Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Общие сведения о приборе с зарядовой связью (ПЗС)Стр 1 из 5Следующая ⇒
Содержание 1 Общие сведения о приборе с зарядовой связью (ПЗС) 2 Физические основы работы и конструкции приборов с зарядовой связью 3 Приборы с зарядовой связью в оптоэлектронике 4 Фотоприемные характеристики ПЗС 5 Строчные (линейные) ФСИ на ПЗС 6 Матричные (плоскостные) ФСИ 7 Перспективы развития ФСИ на ПЗС Литература Общие сведения о приборе с зарядовой связью (ПЗС)
Прибор с зарядовой связью (ПЗС) представляет собой ряд простых МДП-структур (металл — диэлектрик— полупроводник), сформированные на общей полупроводниковой подложке таким образом, что полоски металлических электродов образуют линейную или матричную регулярную систему, в которой расстояния между соседними электродами достаточно малы (рис.1). Это обстоятельство обусловливает тот факт, что в работе устройства определяющим является взаимовлияние соседних МДП-структур [1—3].
Рис.1. Структура ПЗС
Принцип действия ПЗС заключается в следующем. Если к любому металлическому электроду ПЗС приложить отрицательное напряжение*), то под действием возникающего электрического поля электроны, являющиеся основными носителями в подложке, уходят от поверхности в глубь полупроводника. У поверхности же образуется обедненная область, которая на энергетической диаграмме представляет собой потенциальную яму для неосновных носителей — дырок. Попадающие каким-либо образом в эту область дырки притягиваются к границе раздела диэлектрик — полупроводник и локализуются в узком приповерхностном слое. Если теперь к соседнему электроду приложить отрицательное напряжение большей амплитуды, то образуется более глубокая потенциальная яма и дырки переходят в нее. Прикладывая к различным электродам ПЗС необходимые управляющие напряжения, можно обеспечить как хранение зарядов в тех или иных приповерхностных областях, так и направленное перемещение зарядов вдоль поверхности (от структуры к структуре). Введение зарядового пакета (запись) может осуществляться либо p-n-переходом, расположенным, например, вблизи крайнего ПЗС элемента (электрод 1 на рис.1), либо светогенерацией. Вывод заряда из системы (считывание) проще всего также осуществить с помощью p-n-перехода (электрод п на рис.1.). Таким образом, ПЗС представляет собой устройство, в котором внешняя информация (электрические или световые сигналы) преобразуется в зарядовые пакеты подвижных носителей, определенным образом размещаемые в приповерхностных областях, а обработка информации осуществляется управляемым перемещением этих пакетов вдоль поверхности. Очевидно, что на основе ПЗС можно строить цифровые и аналоговые системы. Для цифровых систем важен лишь факт наличия или отсутствия заряда дырок в том или ином элементе ПЗС, при аналоговой обработке имеют дело с величинами перемещающихся зарядов. Естественно, что заряд, введенный в МДП-структуру, не может храниться в ней неограниченно долго. Процесс термогенерации электронно-дырочных пар в объеме полупроводника и на границе раздела диэлектрик — полупроводник ведет к накоплению в потенциальных ямах паразитных зарядов и, следовательно, к искажению зарядовой информации, а с течением времени и к полному ее «стиранию». Это время может достигать сотен миллисекунд и даже десятков секунд, но, тем не менее, оно конечно и определяет существование нижней граничной частотьг. Таким образом, работа прибора основана на нестационарном состоянии МДП-структуры, и ПЗС являются элементами динамического типа. Устройство и физика работы ПЗС определяют целый ряд очень интересных и полезных (а нередко и уникальных) особенностей этих приборов. К числу важнейших функциональных особенностей ПЗС относятся возможность хранения, зарядовой информации; возможность направленной передачи зарядов вдоль поверхности полупроводникового кристалла; возможность преобразования светового потока в электрический заряд и последующего его считывания (сканирования). Достоинством ПЗС является малая потребляемая мощность (5—10 мкВт/бит в режиме передачи информации и практически полное отсутствие затрат энергии в