Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Устройство и принцип работы турбин основных типов.



Основным признаком, характеризующим тип турбины, является конструкция ее проточной части, которая состоит из трех основных конструктивных элементов: устройства, подводящего воду к рабочему органу; непосредственно рабочего органа или рабочего колеса; устройства, отводящего воду от рабочего колеса.

Конструкции турбин должны удовлетворять следующим требованиям: должна быть исключена возможность удара потока жидкости о подвижные и неподвижные, твердые и жидкие поверхности; потери на трение о твердые поверхности должны быть минимальными; отработанная жидкость должна выходить из турбины с возможно меньшим запасом энергии.

Ковшовая турбина (рис. 7).

Главным конструктивным элементом турбины является рабочее колесо. В зависимости от конструкции колеса и принципа взаимодействия его с потоком жидкости различают четыре вида турбин: ковшовые, осевые, диагональные и радиально-осевые.

Рассмотрим устройство и принцип работы турбин основных типов.

Турбина представляет собой рабочее колесо 7, укрепленное на валу 8 выше уровня воды. Колесо вращается в воздухе, и только часть лопаток взаимодействует с водой. Вода подаётся на рабочие лопасти 6

по трубопроводу 2 через сопло. Рабочее колесо состоит из диска, по окружности которого укреплены рабочие лопасти, по форме похожие на ковши (отсюда название ковшовая). Каждая лопасть выполнена в виде двух полусфер, разделенных ножом 5. Рабочее колесо установлено в корпусе таким образом, чтобы ножи совпадали с осью струи. При натекании на лопасти струи делятся ножом на две части. Каждая из частей обтекает свою полусферу, воздействуя на лопасти с силой.

Чтобы приблизить струю к центру ковша и устранить удар тыльной стороны лопасти о струю, в лопасти сделана специальная прорезь 4 шириной не менее диаметра d струи. Размеры лопастей также устанавливаются в зависимости от диаметра струи:

ширина — (2, 8—3, 6) d, длина — (2, 5—2, 8) d, толщина — (0, 9— 1, 0) d. Число лопастей на рабочем колесе подбирается таким образом, чтобы, во-первых, струя не могла проскочить мимо ковша, т. е. при отходе одной лопасти следующая сразу попадала под струю, и, во-вторых, чтобы каждый последующий ковш не мешал сходу воды с предыдущего. В зависимости от диаметра рабочего колеса общее количество лопастей колеблется от 12 до 40.

Так как скорость обтекания лопастей потоком жидкости очень велика, чтобы уменьшить потери мощности, ковши должны быть изготовлены с большой точностью и качественно обработаны. Кроме того, лопасти турбины работают в условиях переменной нагрузки: она максимальна тогда, когда лопасть проходит через струю, а в другое время отсутствует. Это вызывает усталость металла, способствует расшатыванию и ослаблению крепления ковшей. Конструкции крепления лопастей к диску постоянно совершенствуются. В последние десятилетия стали применять неразъемные цельнолитые и сварно-литые рабочие колеса.

Мощность, развиваемую турбиной, регулируют изменением подачи воды через сопло. Для этих целей служит игла 2, которая позволяет изменять или полностью перекрывать выходное сечение сопла. Временно снизить мощность турбины можно и без уменьшения подачи воды через сопло. Для этих целей служит дефлектор, который либо отклоняет, либо отсекает струю.

Рабочее колесо вращается в подшипниках, смонтированных в корпусе турбины, защищенном от разбрызгивания воды кожухом (корпус и кожух на рисунке не показаны). Увеличивая число сопл, подводящих воду к рабочему колесу, можно получить две, четыре или шесть струй; при этом соответственно увеличивается и мощность турбины.

По расположению вала ковшовые турбины делятся на горизонтальные и вертикальные. Горизонтальные турбины могут иметь одно или два рабочих колеса на одном валу. В вертикальных турбинах, как правило, устанавливается одно рабочее колесо.

ГИДРОПРИВОД И ГИДРОПЕРЕДАЧА

5.1. Основные понятия и определения. Классификация гидроприводов.

Гидроприводом называется совокупность устройств, предназначенных для приведения в движение механизмов и машин посредством жидкости. Составной частью гидропривода является гидравлическая передача. Она включает в себя насос, гидродвигатель и соединяющие их гидролинии (магистраль). В состав гидропривода также входят устройства управления и обслуживания (фильтры, гидробаки, гидроаккумуляторы и др.). По принципу действия гидроприводы делятся на объемные и гидродинамические.

