Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Теплозащита зданий и сооружений



 

Экономичная теплозащита зданий и сооружений стала в последнее время важнейшей проблемой строительства и проектирования, прямо связанной с состоянием мировой энергетики и экономики.

Теплозащита зданий, в которых люди пребывают длительное время, имеет значение с точки зрения сохранения их здоровья, а также стоимости эксплуатации (экономия энергии) и стоимости строительства зданий.

Достаточная теплозащита является предпосылкой для создания здоровых и комфортных условий в помещениях. Ощущение человеком комфортных условий в помещениях зависит от многих факторов, в том числе возраста, состояния здоровья, выполняемой работы и др. Человек реагирует на окружающие условия, например на температуру поверхностей ограждающих помещение конструкций, на температуру, влажность и движение воздуха в помещении.

Поверхность тела человека имеет температуру в среднем 306 К (32 - 33ОС). Если температура окружающих человека предметов ниже 291 - 297 К (18-24ОС) (комфортные условия), теплоотдача человеческого тела повышается и может возникнуть ощущение озноба. При повышении температуры окружающей среды направление теплоотдачи меняется, и человек реагирует на это выделением пота.

Подача тепла или, наоборот, охлаждение воздуха способствуют сохранению в помещении комфортных условий. При этом теплозащитная способность ограждающих помещение конструкций определяет величину притока тепла и прежде всего температуру поверхностей этих конструкций.

Для теплозащиты в летних условиях должны быть сформулированы дополнительные требования, в частности по теплоаккумулирующей способности, которые не являются предметом рассмотрения данного приложения. Повышенная теплозащита рассматриваемая в приложении, относится ко всей передающей тепло ограждающей поверхности здания. Напротив, минимальные требования, основанные на положениях строительной физики, сформулированные в DIN.

Трансмиссионные теплопотери могут быть описаны с помощью средних коэффициентов теплопередачи kср. Вследствие различий климатических условиях влияние вентиляции на колебания фактических теплопотерь учитывается путем предъявления прямых требований к степени уплотнения окон и швов между отдельными конструкциями.

Соблюдение определенных значений kср для всего здания дает более широкую свободу при формировании фасада здания и в применении требуемых теплозащитных мероприятий при устройстве наружных стен, окон, перекрытий и крыш. Следует без всяких исключений принимать во внимание все части ограждающей поверхности здания. Так, уменьшение эффективности теплозащиты наружных стен может быть компенсировано улучшением теплозащитных качеств окон или крыши. Это создает возможность выбора наиболее экономичного способа строительства.

Коэффициенты теплопередачи kср, задаются в зависимости от величины отношения площади ограждающей поверхности F к заключенному в ней объему V. Здания с малыми значениями отношения F/V (например, компактные многоэтажные сооружения) по сравнению со зданиями с большими значениями отношения F/V (например, дачные домики, одноквартирные дома) имеют значительно меньшие по отношению к их объемам или поверхностям теплопотери, конечно, если при этом предполагаются сравнимые теплотехнические качества всех поверхностей здания. Требования к теплозащите.

Требования, которые предъявляются к теплозащите помещений, предназначенных для длительного пребывания людей. Требования к теплозащите по действующим Дополнениям к DIN в значительной мере включены в качестве указаний для строительного надзора. Они подразделяются по вида конструкций и действительны для всех зданий с помещениями, предназначенными для длительного пребывания людей. В указаниях определен минимальный уровень теплозащиты различных конструкций, т.е. уровень минимального качества конструкции. Но это еще ничего не говорит об общем количестве тепла, проходящего через конструкцию. Суждение об этом дает лишь значение коэффициента теплопередачи и показатели конкретных условий, в которых находится конструкция (в частности, температур наружного и внутреннего воздуха, соответствующей назначению помещения). Известно, что применение конструкции с теплопередачей, соответствующей максимальным значениям норм, приводит к тому, что через оболочку здания теряется огромное количество тепловой энергии. Если оказывается, что здание в целом будет иметь чрезмерные теплопотери, то ограничение теплопередачи путем назначения соответствующего значения коэффициента k является единственной возможностью их снижения, тем более, если принимается во внимание вся отводящая тепло поверхность здания.

Выбор теплоизоляции, вариантов отделок стен для большинства заказчиков-застройщиков задача сложная. Слишком много противоречивых проблем требуется решить одновременно. Данная страничка поможет Вам во всем этом разобраться.

В настоящее время теплосбережение энергоресурсов приобрело большое значение. Согласно СНиП II-3-79* «Строительная теплотехника», сопротивление теплопередаче определяется исходя из:

· санитарно-гигиенических и комфортных условий (первое условие),

· условий энергосбережения (второе условие).

