Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Обзор современных методов защиты информации



ВВЕДЕНИЕ

Проблема защиты информации от постороннего доступа и нежелательных воздействий на нее возникла давно, с той поры, когда человеку по каким-либо причинам не хотелось делиться ею ни с кем или не с каждым человеком. С развитием человеческого общества, появлением частной собственности, государственного строя, борьбой за власть и в дальнейшем расширением масштабов человеческой деятельности информация приобретает цену. Ценной становится та информация, обладание которой позволит ее существующему и потенциальному владельцу получить какой-либо выигрыш: материальный, политический, военный и т.д.

В период существования примитивных носителей информации ее защита осуществлялась организационными методами, которые включали ограничение и разграничение доступа, определенные меры наказания за разглашение тайны. По свидетельству Геродота, уже в V веке до новой эры использовалось преобразование информации методом кодирования. Коды появились в глубокой древности в виде криптограмм (по-гречески — тайнопись). Спартанцы имели специальный механический прибор, при помощи которого важные сообщения можно было писать особым способом, обеспечивающим сохранение тайны. Собственная секретная азбука была у Юлия Цезаря. В средние века и эпоху Возрождения над изобретением тайных шифров трудились многие выдающиеся люди, в их числе известный философ Френсис Бэкон, крупные математики — Франсуа Виет, Джероламо Кардано, Джон Валлис.

С переходом на использование технических средств связи информация подвергается воздействию случайных процессов: неисправностям и сбоям оборудования, ошибкам операторов и т. д., которые могут привести к ее разрушению, изменениям на ложную, а также создать предпосылки к доступу к ней посторонних лиц. С дальнейшим усложнением и широким распространением технических средств связи возросли возможности для преднамеренного доступа к информации.

С появлением сложных автоматизированных систем управления, связанных с автоматизированным вводом, хранением, обработкой и выводом информации, проблема ее защиты приобретает еще большее значение. Этому способствовали:

• увеличение объемов информации, накапливаемой, хранимой и обрабатываемой с помощью ЭВМ и других средств вычислительной техники;

• сосредоточение в единых базах данных информации различного назначения и принадлежности;

• расширение круга пользователей, имеющих доступ к ресурсам вычислительной системы и находящимся в ней массивам данных;

• усложнение режимов функционирования технических средств вычислительной системы: широкое внедрение многопрограммного режима, режима разделения времени и реального времени;

• автоматизация межмашинного обмена информацией, в том числе и на больших расстояниях;

• увеличение количества технических средств и связей в автоматизированных системах управления и обработки данных;

• появление персональных ЭВМ, расширяющих возможности не только пользователя, но и нарушителя.

К настоящему времени и в самом человеческом обществе, и в технологии обработки данных произошли большие изменения, которые повлияли на саму суть проблемы защиты информации. Например, по данным зарубежной литературы, к концу 70-х годов деятельность в области сбора, обработки и использования информации достигла 46% валового национального продукта США, и на нее приходится 53% общей суммы заработной платы. Индустрия переработки информации достигла глобального уровня. Появилась возможность выхода в глобальную вычислительную сеть с домашнего компьютера. Появление " электронных" денег (кредитных карточек) создало предпосылки для хищений крупных сумм денег. В печати приведено множество конкретных примеров хищения информации из автоматизированных систем обработки данных, которые весьма убедительно иллюстрируют серьезность и актуальность проблемы.

Сейчас мы живем в мире, со всех сторон опутанном проводами, где так называемые " воздушные зазоры" и " защита неразглашением" уже не являются достаточными мерами. Компьютерная сеть продолжает расти, создавая запутанные переплетения маршрутов по всему миру. И может наступить момент, когда данные начнут перемешиваться. Пакеты вашей информации будут выстраиваться в очередь позади информационных пакетов конкурентов. Исчезнет различие между Интернет и интранет. В некоторых случаях, экономическое давление заставит компании перейти на общедоступные сети, где безопасность может быть реализована только на логическом уровне.