Объемным гидроприводом называется гидравлическая система, в которой в качестве гидравлической передачи применяются насосы и гидродвигатели объемного действия. Работа объемного гидропривода основана на использовании свойства несжимаемости капельной жидкости и передачи давления по закону Паскаля. Примером объемного гидропривода простейшей конструкции может служить гидравлический пресс, изображенный на рисунке

Гидродинамическим приводом называется гидравлическая система, в которой в качестве гидравлической передачи применяются лопастные насосные и турбинные колеса, расположенные соосно на предельно близком друг от друга расстоянии. Перенос энергии от ведущего звена в ведомому осуществляется потоком жидкости, а крутящий момент передается в результате изменения момента количества движения рабочей жидкости в рабочих колесах. При этом ведущий и ведомый валы механически не связаны между собой. Благодаря этим особенностям гидродинамический привод чаще называют гидродинамической передачей.[4]

Объемные гидроприводы подразделяются по виду источника энергии на три типа:

1 Насосный гидропривод — гидропривод, использующий для подачи рабочей жидкости насосы объемного действия. Насосные гидроприводы бывают с замкнутой циркуляцией, когда жидкость от гидродвигателя поступает во всасывающую линию насоса, и с разомкнутой циркуляцией, когда жидкость от гидродвигателя поступает в гидробак.

Насос гидропривода может приводиться в движение электродвигателем, турбиной, дизельным, карбюраторным двигателями, двигателем внутреннего сгорания и др.

2. Аккумуляторный гидропривод — гидропривод, в котором рабочая жидкость подается в гидродвигатель от предварительно заряженного гидроаккумулятора. Такие гидроприводы используются в системах с кратковременным рабочим циклом.

3. Магистральный гидропривод, в котором рабочая жидкость подается в гидродвигатель от гидромагистрали, питающей от насосной станции одновременно несколько гидроприводов.

По характеру движения выходного звена различают гидроприводы поступательного, поворотного и вращательного движения. Гидроприводы бывают регулируемые и нерегулируемые. По способу регулирования скорости гидроприводы делят на три типа:

1. С дроссельным регулированием, когда для регулирования скорости производится дросселирование потока рабочей жидкости и часть потока отводится, минуя гидродвигатель.

2. С объемным регулированием, когда регулирование скорости производится в результате изменения рабочих объемов насоса или гидродвигателя.

3. С объемно-дроссельным регулированием, когда регулирование скорости осуществляется одновременно двумя способами.

Если скорость выходного звена гидропривода поддерживается постоянной и не зависит от внешних воздействий, то гидропривод называется стабилизированным.

Если скорость выходного звена изменяется по определенному закону в зависимости от задающего воздействия, то гидропривод называется следящим.

Жидкость, применяемая в гидроприводах в качестве рабочего тела, одновременно является смазывающим и охлаждающим агентом, обеспечивает защиту деталей от коррозии и надежную работу всех узлов гидропривода.

Гидроприводы и гидропередачи находят широкое применение в различных областях техники. Это объясняется рядом достоинств, которыми обладают гидроприводы. Отметим наиболее важные из них:

бесступенчатое регулирование скоростей в широком диапазоне;

получение больших сил и мощностей при малых размерах и весе механизма;

получение различных видов движения, возможность частых и быстрых переключении;

возможность больших перегрузок по мощности и моменту без вредных последствий этих перегрузок;

возможность автоматизации и дистанционного управления;

простота кинетической схемы по сравнению с механическим приводом;

самосмазываемость элементов, что исключает операцию смазывания.

Вместе с тем гидроприводу и гидропередачам присущи некоторые недостатки:

потери части энергии при ее передаче, превышающие потери в электропередачах;

зависимость эксплуатационных характеристик от температуры, в результате чего при больших сопротивлениях возможен перегрев гидропривода и нарушение устойчивости его работы;

утечки рабочей жидкости (внутренние и наружные), снижающие КПД; по мере выработки технического ресурса этот фактор может сделать гидропривод неработоспособным.

Достоинства гидропривода и гидропередач столь велики, что, несмотря на указанные недостатки, они незаменимы в различных машинах и механизмах.


Поделиться:



Последнее изменение этой страницы: 2019-10-24; Просмотров: 141; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.028 с.)
Главная | Случайная страница | Обратная связь