Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Общая характеристика Вселенной.



Вселенная представляет собой самую крупную вещественную систему, т. е. систему объектов, состоящих из вещества. Иногда понятие «вещество» отождествляют с понятием «материя». Такое отождествление может привести к ошибочным заключениям. Материя - понятие самое общее, в то время как вещество - это лишь одна из форм ее существования. В современном представлении различают три взаимосвязанных формы материи: вещество, поле и физический вакуум. Вещество состоит из дискретных частиц, проявляющих волновые свойства. Для микрочастиц характерна двойственная корпускулярно-волновая природа. Физический вакуум, его свойства пока познаны намного хуже многих вещественных систем и структур. По современному определению, физический вакуум - это нулевые флуктуирующие поля, с которыми связаны виртуальные частицы. Физический вакуум обнаруживается при взаимодействии с веществом на его глубинных уровнях. Предполагается, что вакуум и вещество неразделимы и ни одна вещественная частица не может быть изолирована от его присутствия и влияния. В соответствии с концепцией самоорганизации физический вакуум выступает в роли внешней среды для Вселенной.

Значение термина «Вселенная» уже и приобрело специфически научное звучание.[5] Вселенная - место вселения человека, доступное эмпирическому наблюдению. Постепенное сужение научного значения термина «Вселенная» вполне понятно, так как естествознание, в отличие от философии, имеет дело только с тем, что эмпирически проверяемо современными научными методами.

К Вселенной это методологическое правило остается неприменимым. Наука формулирует универсальные законы, а Вселенная уникальна. Это противоречие, которое требует считать все заключения о происхождении и развитии Вселенной не законами, а лишь моделями, т.е. возможными вариантами объяснения. Строго говоря, все законы и научные теории являются моделями, поскольку они могут быть заменены в процессе развития науки другими концепциями, но модели Вселенной как бы в большей степени модели, чем многие иные научные утверждения.

Понятия галактики, метагалактики.

Мы знаем, что наше Солнце дает необходимую для нашего существования энергию. Галактики, и Солнце не только обеспечивает нас энергией. Астрономические наблюдения показывают, что из ядер галактик происходит непрерывное истечение водорода. Таким образом, ядра галактик являются фабриками по производству основного строительного материала Вселенной - водорода

Водород, атом которого состоит из одного протона в ядре и одного электрона на его орбите, является самым простым «кирпичиком», из которого в недрах звезд образуются в процессе атомных реакций более сложные атомы. Причем оказывается, что звезды совершенно не случайно имеют различную величину. Чем больше масса звезды, тем более сложные атомы синтезируются в ее недрах.

Наше Солнце как обычная звезда «производит» только гелий из водорода, очень массивные звезды «производят» углерод - главный «кирпичик» живого вещества.[6] Вот для чего нужны галактики и звезды. А для чего нужна Земля? Она производит все необходимые вещества для поддержания жизни человека. А для чего существует человек? На этот вопрос не может ответить наука, но она может заставить нас еще раз задуматься над ним.

Если «зажигание» звезд кому-то нужно, то может и человек кому-то нужен? Научные данные помогают нам сформулировать представление о нашем предназначении, о смысле нашей жизни. Обращаться при ответе на эти вопросы к эволюции Вселенной - это, значит, мыслить космически. Естествознание учит мыслить космически, в то же время, не отрываясь от реальности нашего бытия.

Вопрос об образовании и строении галактик - следующий важный вопрос происхождения Вселенной. Его изучает не только космология как наука о Вселенной - едином целом, но также и космогония - область науки, в которой изучается происхождение и развитие космических тел и их систем.

Галактика представляет собой гигантские скопления звезд и их систем, имеющие свой центр и различную, не только сферическую, но часто спиралевидную, эллиптическую, сплюснутую или вообще неправильную форму. Галактик миллиарды и в каждой из них насчитываются миллиарды звезд.