Новое удивительное порождение НТР - специальные компьютерные злоумышленники: хакеры и крэкеры. Хакеры (Hacker, англ.) — компьютерные хулиганы, получающие удовольствие от того, что им удается проникнуть в чужой компьютер. Одновременно они прекрасные знатоки информационной техники. С помощью телефона и домашних компьютеров они подключаются к сетям передачи данных, связанным с почти всеми крупными компьютерами экономики, научно-исследовательских центров, банков.

Парадоксально, но хорошо работающая система с качественными соединениями будет способствовать более успешной краже информации. Для предотвращения плачевного исхода следует не только эффективно реализовать защиту, но и установить для функций слежения и управления безопасностью такой же высокий приоритет, как и для управления компьютерными сетями. Хакеры создают свои клубы, такие, как гамбургский клуб " Хаос-компьютер", распространяют свои бюллетени, обмениваются информацией через десятки " электронных почтовых ящиков". Коды, пароли, техническая информация, призывы и т. д. - все идет через " почтовые ящики". Такие клубы появляются и в России. Особая разновидность хакеров - крэкеры (Cracker (англ.) - вор-взломщик). Крэкеры в отличие от хакеров воруют информацию с помощью компьютера, выкачивая целые информационные банки данных.

В последнее время широкое распространение получил новый вид компьютерного преступления - создание компьютерных вирусов, в качестве которых выступают специально разработанные программы, начинающие работать только по определенному сигналу. При этом вирус может размножаться, словно возбудитель болезни, когда соприкасается с другим программным обеспечением. Последствия от " заражения" программ подобными вирусами могут быть различными: от безобидных шуток в виде юмористических помех до разрушения программного обеспечения, восстановление которого может оказаться невозможным, а потери невосполнимыми.

1 ТеоретиЧеские вопросы защиты информации

Физический доступ и доступ к данным

 

Правила осуществления контроля доступа к данным являются единственными существующими методами для достижения рассмотренных выше требований по индивидуальной идентификации. Наилучшей политикой управления доступом является политика " минимально необходимых привилегий". Другими словами, пользователь имеет доступ только к той информации, которая необходима ему в работе. К информации, классифицируемой как конфиденциальная (или эквивалентной) и выше, доступ может меняться и периодически подтверждаться. На некотором уровне (по крайней мере регистрированно конфиденциальном или эквивалентном) должна существовать система проверок и контроля доступа, а также регистрация изменений. Необходимо наличие правил, определяющих ответственность за все изменения данных и программ. Должен быть установлен механизм определения попыток неавторизованного доступа к таким ресурсам, как данные и программы. Владелец ресурса, менеджеры подразделений и сотрудники службы безопасности должны быть уведомлены о потенциальных нарушениях, чтобы предотвратить возможность тайного сговора.

Система защиты информации от  несанкционированного доступа (НСД) в ПЭВМ

Наиболее простой и надежный способ защиты информации от НСД - режим автономного использования ПЭВМ одним пользователем, работающим в отдельном помещении при отсутствии посторонних лиц. В этом случае роль замкнутого контура защиты выполняют помещение, его стены, потолок, пол и окна. Если стены, потолок, пол и дверь достаточно прочны, пол не имеет люков, сообщающихся с другими помещениями, окна и дверь оборудованы охранной сигнализацией, то прочность защиты будет определяться техническими характеристиками охранной сигнализации при отсутствии пользователя (ПЭВМ не включена) в нерабочее время.