Для Москвы и ее области требуемое теплотехническое сопротивление стены по первому условию составляет 1, 1 °С·м. кв./Вт, а по второму условию:

· для дома постоянного проживания 3, 33 °С·м. кв./ Вт,

· для дома сезонного проживания 2, 16 °С·м. кв./ Вт.


Таблица толщин и термических сопротивление материалов для условий Москвы и ее области

Наименование материала стены Толщина стены и соответствующее ей термическое сопротивление Необходимая толщина по первому условию (R=1, 1 °С·м. кв./ Вт) и второму условию (R=3, 33 °С·м. кв./ Вт)
Полнотелый керамический кирпич 510 мм, R=1, 1 °С·м. кв./Вт 510 мм 1550 мм
Керамзитобетон (плотность 1200 кг/куб.м.) 300 мм, R=0, 8 °С·м. кв./Вт 415 мм 1250 мм
Деревянный брус 150 мм, R=1, 0 °С·м. кв./Вт 165 мм 500 мм
Деревянный щит с заполнением минеральной ватой М 100 100 мм, R=1, 33 °С·м. кв./Вт 85 мм 250 мм

 

Из этих таблиц видно, что большинство загородного жилья в Подмосковье не удовлетворяют требованиям по теплосбережению, при этом даже первое условие несоблюдается во многих вновь строящихся зданиях. Поэтому, подбирая котел или обогревательные приборы только по указанным в их документации способности обогреть определенную площадь, Вы утверждаете, что Ваш дом построен со строгим учетом требований СНиП II-3-79*. Из вышеизложенного материала следует вывод. Для правильного выбора мощности котла и обогревательных приборов, необходимо рассчитать реальные теплопотери помещений Вашего дома. Ниже мы покажем несложную методику расчета теплопотерь Вашего дома. Дом теряет тепло через стену, крышу, сильные выбросы тепла идут через окна, в землю тоже уходит тепло, существенные потери тепла могут приходиться на вентиляцию. Тепловые потери в основном зависят от:

· разницы температур в доме и на улице (чем разница больше, тем потери выше),

· теплозащитных свойств стен, окон, перекрытий, покрытий (или, как говорят ограждающих конструкций).

Ограждающие конструкции сопротивляются утечкам тепла, поэтому их теплозащитные свойства оценивают величиной, называемой сопротивлением теплопередачи. Сопротивление теплопередачи показывает, какое количество тепла уйдет через квадратный метр ограждающей конструкции при заданном перепаде температур. Можно сказать и наоборот, какой перепад температур возникнет при прохождении определенного количества тепла через квадратный метр ограждений.

 

R = Δ T/q,

 

где q – это количество тепла, которое теряет квадратный метр ограждающей поверхности. Его измеряют в ваттах на квадратный метр (Вт/м. кв.); Δ T – это разница между температурой на улице и в комнате (°С) и, R – это сопротивление теплопередачи (°С/ Вт/м. кв. или °С·м. кв./ Вт). Когда речь идет о многослойной конструкции, то сопротивление слоев просто складываются. Например, сопротивление стены из дерева, обложенного кирпичом, является суммой трех сопротивлений: кирпичной и деревянной стенки и воздушной прослойки между ними:

R(сумм.)= R(дерев.) + R(воз.) + R(кирп.).

 

Распределение температуры и пограничные слои воздуха при передаче тепла через стену

Расчет на теплопотери проводят для самого неблагоприятного периода, которым является самая морозная и ветреная неделя в году. В строительных справочниках, как правило, указывают тепловое сопротивление материалов исходя из этого условия и климатического района (или наружной температуры), где находится Ваш дом.


Таблица – Сопротивление теплопередачи различных материалов при Δ T = 50 °С (Тнар. = –30 °С, Твнутр. = 20 °С.)

Материал и толщина стены Сопротивление теплопередаче Rm,

Кирпичная стена толщиной в 3 кирпича (79 см) толщиной в 2, 5 кирпича (67 см) толщиной в 2 кирпича (54 см) толщиной в 1 кирпич (25 см)

0, 592 0, 502 0, 405 0, 187
Сруб из бревен Ø 25 0, 550
Сруб из бруса толщиной 20 см толщиной 10 см 0, 806 0, 353
Каркасная стена (доска + минвата + доска) 20 см 0, 703
Стена из пенобетона 20 см 30 см 0, 476 0, 709
Штукатурка по кирпичу, бетону, пенобетону (2-3 см) 0, 035
Потолочное (чердачное) перекрытие 1, 43
Деревянные полы 1, 85
Двойные деревянные двери 0, 21

 

Как видно из предыдущей таблицы, современные стеклопакеты позволяют уменьшить теплопотери окна почти в два раза. Например, для десяти окон размером 1, 0 м х 1, 6 м экономия достигнет киловатта, что в месяц дает 720 киловатт-часов.