Наша галактика называется Млечный Путь и состоит из 150 млрд. звезд.[7] Она состоит из ядра и нескольких спиральных ветвей. Ее размеры - 100 тыс. световых лет. Большая часть звезд нашей галактики сосредоточена в гигантском «диске» толщиной около 1500 световых лет. На расстоянии около 30 тыс. световых лет от центра галактики расположено Солнце.

Ближайшая к нашей галактике - «туманность Андромеды». Она названа так потому, что именно в созвездии Андромеды в 1917г. был открыт первый внегалактический объект. Его принадлежность к другой галактике была доказана в 1923 г. Э. Хабблом, нашедшим путем спектрального анализа в этом объекте звезды. Позже были обнаружены звезды и в других туманностях.

А в 1963 г. были открыты квазары - самые мощные источники радиоизлучения во Вселенной со светимостью в сотни раз большей светимости галактик и размерами в десятки раз меньшими их. Было предположено, что квазары представляют собой ядра новых галактик и, стало быть, процесс образования галактик продолжается и поныне.

Теории эволюции Вселенной.

Эволюция Вселенной, начиная с Большого взрыва, рассматривается как совместное развитие микро - и макроявлений, включающее процессы дифференциации и усложнения в микро - и макроветвях эволюции.

Наша Вселенная участвует в закономерном эволюционном процессе.

Но было бы ошибкой процесс эволюции Вселенной, равно, как и всякой другой материальной системы, отождествлять лишь с одной прогрессивной ветвью развития. Развитие всегда состоит из двух ветвей или этапов - прогрессивного и регрессивного, которые объединяются одной общей характеристикой: необратимостью происходящих в них изменений.

Состояние вещества и ход физических процессов, сами понятия о времени и пространстве в “ранний” период эволюции Вселенной, когда плотность была грандиозна, еще недостаточно ясны и, вероятно, существенно отличаются от понятий физики сегодняшнего дня.

Но качественные изменения во Вселенной происходили не только в далеком прошлом. Имеются теоретические предположения, что при определенных условиях эволюция звезд приводит к образованию так называемых “черных дыр”. Поле тяжести у поверхности этих дыр так велико, что силы гравитации “сковывают” в этой части пространства все виды лучистой энергии, в том числе и свет. Поэтому эти массивные звезды становятся невидимыми, если только на них не падает вещество извне. Выяснение того, как при этом все же обнаружить “черные дыры”, является одной из интереснейших задач современной астрофизики.

Вселенная – это материальный мир, рассматриваемый со стороны его астрономических аспектов. Существуют разные модели Вселенной: “Вселенная Эйнштейна”, “Вселенная Фридмана”, “Вселенная Леметра”, “Вселенная Наана”, “Вселенная Зельманова”, соответствующие разным представлениям о ней как в целом.

Современная картина эволюционирующей Вселенной - не только расширяющейся, но и буквально “взрывающейся”, - пожалуй, так же мало похожа на картину статичной Вселенной, которую рисовала астрономия начала XX в., как современные представления о взаимопревращаемости атомов и элементарных частиц на неделимые атомы классической физики.[8]

Научная постановка вопроса об истории Вселенной - одно из важнейших завоеваний современной науки. Астрономия использует наблюдения с помощью телескопов, исследует спектры далеких небесных тел, изучает радиоволны, приходящие из самых отдаленных областей. Выводы из этих наблюдений делаются с учетом законов природы, изученных в земных лабораториях. Мы используем данные о спектрах атомов, о законах излучения и распространения радиоволн. Мы применяем к Вселенной и к огромным скоплениям звезд теорию всемирного тяготения, проверенную в земных условиях и в Солнечной системе, в частности по движению созданных человеком космических аппаратов.