В рабочее время, когда ПЭВМ включена, возможна утечка информации за счет ее побочного электромагнитного излучения и наводок. Для устранения такой опасности, если это необходимо, проводятся соответствующие технические мероприятия по уменьшению или за-шумлению сигнала. Кроме того, дверь помещения для исключения доступа посторонних лиц должна быть оборудована механическим или электромеханическим замком. В некоторых случаях, когда в помещении нет охранной сигнализации, на период длительного отсутствия пользователя ПЭВМ полезно помещать в сейф по крайней мере хотя бы ее системный блок и носители информации. Применение в некоторых ПЭВМ в системе ввода-вывода BIOS встроенного аппаратного пароля, блокирующего загрузку и работу ПЭВМ к сожалению, не спасает положения, так как данная аппаратная часть при отсутствии на корпусе системного блока замка и отсутствии хозяина может быть свободно заменена на другую - такую же (так как узлы унифицированы), но только с известным значением пароля. Обычный механический замок, блокирующий включение и загрузку ПЭВМ, более эффективная в этом случае мера.

В последнее время для защиты от хищения специалисты рекомендуя механически закреплять ПЭВМ к столу пользователя. Однако при этом следует помнить, что при отсутствии охранной сигнализации, обеспечивающей постоянный контроль доступа в помещение или к сейфу прочность замков и креплений должна быть такова, чтобы ожидаемое суммарное время, необходимое нарушителю для преодоления такого рода препятствий или обхода их, превышало время отсутствия пользован ПЭВМ Если это сделать не удается, то охранная сигнализация обязательна. Тем самым будет соблюдаться основной принцип срабатывания защиты и следовательно, будут выполняться требования по ее эффективности.

Перечисленные выше меры защиты информации ограниченного доступа от нарушителя-непрофессионала в принципе можно считать достаточными при работе с автономной ПЭВМ одного пользователя. На практике же человек не может постоянно быть изолированным от общества, в том числе и на работе. Его посещают друзья, знакомые, сослуживцы обращаются по тем или иным вопросам. Отдельное помещение для его работы не всегда может быть предоставлено. По рассеянности или озабоченный личными проблемами пользователь может компьютер включить, а ключ оставить в замке; на столе забыть дискету, а сам на короткое время покинуть помещение, что создает предпосылки для несанкционированного доступа к информации лиц, не допущенных к ней, но имеющих доступ в помещение. Распространенные в настоящее время развлекательные программы могут послужить средством для занесения программных вирусов в ПЭВМ. Использование посторонних дискет для оказания дружеской услуги может обойтись очень дорого. Помимо заражения ПЭВМ вирусом можно перепутать дискеты и отдать случайно другу дискету с секретной информацией.

Все перечисленные средства и им подобные должны с различной степенью безопасности обеспечивать только санкционированный доступ к информации и программам со стороны клавиатуры, средств загрузки и внутреннего монтажа компьютера. Возможные каналы НСД к информации ПЭВМ и средства защиты, рекомендуемые для их перекрытия приведены в таблице В.2 (смотри Приложение В) и на рисунке Д.3. (смотри Приложение Д).

Защита от НСД со стороны клавиатуры усложняется тем, что современные компьютеры по своему назначению обладают широким спектром функциональных возможностей, которые с течением времени продолжают развиваться. Более того, иногда кажется, что требования по защите вступают в противоречие с основной задачей компьютера: с одной стороны, персональный компьютер - серийное устройство массового применения, с другой - индивидуального.

Если в каждый из выпускаемых персональных компьютеров, например, установить на заводе-изготовителе электронный замок, открываемый перед началом работы пользователем с помощью ключа-пароля, то возникает вопрос защиты хранения и последующей замены его ответной части в замке. Если ее может заменить пользователь, то это может сделать и нарушитель. Если эта часть компьютера постоянна, то она известна изготовителям, через которых может стать известной и нарушителю. Однако последний вариант более предпочтителен при условии сохранения тайны ключа фирмой-изготовителем, а также высокой стойкости ключа к подделке и расшифровке. Стойкость ключа должна быть известна и выражаться в величине затрат времени нарушителя на выполнение этой работы, так как по истечении этого времени необходима замена его на новый, если защищаемый компьютер продолжает использоваться. Но и этого условия тоже оказывается недостаточно. Необходимо также, чтобы ответная часть ключа - замок тоже не был доступен потенциальному нарушителю. Стойкость замка к замене и подделке должна быть выше стойкости ключа и равняться времени эксплуатации компьютера при обязательном условии невозможности его съема и замены нарушителем. В роли " замка" могут выступать специальные программные фрагменты, вкладываемые пользователем ПЭВМ в свои программы и взаимодействующие по известному только пользователю алгоритму с электронным ключом. Анализ потенциальных угроз безопасности информации и возможных каналов НСД к ней в ПЭВМ показывает их принципиальное сходство с аналогичными угрозами и каналами. Следовательно, методы защиты должны быть такими же, а технические средства защиты должны строиться с учетом их сопряжения с ее аппаратными и программными средствами. В целях перекрытия возможных каналов НСД к информации ПЭВМ, кроме упомянутых, могут быть применены и другие методы и средства защиты.