режиме хранения), что обусловлено МДП-структурой этих устройств. Простота конфигурации и регулярность системы элементов в ПЗС ведет к тому, что быстродействие этих приборов может быть очень высоким (у специально сконструированных образцов предельные тактовые частоты лежат в гигагерцевом диапазоне). Пожалуй, еще более важными являются конструктивно-технологические достоинства ПЗС, основными из которых являются технологическая ясность и простота (малое число фотолитографических, термодиффузионных и эпитаксиальных процессов при изготовлении прибора) — обязательное условие при создании качественных многоэлементных (с числом элементов 104—106) устройств; высокая степень интеграции (превышающая 105 элементов на одном кристалле) и высокая плотность упаковки (более 105 бит/см2); малое количество внешних выводов, что является определяющим при построении высоконадежных систем; отсутствие p-n-переходов (немногочисленные p-n-переходы ПЗС выполняют «подсобные» функции и к ним предъявляются достаточно «слабые» требования), что, в частности, открывает широкие возможности для использования наряду с кремнием других полупроводниковых материалов (например, арсенида галлия). Все эти свойства открывают широкие перспективы для разнообразных применений ПЗС. Для цифровой техники интересны сдвиговые регистры, оперативные запоминающие устройства, логические схемы. Линии задержки аналоговых сигналов на ПЗС по техническим характеристикам значительно превосходят свои акустические и магнитные аналоги. В оптоэлектронной технике преобразования изображений ПЗС открывают принципиальные новые возможности для создания безвакуумных полупроводниковых формирователей видеосигналов. Присущее им самосканирование позволяет избавиться от громоздких и ненадежных высоковольтных вакуумных трубок со сканированием электронным лучом. ПЗС являются уникальными аналогами ЭЛТ, позволяющими одновременно с уменьшением массы, габаритных размеров, потребляемой мощности повысить надежность и качество формирователей видеосигналов. Дополнительное достоинство фотоприемников на основе ПЗС заключается в принципиальной возможности использовать разнообразные полупроводниковые материалы, что позволит перекрыть широкую область электромагнитного спектра (включая и ИК область). Создание передающих телевизионных камер на основе ПЗС приведет в будущем не только к оснащению техники надежным «электронным глазом» (отметим, что в проекте создания средств искусственного зрения для человека ориентация делается также на ПЗС), но и к действительно широкому использованию средств телевидения в быту. Если на многоэлементный или матричный ПЗС направить световой поток, несущий изображение, то в объеме полупроводника начнется фотогенерация электронно-дырочных пар. Попадая в обедненную область ПЗС, носители разделяются и в потенциальных ямах накапливаются дырки (причем величина накапливаемого заряда пропорциональна локальной освещенности). По истечении некоторого времени (порядка нескольких миллисекунд), достаточного для восприятия изображения, в матрице ПЗС будет храниться картина зарядовых пакетов, соответствующая распределению освещенностей. При включении тактовых импульсов зарядовые пакеты будут перемещаться к выходному устройству считывания, преобразующему их в электрические сигналы. В результате на выходе получится последовательность импульсов с разной амплитудой, огибающая, которых дает видеосигнал. На этой основе создаются, учитывающие устройства для фототелеграфа, а также, передающие камеры (вплоть до камер полноформатного цветного телевидения). В будущем ПЗС найдут применение в качестве удобных матричных фотоприемников в сверхпроизводительных оптоэлектронных вычислительных машинах с параллельной обработкой информации. Появление ПЗС (1969 г.) явилось результатом исследований в области физики и технологии МДП-приборов. Разработка этого нового направления полупроводниковой техники занимаются многие научные коллективы в разных странах мира и уже достигнуты весьма заметные результаты. Созданы быстродействующие однокристальные ЗУ на ПЗС емкостью 8192, 16384 и 65536 бит с временем выборки 