Большим достижением нашего века является установление факта эволюции, изменяемой Вселенной. Звезды расходуют свой запас горючего - водорода. Горение здесь заключается в превращении водорода в гелий путем ядерных реакций. Удаляются друг от друга огромные скопления звезд. Частью такого скопления является и наша Галактика с ее 100 тыс. млн. звезд. Нужно только помнить, что ни сама Земля, ни Солнечная система, ни Галактика не расширяются.

Космические объекты

3.1. Типы космических объектов: звезды, планеты, малые тела. Межзвездная среда.

В 1963 г. на очень больших расстояниях от нашей Галактики, на границе наблюдаемой Вселенной, были обнаружены удивительные объекты, получившие название квазаров.

Какие физические процессы могут приводить к выделению столь грандиозного количества энергии, все еще остается неясным. Но все же достигнуты некоторые успехи в решении другого вопроса: какое место занимают квазары в ряду других объектов Вселенной? Астрономы обратили внимание на определенное сходство между квазарами и ядрами некоторых галактик, проявляющими особенно высокую активность. Как уже отмечалось, квазары - весьма удаленные объекты. А чем дальше от нас находится тот или иной космический объект, тем в более отдаленном прошлом мы его наблюдаем. Это связано с конечной скоростью распространения света. Хотя она и составляет около 300 тыс. км/с, даже при такой огромной скорости для преодоления космических расстояний необходимы десятки, сотни и даже миллиарды лет. Так что, глядя на небо, мы видим объекты Вселенной - Солнце, планеты, звезды, галактики - в прошлом. Причем различные объекты - в разном прошлом. Например, Полярную звезду - такой, какой она была около шести веков назад. А галактику в созвездии Андромеды мы наблюдаем с опозданием на 2 млн лет.

Вопрос об образовании космических объектов в результате нестационарных процессов и о самоорганизации Вселенной еще окончательно не решен. Кроме того, одна из важных проблем современного естествознания состоит в том, чтобы установить, в каком физическом состоянии находилось вещество до начала расширения Метагалактики. Видимо, это было состояние чрезвычайно высокой плотности. Для описания явлений, происходящих при столь высокой плотности, современные фундаментальные физические теории, к сожалению не применимы. При таких условиях проявляются не только гравитационные, но и квантовые эффекты, характерные для процессов микромира. А теории, которая объединяла бы их, пока нет - ее предстоит еще создать.

Одно из предположений, следующих из концепции самоорганизации, заключается в том, что первоначальный сгусток материи возник из физического вакуума. Физический вакуум, как уже отмечалось, - своеобразная форма материи, способная при определенных условиях «рождать» вещественные частицы без нарушения законов сохранения материи и движения.

Вселенная в широком смысле - это среда нашего обитания. Поэтому немаловажное значение для практической деятельности человека имеет то обстоятельство, что во Вселенной господствует необратимые физические процессы, что она изменяется с течением времени, находится в постоянном развитии. Человек приступил к освоению космоса, наши свершения приобретают все больший размах, глобальные и даже космические масштабы. И для того, чтобы учесть их близкие и отдаленные последствия, те изменения, которые они могут внести в состояние среды нашего обитания, в том числе и космической, мы должны изучать не только земные явления и процессы, но и закономерности космического масштаба.

3.2. Звезды: образование, эволюция, характеристики. Классификация. Понятия сверхновых звезд, пульсаров, черных дыр.

Существуют две основные концепции происхождения небесных тел. Первая основывается на небулярной модели образования солнечной системы, выдвинутой еще французским физиком и математиком Пьером Лапласом и развитой немецким философом Эммануилом Кантом. В соответствии с нею звезды и планеты образовались из рассеянного диффузного вещества путем постепенного сжатия первоначальной туманности.

Открытие В. Амбарцумяном звездных ассоциаций очень молодых звезд, стремящихся друг от друга, было понято как подтверждение гипотезы образования звезд из первоначального сверхплотного вещества.