При использовании ПЭВМ в многопользовательском режиме необходимо применить в ней программу контроля и разграничения доступа. Существует много подобных программ, которые часто разрабатывают сами пользователи. Однако специфика работы программного обеспечения ПЭВМ такова что с помощью ее клавиатуры достаточно квалифицированный программист-нарушитель может защиту такого рода легко обойти. Поэтому эта мера эффективна только для защиты от неквалифицированного нарушителя. Для защиты от нарушителя-профессионала поможет комплекс программно-аппаратных средств. Например, специальный электронный ключ, вставляемый в свободный слот ПК, и специальные программные фрагменты, закладываемые в прикладные программы ПК, которые взаимодействуют с электронным ключом по известному только пользователю алгоритму. При отсутствии ключа эти программы не работают. Однако такой ключ неудобен в обращении, так как каждый раз приходится вскрывать системный блок ПК. В связи с этим его переменную часть - пароль - выводят на отдельное устройство, которое и становится собственно ключом, а считывающее устройство устанавливается на лицевую панель системного блока или выполняется в виде выносного отдельного устройства. Таким способом можно заблокировать и загрузку ПК, и программу контроля и разграничения доступа.

Подобными возможностями, например, обладают наиболее популярные электронные ключи двух американских фирм: Rainbow Technologies (RT) и Software Security (SSI).

Из отечественных систем фирмой АКЛИС рекомендуется ключ Goldkey. На отечественном рынке предлагается ряд электронных ключей: NovexKey - фирмой NOVEX, HASP и Plug - фирмой ALADDIN и т. д. Среди них большая часть предназначена для защиты от несанкционированного копирования программного продукта, т. е. для защиты авторского права на его создание, следовательно, для другой цели.

Однако при этом остаются не всегда защищенными каналы  отображения, документирования, носители программного обеспечения и информации, побочное электромагнитное излучение и наводки информации. Их перекрытие обеспечивается уже известными методами и средствами: размещением компьютера в защищенном помещении, учетом и хранением носителей информации в металлических шкафах и сейфах, шифрованием.

Определенную проблему представляет собой защита от НСД остатков информации, которые могут прочитать при наложении на старую запись новой информации на одном и том же носителе, а также при отказах аппаратуры.

Отходы носителей скапливаются в мусорной корзине. Поэтому во избежание утечки информации должны быть предусмотрены средства механического уничтожения отработанных носителей с остатками информации.

Отдельную проблему в защите ПО и информации составляет проблема защиты от программных вирусов.

Если ПЭВМ работает в автономном режиме, проникновение вируса возможно только со стороны внешних носителей ПО и информации. Если ПЭВМ является элементом вычислительной сети (или АСУ), то проникновение вируса возможно также и со стороны каналов связи. Поскольку этот вопрос представляет отдельную проблему, он рассмотрен ниже в специальном разделе.

Еще один уровень защиты от неквалифицированного нарушителя может быть обеспечен путем использованиякомпрессии данных. Этот метод выгоден тем, что:

• экономит пространство при хранении файлов на диске;

• уменьшает время шифрации-дешифрации;

• затрудняет незаконное расшифрование файла;

• уменьшает время передачи в процессе передачи данных.