64—200 мкс и скоростью выдачи информации 1—5 МГц; на базе кристаллов емкостью 16 К (килобит) сконструировано ЗУ емкостью 1 Мбит с блочной выборкой по 256 бит. Разработана широкополосная линия задержки аналоговых сигналов емкостью 128 разрядов, предназначенная для использования в системах цветного телевидения; опробован коррелятор на ПЗС, позволяющий одновременно обрабатывать 40 000 дискретных значений сигнала с общей погрешностью менее 1%. Имеются многочисленные сообщения о начале промышленного выпуска рядом фирм США (в первую очередь Bell и RCA) передающих телекамер с числом элементов разложения 200X200 и 500x500. В то же время нельзя не заметить, что на пути широкого использования ПЗС стоит еще много нерешенных проблем — и в первую очередь технологическая: проколы диэлектрической пленки и закоротки электродных шин все еще не позволяют уверенно с высоким процентом выхода получать бездефектные ПЗС достаточно большой информационной емкости. Важнейшей технологической проблемой создания больших ПЗС с однослойной металлизацией является проблема получения узких (2—3 мкм) зазоров между электродами; основной технологический брак в таких структурах — закоротки. В структурах с многослойными кремниевыми затворами трудно получить высококачественный изолирующий диэлектрик между всеми уровнями поликремния. В заключение хотелось бы отметить, что создание устройств на приборах с зарядовой связью, в особенности оптоэлектронных, является важным этапом в развитии больших интегральных схем и одним из первых реальных шагов по пути к функциональной микроэлектронике. Рис.2. Схема трехтактного сдвигового регистра на ПЗС: а - хранение информации в элементах 1. 4. 7; б – передача информации; в - хранение информации в элементах 2. 5, 8. Uхр. =-U2 находятся электроды 1, 4, 7, а все остальные — под напряжением – U1 (U1< U2); подложка заземлена. Напряжение U1 выбирается немного большим порогового напряжения U0 (величина U0 для МДП-структуры определяется как минимальное напряжение на затворе, при котором наступает инверсия поверхности полупроводника) для того, чтобы вся ^поверхность полупроводника была обеднена и на поверхностных состояниях отсутствовали электроны. Допустим, что в потенциальных ямах 1, 7 есть зарядовые пакеты, а в 4 их нет. На следующем такте к электродам 2, 5, 8 прикладывается напряжение записи Uзап. = -U3(U3> U2) и заряды перетекают от ПЗС1 (строго говоря, в данном случае следует использовать термин «ПЗС-элемент» или «МДП-структура», так как речь идет об одном элементе прибора с зарядовой связью. Однако для сокращения здесь и в дальнейшем (если из контекста ясно, что речь идет об элементе) используется термин «ПЗС», а слово «элемент» опускается.) к ПЗС2 и от ПЗС7 к ПЗС8 (рис.2, б).
Рис. 3. Зонная диаграмма для ПЗС-элемента в режиме хранения информации: а - в первый момент после включения; б - в стационарном состоянии; 1 - металл; 2- диэлектрик; 3- обедненная область; 4- нейтральная область полупроводника. На следующем такте на электродах устанавливаются напряжения в соответствии с рис.2, в и начинается фаза хранения зарядовой информации в элементах 2, 5, 8. Таким образом, для ПЗС характерны два режима работы: хранение и передача зарядовых пакетов. В режиме хранения ПЗС эквивалентен МДП-емкости. Зонная диаграмма поверхности полупроводника для режима хранения приведена на рис.3, а. Величина поверхностного потенциала, характеризующая изгиб зон и глубину потенциальной ямы, в начальный момент максимальна. При инжекции пакета дырок их положительный заряд экранирует подложку от поля, в результате чего происходит перераспределение внешнего напряжения: увеличивается часть напряжения, падающего на слое диэлектрика, поверхностный потенциал уменьшается (по абсолютной величине), и обедненная область сужается. С течением времени потенциальная яма заполняется до насыщения термогенерируемыми дырками и у поверхности образуется стационарный инверсный слой (рис.3, б). Величина поверхностного потенциала уменьшается (по абсолютной величине) до потенциала инверсии поверхности полупроводника φ 0 В нестационарном состоянии поверхностный потенциал φ зависит от напряжения на затворе U3, плотности (на единицу поверхности) заряда дырок Qp и от электрофизических характеристик диэлектрической пленки и подложки:
(1)
где U'3 = U3 - UП3 = U3 - Uo - φ 0 + UВ - напряжение плоских зон; - коэффициент подложки; UB = BOC ; Сд = ε дε 0хд - удельная емкость диэлектрика затвора толщиной хд. В (1) и последующих выражениях используются абсолютные значения потенциалов и зарядов, что делает их применимыми для р- и n-канальных ПЗС. Зависимости φ (QP) для разные значений напряжений затвора приведены на рис.4. При увеличении заряда дырок Qp от нуля до стационарного значения поверхностный потенциал уменьшается по абсолютной величине до потенциала инверсии φ 0. Из графиков рис.4 видно, что зависимости φ (QP) практически линейны. Аппроксимированное выражение для φ имеет вид: φ =(U'3-QP/Cд)(1+x), (2)
где х=0, 1—0, 2 — линеаризованный коэффициент подложки. Максимальный заряд QPM, который может быть помещен в потенциальную яму при заданном напряжении U3, определяется из (1) при условии насыщения потенциальной ямы, т. е. при φ =φ 0,
Рис.4. Зависимость поверхностного потенциала от величины локализованного в потенциальной яме заряда при разных напряжениях затвора: N д =5-1014 см-3, Uo =3.8 В.
Рис.5. Зависимость QPΣ = QP + QP пар от времени хранения для различных значений информационного заряда QP . Штриховой линией показаны составляющие заряды, накопленные за счет генерации в обедненной области (1) и на поверхности (2); Qp =0 (3); Qp / Сд = 3В (4).
QPM = Сд (U3, — U0) (3)
Обычно QPM= (1—5) 10-3 пКл/мкм2. Наглядным представлением потенциальной ямы ПЗС может служить прямоугольный сосуд с жидкостью. Максимальная глубина потенциальной ямы соответствует высоте пустого сосуда; но мере заполнения сосуда жидкостью его эффективная глубина уменьшается. Допустимое время хранения заряда определяется процессами, приводящими к накоплению паразитного заряда QP. В основном это термогенерация электронно-дырочных пар в обедненном слое и на поверхности, а также до некоторой степени диффузия неосновных носителей из объемной нейтральной области. Расчет показывает, что при малых значениях накапливаемого паразитного заряда QP его зависимость от времени близка к линейной, в дальнейшем кривые становятся сублинейными, приближаясь к постоянному значению QPM, определяемому соотношением (3). На рис.5 приведены расчетные кривые для U3 = 10 В, Nд=5·1014 см-3, U0=3, 8 В, тепловая скорость υ т=107 см/с, сечение захвата σ v = 2, 2-10-16 см2, плотность объемных центров Nоб=l, 8·1014 см-3, плотность поверхностных центров Nпов=6·1010 см-2. При этих параметрах и при QP = 0 время накопления паразитного заряда, составляющего 1 % от QpM, равно 20 мс (для многоэлементных ПЗС, и в особенности для аналоговых устройств, большее накопление паразитного заряда недопустимо). Максимальное время хранения можно определить и экспериментально, измерив время релаксации МДП-емкости, сформированной в тех же условиях, что и ПЗС, и включаемой таким же импульсом напряжения. Приближенно время накопления паразитного заряда, равного по величине информационному, на порядок меньше времени релаксации МДП-емкости. Опыт показывает, что в зависимости от качества обработки поверхности кремния и совершенства структуры подложки время релаксации лежит в пределах 1—60 с и соответственно время накопления паразитного заряда составляет 0, 1— 6 с. Задаваясь требуемым соотношением между величинами информационного и паразитного зарядов, нетрудно рассчитать максимальное время хранения информации в ПЗС. При соотношении 100: 1 это время составляет десятки миллисекунд. Еще раз отметим, что процессы накопления паразитного заряда определяют максимальное время хранения и минимальную частоту работы цифровых и аналоговые устройств на ПЗС, а также темновые токи в фотоприемных ПЗС. Передача заряда из элемента в элемент осуществляется приложением к соседнему электроду большего по амплитуде напряжения записи Uзап (рис.6). В зазоре между электродами (обозначим его длину через l) возникает тянущее поле, под действием которого дырки перетекают в более глубокую потенциальную яму.
