …, an, b1, b2, …, bm}, тело которого является множеством кортежей вида {ra1, ra2, …, ran, rb1, rb2, …, rbm} таких, что {ra1, ra2, …, ran} входит в тело R1, а {rb1, rb2, …, rbm} входит в тело R2.

Но теперь возникает вторая проблема – как получить корректно сформированный заголовок отношения-результата? Поскольку схема результирующего отношения является объединением схем отношений-операндов, то очевидной проблемой может быть именование атрибутов результирующего отношения, если отношения-операнды обладают одноименными атрибутами.

Эти соображения приводят к введению понятия совместимости по взятию расширенного декартова произведения. Два отношения совместимы по взятию расширенного декартова произведения в том и только в том случае, если пересечение множеств имен атрибутов, взятых из их схем отношений, пусто. Любые два отношения всегда могут стать совместимыми по взятию декартова произведения, если применить операцию переименования к одному из этих отношений.

Для наглядности предположим, что в придачу к введенным ранее отношениям СЛУЖАЩИЕ_В_ПРОЕКТЕ_1 и СЛУЖАЩИЕ_В_ПРОЕКТЕ_2 в базе данных содержится еще и отношение ПРОЕКТЫ со схемой {ПРОЕКТ_НАЗВ, ПРОЕКТ_РУК} (имена доменов снова опущены) и телом, показанным на рис. 28.

На этом же рисунке показан результат операции СЛУЖАЩИЕ_В_ПРОЕКТЕ_1 TIMES ПРОЕКТЫ.

Следует заметить, что операция взятия декартова произведения не является слишком осмысленной на практике. Во-первых, мощность тела ее результата очень велика даже при допустимых мощностях операндов, а, во-вторых, результат операции не более информативен, чем взятые в совокупности операнды. Как будет показано далее, основной смысл включения операции расширенного декартова произведения в состав реляционной алгебры Кодда состоит в том, что на ее основе определяется действительно полезная операция соединения.

 


Рисунок 28 – Отношение ПРОЕКТЫ и результат операции СЛУЖАЩИЕ_В_ПРОЕКТЕ_1 TIMES ПРОЕКТЫ

 

По поводу теоретико-множественных операций реляционной алгебры следует еще заметить, что все четыре операции являются ассоциативными. Т. е. если обозначить через OP любую из четырех операций, то (A OP B) OP C = A OP (B OP C), и, следовательно, без внесения двусмысленности можно писать A OP B OP C (A, B и C – отношения, обладающие свойствами, необходимыми для корректного выполнения соответствующей операции). Все операции, кроме взятия разности, являются коммутативными, т. е. A OP B = B OP A.


Поделиться:



Последнее изменение этой страницы: 2019-10-24; Просмотров: 264; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.016 с.)
Главная | Случайная страница | Обратная связь