Хотя этот метод дает относительно низкий уровень безопасности, его рекомендуется применять перед шифрацией.

Программные средства, работающие с дисками на физическом уровне, предоставляют в некоторых случаях возможность обхода программных средств защиты.

Кроме того, существуют программы, позволяющие создавать ПО, способное производить чтение или запись по абсолютным адресам, а также программ, обеспечивающих просмотр и отладку программных продуктов в режиме дисассемблера, просмотр и редактирование опера-тивной памяти ПЭВМ.

Однако наличие таких программных средств служит для других целей - для восстановления испорченной вирусами или неосторожными действиями пользователей информации. Следовательно, их применение должно быть строго регламентировано и доступно только администратору системы. В последнее время появились методы защиты от анализа программ.

Для создания замкнутой оболочки защиты информации в ПЭВМ и объединения перечисленных средств в одну систему необходимы соответствующие средств управления и контроля. В зависимости от режима использования ПЭВМ - автономного или сетевого (в составе сети - локальной, региональной или глобальной) - они будут носить различный характер.

В автономном режиме могут быть два варианта управления: однопользовательский и многопользовательский. В первом случае пользователь сам выполняет функции управления и контроля и несет ответственность за безопасность своей и доверяемой ему информации.

В многопользовательском режиме перечисленные функции рекомендуется поручить специальному должностному лицу. Им может быть один из пользователей или руководитель работ. При этом, однако, ключи шифрования и информация, закрытая ими другим пользователем, ему могут быть недоступны до момента передачи руководителю работ.

Следует отметить, что в автономном режиме функции контроля ослаблены из-за отсутствия  механизма быстрого обнаружения НСД, так как это приходится осуществлять организационными мерами по инициативе человека. Следовательно, многопользовательский режим нежелателен с позиций безопасности и не рекомендуется для обработки важной информации.

В сетевом варианте можно автоматизировать процесс контроля и все перечисленные функции выполнять со специального рабочего места службы безопасности.

В сетевом варианте должностное лицо - пользователь может передавать сообщения и документы другому пользователю по каналам связи, и тогда возникает необходимость выполнять, в интересах безопасности передаваемой информации, дополнительные функции по обеспечению абонентского шифрования и цифровой подписи сообщений.

Замена или лечение

До сих пор мы могли видеть, что использование нескольких программ для поиска компьютерного вируса дает некоторые преимущества. Первое из них состоит в том, что вторая программа предоставляет возможность подтвердить (или опровергнуть) факт наличия вируса в системе. Второе преимущество - более точная диагностика. И хотя мы никогда не получим окончательного ответа, тем не менее, с каждым последующим тестированием приближаемся к истине.

Избавление от компьютерных вирусов - спор между уверенностью и удобством. Уверенность возникает при уничтожении вируса путем удаления или замены зараженных файлов, при переписывании программы начальной загрузки и/или любой другой зараженной части файла. Удобство заключается в возможности манипулировать существующими данными и восстанавливать их в своей первоначальной форме без замены.

Никто не может оспаривать гарантированную целостность, которую дает замена, но никто не может отрицать и значительных неудобств, связанных с этой процедурой. Поиск резервных копий (и желание найти самую последнюю), их восстановление, настройка — все это занимает много времени.

Сравните это с эффективностью антивирусного ПО, которое может излечить зараженные участки. Щелчок клавишей мыши или набор необходимой команды с клавиатуры — и вы избавлены от компьютерного вируса, причем за значительно меньшее время.

При выборе между лечением или полной заменой, большинство администраторов систем безопасности склоняются в сторону замены. Отчего же к лечению столь негативное отношение? После этой процедуры жизнь продолжается как и прежде - ни беспокойства, ни проблем, если, конечно, лечение прошло нормально. Часто можно встретить документальные свидетельства о случаях неправильного лечения, которые порождают неуверенность в возможностях антивирусов. Из-за некоторых непредвиденных ситуаций лечение иногда терпит неудачу, и тогда оператор будет иметь как исправленную, так и незатронутую информацию.