Рис.6. Схема передачи заряда в ПЗС
По мере перетекания зарядов поверхностный потенциал в ПЗС1 увеличивается (по абсолютной величине), а в ПЗС2 уменьшается, в результате чего поле в зазоре уменьшается. Очевидно, что напряжение записи Uзап должно превышать напряжение хранения Uхр тем значительнее, чем больше расстояние между электродами и чем сильнее легирована кремниевая подложка (рис.7). Из рисунка видно, что практически для работоспособных ПЗС ширина зазора не должна превышать l = 2-3 мкм, a Nд≤ 1015 см-3. Минимальная амплитуда импульса записи Uзап линейно увеличивается при возрастании UXP и QP. Рассмотрим динамику переноса заряда из одного элемента (ПЗС1) в другой (ПЗС2) (рис.6). В режиме хранения к ПЗС1 приложен потенциал UXP, к ПЗС2 - нулевой потенциал. Заряд дырок плотностью Qp равномерно локализован в ПЗС1. После приложения к ПЗС2 потенциала записи Uзап> Uхр в зазоре между ячейками устанавливается тянущее поле, причем обычно напряженность его столь высока, что дырки, находящиеся вблизи левой границы ПЗС1, практически мгновенно переходят в ПЗС2. Концентрация дырок вблизи правой границы ПЗС2 очень быстро спадает до нуля (т. е. поле зазора действует аналогично полю обратного смещенного коллекторного p-n-перехода в транзисторе). Резкое изменение равномерности распределения дырок в ПЗС1 вызывает их интенсивный дрейф и диффузию внутри потенциальной ямы слева на право. Если положить l< < L и рассматривать одномерный случай, то, как обычно при таких процессах, для времени передачи заряда приближенно должно выполняться: tпер ~ L2/μ pэ (4)
Рис.7. Зависимость минимальной амплитуды импульса записи от напряжения хранения (а), длины зазора (б) и концентрации примеси в подложке (в).
где L — длина затворов (электродов) ПЗС; μ рэ—поверхностная эффективная подвижность. Очевидно, что коэффициент пропорциональности в (4) зависит от того, какой коэффициент эффективности передачи требуется получить. Обычно для многоэлементных ПЗС этот уровень очень высок и составляет = QРППЗС2/ QРП ПЗС1 = 0, 99-0, 9999, где QPП — полный заряд в одной ячейке.
Рис.8. Зависимость нормализованного заряда Q = 1- времени передачи для приборов с параметрами: L =6 мкм, μ рэ=180 см2/В·с; численный расчет; _приближенное аналитическое решение. По мере перетекания заряда из ПЗС1 в ПЗО2 концентрация дырок в ПЗС1, а следовательно, и дрейфовая составляющая тока уменьшаются и процесс передачи, определяемый только диффузией, замедляется -«хвост» переходного процесса всегда более затянут по сравнению с начальной фазой (рис.8). Чем больше начальная плотность заряда Qp, тем большая его часть «вытечет» за время первой быстрой стадии и тем меньше (при заданном допустимом значении ) будет время передачи tпер. Эпюры распределения плотности Заряда дырок в различные моменты времени представлены на рис.9. Через левую границу ПЗС1 потока дырок нет, поэтому на графиках рис.9 в любой момент времени градиент концентрации дырок в этой точке равен нулю.
Рис.9. Эпюры распределения Qp ( y ) в различные моменты процесса передачи Наглядной аналогией процесса передачи заряда является вытекание вязкой жидкости из прямоугольного сосуда, торцевая стенка которого (соответствующая правой границе потенциальной ямы ПЗС) отодвинута так же, как и в ПЗС, чем больше начальный уровень жидкости, тем быстрее выльется заданная ее часть.
Рис.10. Зависимости коэффициента потерь ε 1 от времени передачи для ПЗС с разной длиной электродов.