Что представляют собой «черные дыры»? [9] Если некоторая масса вещества оказывается в сравнительно небольшом объеме, критическом для данной массы, то под действием собственного тяготения такое вещество начинает неудержимо сжиматься. Происходит гравитационный коллапс. В результате сжатия растет концентрация массы и наступает момент, когда сила тяготения на поверхности становится столь велика, что для ее преодоления надо было бы развить скорость большую, чем скорость света. Поэтому «черная дыра» ничего не выпускает наружу и не отражает, и стало быть ее невозможно обнаружить. В черной дыре пространство искривляется и время замедляется. Если сжатие продолжается дальше, тогда на каком-то этапе начинаются незатухающие ядерные реакции. Сжатие прекращается, а затем происходит антиколлапсионный взрыв, и «черная дыра» превращается в «белую дыру». Предположено, что «черные дыры» находятся в ядрах галактик, являясь сверхмощным источником энергии.

Все небесные тела можно разделить на испускающие энергию - звезды, и не испускающие - планеты, кометы, метеориты, космическую пыль. Энергия звезд генерируется в их недрах ядерными процессами при температурах, достигающих десятки миллионов градусов, что сопровождается выделением особых частиц огромной проницающей способности - нейтрино.

Звезды - это фабрики по производству химических элементов и источники света и жизни. Тем самым решаются сразу несколько задач. Звезды движутся вокруг центра галактики по сложным орбитам. Могут быть звезды, у которых меняются блеск и спектр-переменные звезды (Кита) и нестационарные звезды, а также звездные ассоциации, возраст которых не превышает 10 млн. лет. Возможно, из них образуются сверхновые звезды, при вспышках которых происходит выделение огромного количества энергии нетеплового происхождения и образование туманностей.

Существуют очень крупные звезды - красные гиганты и сверхгиганты, и нейтронные звезды, масса которых близка к массе Солнца, но радиус составляет 1/50000 от солнечного. Они называются так потому, что состоят из огромного сгустка нейтронов.

В 1967 г. были открыты пульсары - космические источники радио, оптического, рентгеновского и гамма-излучения, приходящие на Землю в виде периодически повторяющихся всплесков. У радиопульсаров периоды импульсов - 0, 03-4 секунды, у рентгеновских пульсаров периоды составляют несколько секунд.

К интересным небесным телам, которым часто приписывалось сверхъестественное значение, относятся кометы. Под воздействием солнечного излучения из ядра кометы выделяются газы, образующие обширную голову кометы. Влияние солнечного излучения и солнечного ветра обусловливает образование хвоста, иногда достигающего миллионов километров в длину. Выделяемые газы уходят в космическое пространство, вследствие чего при каждом приближении к Солнцу комета теряет значительную часть своей массы. В связи с этим кометы живут относительно недолго.

Небо только кажется спокойным. В нем постоянно происходят катастрофы, рождаются новые и сверхновые звезды, во время вспышек которых, светимость звезды возрастает в сотни тысяч раз. Эти взрывы характеризуют галактический пульс.

В конце эволюционного цикла, когда все водородное горючее истрачено, звезда сжимается до бесконечной плотности. Обычная звезда превращается в «белого карлика» - звезду, имеющую относительно высокую температуру поверхности и низкую светимость, во много раз меньшую светимости Солнца.

Предполагается, что одной из стадий эволюции нейтронных звезд является образование новой и сверхновой звезды, когда она увеличивается в объеме, сбрасывает свою газовую оболочку и в течение нескольких суток выделяет энергию, светя, как миллиарды солнц. Затем, исчерпав ресурсы, звезда тускнеет, а на месте вспышки остается газовая туманность.

Если звезда имела сверхкрупные размеры, то в конце ее эволюции частицы и лучи, едва покинув поверхность, тут же падают обратно из-за сил гравитации, т.е. образуется «черная дыра», переходящая затем в «белую дыру».


Поделиться:



Последнее изменение этой страницы: 2019-10-24; Просмотров: 991; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.021 с.)
Главная | Случайная страница | Обратная связь