Неправильное лечение редко приводит к фатальным последствиям, поскольку антивирусы принимают меры предосторожности и могут отличать " допустимое" лечение от неправильного. По злой иронии, некоторые тонкости в неправильном лечении, причем совсем не катастрофичные, привели к тому, что само слово " лечение" воспринимается как бранное.

Один из недостатков использования более одного антивирусного ПО связан с тем, что при этом открываются лазейки для разработчиков. Если в излеченном файле присутствуют какие-либо дефекты, то при сравнении с простым файлом они сразу же заметны. Это подобно написанию любой компьютерной программы. Если один из соавторов принимал большее участие в ее создании, то другой будет заявлять, что он мог сделать это лучше.

Безопасность интранет

 

Понятие " безопасность интранет" можно определить как совокупность мер, направленных на предотвращение несанкционированного вторжения (как на физическом, так и на логическом уровне), подмены данных и других видов компьютерных нападений. Сюда также включается обеспечение целостности интранет-сети и передаваемой информации. Для обеспечения безопасности требуется разработка защитных мер против возникновения нескольких типов разрушений, включая компьютерные нападения, вторжения на физическом уровне, человеческие ошибки и природные катаклизмы.

По мере того, как возрастает зависимость правительства, частных компаний и вообще всех людей от информационных служб, участвующих в формировании образа жизни общества, все более важным и необходимым становится фактор надежности и безопасности сетей интранет, по которым происходит передача информации. Интранет должны быть обеспечены защитой против катастрофических сбоев или остановки работы из-за ряда угроз и происшествий. Параллельно должны быть предприняты меры по мониторингу состояния интранет, которые, при возникновении неисправности, помогут немедленно восстановить работоспособность сети.

1.4.1 Тенденции и вопросы безопасности интранет

В последние годы разразился технологический бум. Особенно бурно развитие стало набирать обороты в 90-х годах. В частности, развиваются такие направления, как вычислительная техника, телекоммуникации, программные приложения и системы специального назначения. В результате появился большой набор инструментов и сервисов для работы с информационно-технологическими системами. При повсеместном распространения вычислительных средств, огромное число пользователей может теперь использовать компьютеры для необозримого числа задач. В попытке удовлетворить растущие требования, множество компаний разрабатывают вычислительные средства и прикладные программы в соответствии с нуждами конкретных пользователей. Таким образом, увеличение объемов продукции для ПК, специализированных информационно-технологических систем, а также компьютерного оборудования для распределенной обработки данных и программных задач, характеризует одну из очевидных тенденций нашего времени.

Распределенная обработка данных всегда влечет за собой большую зависимость от телекоммуникационных линий, средств связи и интранет. Другими словами, использование коммуникационного оборудования способствует интеграции недавно разработанных вычислительных средств с конкретным программным приложением пользователя. В результате, становится возможным эффективное распределение вычислительных ресурсов и функций.

С другой стороны, возросшая зависимость организаций от возможностей компьютерных систем привела к тому, что при хранении и обработке данных становится все больше конфиденциальной финансовой и ведомственной информации, доступ к которой может быть удаленным (по частным или общественным линиям связи и через интранет). Успехи в развитии компьютерной технологии привели к созданию чрезвычайно сложной информационно-хронологической среды, где пользователи имеют удаленный доступ к системам и одновременно выполняется множество различных приложений, программ, задач и операций.