Для большинства реальных структур ПЗС размеры L и l соизмеримы и очень малы; при этих условиях; становится существенным эффект проникновения краевого поля Еkр (которое мы выше считали полностью сосредоточенным в зазоре) в область ПЗС1, что оказывает определяющее влияние на перетекание оставшейся части зарядового пакета. Рассмотрим важнейшую характеристику ПЗС — эффективность передачи заряда , представляющую собой часть заряда дырок, перешедшую из ПЗС1 в ПЗС2 за время передачи. При заданном допустимом уменьшении ^зарядового пакета значение определяет максимальное количество элементов, через которое информация может быть передана без восстановления. Часто оказывается удобнее использовать понятие потери (неэффективности) передачи ε =1— . При конечном времени передачи потери заряда обусловлены, во-первых, тем, что за t=tnep часть заряда ε 1 просто не успевает перетечь в соседнюю ячейку и, во-вторых, захватом части носителей ε 2 поверхностными ловушками. Составляющая ε 1 определяет потери передачи на высоких частотах, ε 2—на низких и средних частотах работы. Рассмотрим подробнее захват носителей поверхностными ловушками. Если, например, в ПЗС1 поступает информационный пакет, то часть дырок захватывается границей раздела диэлектрик — полупроводник. На следующем такте зарядовый пакет перетекает в ПЗС2, равновесие между инверсным слоем и поверхностными ловушками нарушается, и они начинают разряжаться. Те носители, которые освобождаются ловушками за t=tnep, успевают вернуться в зарядовый пакет, остальные образуют потери передачи ε 2. Потери ε 2зависят не только от плотности поверхностных ловушек и величины зарядового пакета, но и от характера предшествующей зарядовой информации, передаваемой через данный элемент. Если передается серия логических 1 (которой соответствуют большие зарядовые пакеты), то потери ε 2 будут максимальны в первом зарядовом пакете и будут уменьшаться в последующих, так как часть ловушек, захвативших заряды от первого пакета, не успеет разрядиться к приходу следующего и эти ловушки не будут участвовать в захвате носителей. Наихудшим случаем с точки зрения потерь ε 2 является передача чередующейся последовательности логических 1 и 0. В этом случае выражение для ε 2 имеет вид:
(5)
где Nл — плотность поверхностных ловушек; т = 2, 3... — количество управляющих тактов; Сд(U3—U0) — величина зарядового пакета. В типичных структурах ε 2=(2—3) 10-3 и в первом приближении не зависит от тактовой частоты. Влияние поверхностных состояний может быть уменьшено, если в цепочку ПЗС (в каждый зарядовый пакет) ввести некоторый фоновый заряд, заполняющий поверхностные ловушки. В результате потери информационного заряда при передаче уменьшаются. Неполное устранение влияния ловушек объясняется рядом причин, главными из которых являются краевой эффект и захват носителей не только при хранении, но и во время протекания зарядового пакета через ПЗС и зазор. Краевой эффект возникает из-за двумерности распределения электрического поля в реальных ПЗС, что делает потенциальные ямы не прямоугольными, а закругленными. Следовательно, площадь поверхности занимаемая пакетом, будет зависеть от величины заряда и всегда будет больше площади, занимаемой меньшим по величине фоновым зарядом. Поэтому поверх постные ловушки, расположенные у краев электрода, где фонового заряда нет, будут пустыми и смогут захватывать носители из зарядного пакета. Потери заряда or этого эффекта составляют (4-5)10-4. Захват носителей в процессе передачи главным образом связан с тем, что в зазоре фонового заряда нет и поэтому ловушки не заполнены. Обусловленная этим неэффективность составляет (2—3) 10-4. Таким образом, введение фонового заряда не позволяет выполнить условие ε 2→ 0, но в несколько раз уменьшает потери передачи, обусловленные захватом носителей поверхностными ловушками. В заключение рассмотрим фоточувствительность ПЗС. Одним из факторов, определяющих фоточувствительность, является коэффициент поглощения , который характеризует интенсивность поглощения фотонов (с образованием электронно-дырочных пар). Коэффициент поглощения резко уменьшается при увеличении длины волны l падающего света. Поэтому область длин волн, в которой осуществляется эффективное преобразование светового потока в информационные заряды (называемая областью спектральной чувствительности) ограничена. Длинноволновая граница определяется шириной запрещенной зоны полупроводника и для кремния составляет 1, 1 мкм. Коротковолновая граница составляет 0, 4—0, 5 мкм и обусловлена сильным поглощением коротковолновых квантов света в узком приповерхностном слое, в котором интенсивно происходит рекомбинация фотогенерируемых носителей. Если считать, что все возбужденные носители собираются ПЗС, то зарядный пакет Qpn, накапливаемый за время генерации (интегрирования) ta под действием светового потока Нш, может быть рассчитан по следующему приближенному выражению:
QPП = qHизθ tи· Aэ, (6)
где θ — квантовый выход; Аэ — часть площади элемента, воспринимающая свет. Для ПЗС θ =1, этому соответствует фоточувствительность порядка 500 мкА/лм. Пороговая чувствительность, при которой сигнал превышает шумы примерно в 2 раза, составляет для ПЗС около 10-4 лк·с. Фотоприемное устройство на ПЗС можно освещать со стороны затворов (электродов) или с обратном стоны. Рис.11. Структурная схема телевизионной передающей системы: 1 - объект; 2-линза; 3-формирователь сигналов изображений; 4 - усилитель; 5 - блок хранения сигнала: 6 - блок считывания сигнала; 7 -формирователь видеосигнала; 8- видеоусилитель Основной недостаток видиконов (а также их разновидностей: плюмбиконов, кремниконов и т. д.) связан с необходимостью использовать высоковольтные вакуумные системы. Это обусловливает низкие долговечность и надежность устройств, значительные габаритные размеры и массу, невысокую механическую прочность и другие недостатки, присущие всем вакуумным приборам. При создании твердотельных формирователей сигналов изображений для обеспечения сканирования пытаются использовать (но пока безуспешно) различные физические эффекты: эффект Суля, дрейф неосновных носителей заряда, движение доменов сильного поля и др. Формирователи сигналов изображений на ПЗС по сравнению с ЭЛТ различного устройства характеризуются конструктивной и технологической простотой, малыми габаритными размерами и массой, значительной долговечностью и надежностью и малой потребляемой мощностью. Эти преимущества обусловлены самосканированием (передача зарядовых пакетов на выход ФСИ осуществляется с помощью самих ПЗС-элементов). Имение это конструктивно-технологическое интегрирование функций фоточувствительных и сканирующих элементов в одном приборе позволяет считать ПЗС наиболее перспективными для создания полностью твердотельных ФСИ. Рис.13. Организация строчного ФСИ с отдельными светочувствительной и передающей областями: Рис.14. Импульсная диаграмма сигналов на выходе строчного ФСИ
При использовании строчных ФСИ развертка изображения по вертикали осуществляется механическим сканированием с помощью зеркального барабана или качающегося зеркала, которые последовательно направляют полоски изображения на ФСИ. Малогабаритная камера, разработанная на основе строчного ФСИ, обеспечивает передачу 8 кадров в секунду, имеет размеры 51X102X76 мм3 и потребляет мощность 2, 5 Вт. Строчные ФСИ используются главным образом в фототелеграфии и реже в телевидении. Отдельные фрагменты рисунка, помещенного на вращающийся барабан, через щелевой экран поступают на линзу, которая фокусирует их на фотосчитывающую ПЗС-линейку. В результате последовательно передаются все фрагменты изображения, которые после преобразования в видеосигналы позволяют передать и воспроизвести изображение. Матричные (плоскостные) ФСИ Устройства на основе строчных ФСИ позволяют передавать изображение с низкой скоростью и не обеспечивают высокого качества видеосигналов. Поэтому телевизионные передающие камеры строят главным образом на основе матричных ФСИ. Используются четыре основных способа организации матричных формирователей сигналов изображений на ПЗС: кадровая, строчная, строчно-кадровая, адресная. Эти организации отличаются способом считывания картины зарядовых пакетов.