Например, интранет-сети могут быть автономными или являться частью локальной вычислительной сети. Вследствие того, что организация полностью владеет системой, в сети могут проводиться регулярные проверки, периодичность которых зависит от расстояния между сегментами сети. Поэтому, коммуникационные линии внутри одного здания, совсем несложно проконтролировать. На нее часто в качестве соединительных линий используется витая пара проводов, коаксиальный кабель и оптоволоконные линии. Однако, проблемы безопасности внутренних каналов связи возрастают, когда организация начинает передавать линии в аренду или использовать их в качестве телефонных. В итоге проблемы безопасности становятся такими же, как и для локальной вычислительной сети, поскольку организация ослабляет контроль над своим компьютерным оборудованием. В основном мы рассматриваем терминальные локальные сети. С другой стороны, они могут состоять из кабелей, находящихся в собственности пользователя (включая оптоволоконные), СВЧ, выделенных и телефонных линий. К тому же здесь вероятность вторжения и подслушивания гораздо выше, чем в сети интранет.

Поднимемся еще на одну или две ступеньки выше и рассмотрим проблемы безопасности, связанные с общенациональными сетями интранет. Они обладают достаточно большим размером и используют частные или общественные линии связи. Если используются общественные линии связи, то передача данных целиком производится поставщиками средств информации.

Таким образом, обратим основное внимание на различные проблемы функционирования, являющиеся результатом возникновения потенциальных угроз работе системы. Возможны следующие проблемы:

1. Угрозы из-за случайных происшествий или неправильной работы, деструктивной для регулярного функционирования системы - сюда также включаются неправильные действия системы или пользователей.

2. Угрозы, как проявление умышленных и незаконных действий, в результате которых происходит изменение, уничтожение или разглашение системных ресурсов, либо просто создаются затруднения в регулярном функционировании системы.

Меры по обеспечению целостности или ограничения по целостности являются процедурами и методами для устранения случайных действий аппаратуры и пользователей, появляющихся во время работы. С другой стороны, превентивные методы, применяемые умышленной разрушительной деятельности, называются компьютерной защитой. Следовательно, логическая структура политики безопасности должна включать в себя активную защиту и пассивное сохранение целостности системных ресурсов.

Кроме того, в пределах корпоративной интранет используются различные стратегии, большинство из которых разрабатываются и реализуются в виде так называемых служб обеспечения безопасности. Каждая стратегия относится к какому-либо специфическому аспекту функционирования компьютерной системы. Отсюда, функция первой службы обеспечения безопасности состоит в идентификации и аутентификации пользователя, которая осуществляет проверку личности.

Идентификация пользователя

Идентификация -  это присвоение какому-либо объекту или субъекту уникального образа, имени или числа. Установление подлинности(аутентификация) заключается в проверке, является ли проверяемый объект (субъект) в самом деле тем, за кого себя выдает. Пример аутентификации с помощью электронной почты приведен на рисунке Г.2 (смотри Приложение Г).

Конечная цель идентификации и установления подлинности объекта в вычислительной системе - допуск его к информации ограниченного пользования в случае положительного исхода проверки или отказ в допуске в случае отрицательного исхода проверки.

Объектами идентификации и установления подлинности в вычислительной системе могут быть:

• человек (оператор, пользователь, должностное лицо);

• техническое средство (терминал, дисплей, ЭВМ, КСА);

• документы (распечатки, листинги и др.);

• носители информации (магнитные ленты, диски и др.);

• информация на дисплее, табло и т. д.

Установление подлинности объекта может производиться человеком, аппаратным устройством, программой, вычислительной системой и т. д.

В вычислительных системах применение указанных методов в целях защиты информации при ее обмене предполагает конфиденциальность образов и имен объектов.

При обмене информацией между человеком и ЭВМ (а при удаленных связях обязательно) вычислительными системами в сети рекомендуется предусмотреть взаимную проверку подлинности полномочий объекта и субъекта. В указанных целях необходимо, чтобы каждый из объектов (субъектов) хранил в своей памяти, недоступной для посторонних, список образов (имен) объектов (субъектов), с которыми производится обмен информацией, подлежащей защите.