Рис.15. ФСИ с кадровой организацией: Рис.16. Трехтактная структура с перекрывающимися кремниевыми электродами: 1- поликристаллическне электроды; 2 - изолирующий окисел
Такая структура является трехтактным ПЗС. Перекрытие кремниевых слоев у краев электродов приводит к тому, что реальная ширина зазоров оказывается равной толщине окисла и не превышает 0, 1—0, 2 мкм. Благодаря узким зазорам возникают сильные краевые поля, обеспечивающие высокую эффективность передачи. Важным достоинством данной трехуровневой структуры, приводящим к уменьшению дефектов, является то, что вся поверхность кремния оказывается достаточно надежно защищенной. Важно и то, что поликристаллические кремниевые электроды прозрачны и обеспечивают максимальное использование активной площади кристалла для восприятия потока света. На основе этой технологии создан ФСИ с кадровой организацией, содержащий 220X128 элементов размером 30X30 мкм2 каждый. Кадровая организация ФСИ на ПЗС получила наибольшее распространение, и на основе ее получены устройства с наибольшей разрешающей способностью. В фирме RCA на кристалле 7, 6X10, 2 мм2 разработан ФСИ емкостью 256X320 элементов, который при использовании чересстрочного разложения обеспечивает разрешающую способность 512X320 элементов. Другим способом организации ФСИ является строчная организация (рис.17). При этом матрица содержит оптическую секцию и выходной сдвиговый регистр. В режиме восприятия изображения в светочувствительных элементах оптической секции накапливаются зарядовые пакеты. Затем последовательно на каждую из строк через ключи, управляемые вертикальным сдвиговым регистром, подаются тактовые импульсы и зарядовые пакеты переходят в выходной регистр, из которого они передаются на выход. При строчной организации секция хранения не требуется. Поэтому для получения необходимой разрешающей способности количество ПЗС-элементов может быть вдвое меньшим, чем при кадровой организации. Уменьшается также число переносов. Недостатком строчной организации является то, что зарядовые пакеты, поступающие в выходной сдвиговый регистр с более нижних строк, проходят большее количество разрядов выходного регистра. Поэтому задержка видеосигналов на выходе оказывается зависящей от номера считываемой строки.
Рис.17. Строчная организация матричного ФСИ: 1 - запускающие импульсы; 2 - сдвигающие импульсы; 3 -выходной диод; 4 - генератор развертки; 5 - ключи выбора строк; 6 - выходной регистр; 7 - двухтактные сдвигающие импульсы; 8 - оптическая секция накопления зарядов
Другой недостаток строчной организации связан с тем, что передача зарядовых пакетов строк осуществляется светочувствительными элементами, поэтому засветка, сопутствующая сканированию, искажает передаваемую информацию. Влияние дефектов такое же, как при кадровой организации, т. е. неисправность одного элемента строки вызывает появление белой или темной полосы на воспроизводимом изображении. Модификацией кадрового способа является такая организация ФСИ, при которой оптическая секция и секция хранения как бы вложены друг в друга. Кристалл содержит матрицу светочувствительных элементов, в которой между столбцами расположены защищенные от света ПЗС-элементы хранения. Зарядовые пакеты, накопленные в светочувствительных элементах, сдвигаются в прилегающие к ним затемненные столбцы и хранятся в них. Вывод сигналов в выходной сдвиговый регистр осуществляется построчно, начиная с нижней строки. Достоинством модифицированной кадровой организации является уменьшение количества переносов, так как для сдвига всей картины зарядовых пакетов в секцию хранения требуется только один перенос. Такой ФСИ объемом 100X100 элементов был использован в миниатюрной телевизионной камере MV-100 размером 38Х64Х Х90 мм3 и массой 170 г с потребляемой мощностью 1 Вт. Камера работает при изменении освещенности в диапазоне от яркого солнечного до комнатного света, обеспечивает разрешающую способность в 80 строк при частоте 120 кадров в секунду.
Рис.18. Прибор с инжекцией заряда: а - режим накопления зарядового пакета; б - перенос зарядов под У-шину; в- инжекция зарядов в подложку при считывании |
Последнее изменение этой страницы: 2019-10-24; Просмотров: 229; Нарушение авторского права страницы