В вычислительных системах с централизованной обработкой информации и относительно невысокими требованиями к защите установление ее подлинности на технических средствах отображения и печати гарантируется наличием системы защиты информации данной вычислительной системы. Однако с усложнением вычислительных систем по причинам, указанным выше, вероятность возникновения несанкционированного доступа к информации и ее модификации существенно увеличивается. Поэтому в более ответственных случаях отдельные сообщения или блоки информации подвергаются специальной защите, которая заключается в создании средств повышения достоверности информации и криптографического преобразования. Установление подлинности полученной информации, включая отображение на табло и терминалах, заключается в контроле положительных результатов обеспечения достоверности информации и результатов дешифрования полученной информации до отображения ее на экране. Подлинность информации на средствах ее отображения тесно связана с подлинностью документов. Достоверность информации на средствах отображения и печати в случае применения указанных средств защиты зависит от надежности функционирования средств, доставляющих информацию на поле отображения после окончания процедур проверки ее достоверности. Чем ближе к полю отображения (бумажному носителю) эта процедура приближается, тем достовернее отображаемая информация.

 

Защита информации от НСД

 

Существует множество способов защиты компьютера от НСД от менее эффективных до очень эффективных. В нашем случае машину можно защитить следующим образом: пароли и шифрование.

Пароли должны быть просты для запоминания и не должны быть столь очевидны, чтобы тот, кто захотел воспользоваться информацией в компьютере, мог его угадать. При формировании пароля можно прибегнуть к помощи специального устройства, которое генерирует последовательности чисел и букв в зависимости от данных, которые задает пользователь.

Существуют “невидимые” файлы. Это средство защиты состоит в изменении имени файла программы в каталоге диска таким образом, чтобы затруднить работу с файлами обычными командами DOS. Например, имя файла может содержать “невидимые” управляющие символы, которые не отображаются, когда просматриваются содержимое каталогов.

Информацию на дискетах можно сохранить, используя два принципа: либо помешать копированию программы на другой диск. либо воспрепятствовать просмотру. О таких программах можно говорить как о “защищенных от копирования” и “защищенных от просмотра”. Метод первого типа защищает программу от несанкционированного доступа, а второго - от несанкционированной проверки.

Как уже упоминалось, на кафедрах постоянно находится много людей от студентов до сотрудников и преподавателей. Необходимо ограничить доступ персонала на кафедре, где установлены компьютеры. Рекомендуется, чтобы в помещении находилось не более 8-10 человек в одно и то же время. Эти рекомендации основаны на том, что при большем количестве людей труднее заметить или узнать лишних посетителей.

ЗаклюЧение

 

Итак, мы рассмотрели и проанализировали потенциальные угрозы, возможные каналы НСД, методы и средства защиты информации как в целом в автоматизированных системах обработки данных и на примере интранет, так и более конкретно, на кафедрах ЭИ и АУ и Ф и ПМ.

Естественно, что указанные средства защиты не всегда надежны, т.к. на сегодняшний день быстрыми темпами развивается не только техника (в нашем случае компьютерная), постоянно совершенствуется не только сама информация, но и методы, позволяющие эту информацию добывать. Наш век часто называют информационной эпохой и он несет с собой огромные возможности, связанные с экономическим ростом, технологическими новшествами. На данный момент обладание электронными данными, которые становятся наибольшей ценностью информационной эры, возлагает на своих владельцев права и обязанности по контролю за их использованием. Файлы и сообщения, хранимые на дисках и пересылаемые по каналам связи, имеют иногда большую ценность, чем сами компьютеры, диски. Поэтому перспективы информационного века могут быть реализованы только в том случае, если отдельные лица, предприятия и другие подразделения, владеющие информацией, которая все чаще имеет конфиденциальный характер или является особо важной, смогут соответствующим образом защитить свою собственность от всевозможных угроз, выбрать такой уровень защиты, который будет соответствовать их требованиям безопасности, основанным на анализе степени угрозы и ценности хранимой собственности.


Поделиться:



Последнее изменение этой страницы: 2019-10-03; Просмотров: 257; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.074 с.)
Главная | Случайная страница | Обратная связь