Для правильного выбора материалов и толщин ограждающих конструкций применим эти сведения к конкретному примеру. В расчете тепловых потерь на один кв. метр участвуют две величины:

· перепад температур Δ T,

· сопротивления теплопередаче R.

Температуру в помещении определим в 20 °С, а наружную температуру примем равной –30 °С. Тогда перепад температур Δ T будет равным 50 °С. Стены выполнены из бруса толщиной 20 см, тогда R= 0, 806 °С·м. кв./ Вт.

Тепловые потери составят 50 / 0, 806 = 62 (Вт/м. кв.). Для упрощения расчетов теплопотерь в строительных справочниках приводят теплопотери разного вида стен, перекрытий и т.д. для некоторых значений зимней температуры воздуха. В частности, даются разные цифры для угловых помещений (там влияет завихрение воздуха, отекающего дом) и неугловых, а также учитывается разная тепловая картина для помещений первого и верхнего этажа.

Рассмотрим пример расчета тепловых потерь двух разных комнат одной площади с помощью таблиц.

Пример 1.

Угловая комната (первый этаж)

Характеристики комнаты:

· этаж первый,

· площадь комнаты – 16 кв.м. (5х3, 2),

· высота потолка – 2, 75 м,

· наружных стен – две,

· материал и толщина наружных стен – брус толщиной 18 см, обшит гипсокартонном и оклеен обоями,

· окна – два (высота 1, 6 м, ширина 1, 0 м) с двойным остеклением,

· полы – деревянные утепленные, снизу подвал,

· выше чердачное перекрытие,

· расчетная наружная температура –30 °С,

· требуемая температура в комнате +20 °С.

Рассчитаем площади теплоотдающих поверхностей.

Площадь наружных стен за вычетом окон: Sстен(5+3, 2)х2, 7-2х1, 0х1, 6 = 18, 94 кв. м.

Площадь окон: Sокон = 2х1, 0х1, 6 = 3, 2 кв. м.

Площадь пола: Sпола = 5х3, 2 = 16 кв. м.

Площадь потолка: Sпотолка = 5х3, 2 = 16 кв. м.

Площадь внутренних перегородок в расчете не участвует, так как через них тепло не уходит – ведь по обе стороны перегородки температура одинакова. Тоже относится и к внутренней двери. Теперь вычислим теплопотери каждой из поверхностей:

Суммарные теплопотери комнаты составят: Qсуммарные = 3094 Вт.

Заметим, что через стены уходит тепла больше чем через окна, полы и потолок. Результат расчета показывает теплопотери комнаты в самые морозные (Т нар.= –30 °С) дни года. Естественно, чем теплее на улице, тем меньше уйдет из комнаты тепла.

Пример 2

Комната под крышей (мансарда)

 

Характеристики комнаты:

· этаж верхний,

· площадь 16 кв.м. (3, 8х4, 2),

· высота потолка 2, 4 м,

· наружные стены; два ската крыши (шифер, сплошная обрешетка, 10 см минваты, вагонка), фронтоны (брус толщиной 10 см, обшитый вагонкой) и боковые перегородки (каркасная стена с керамзитовым заполнением 10 см),

· окна – четыре (по два на каждом фронтоне), высотой 1, 6 м и шириной 1, 0 м с двойным остеклением,

· расчетная наружная температура –30°С,

· требуемая температура в комнате +20°С.

Рассчитаем площади теплоотдающих поверхностей.

Площадь торцевых наружных стен за вычетом окон: Sторц.стен = 2х(2, 4х3, 8-0, 9х0, 6-2х1, 6х0, 8) = 12 кв. м.

Площадь скатов крыши, ограничивающих комнату: Sскатов.стен = 2х1, 0х4, 2 = 8, 4 кв. м.

Площадь боковых перегородок: Sбок.перегор = 2х1, 5х4, 2 = 12, 6 кв. м.

Площадь окон: Sокон = 4х1, 6х1, 0 = 6, 4 кв. м.

Площадь потолка: Sпотолка = 2, 6х4, 2 = 10, 92 кв. м.

Теперь рассчитаем тепловые потери этих поверхностей, при этом учтем, что через пол тепло не уходит (там теплое помещение). Теплопотери для стен и потолка мы считаем как для угловых помещений, а для потолка и боковых перегородок вводим 70-процентный коэффициент, так как за ними располагаются неотапливаемые помещения.

Суммарные теплопотери комнаты составят: Qсуммарные = 4504 Вт.

Как видим, теплая комната первого этажа теряет (или потребляет) значительно меньше тепла, чем мансардная комната с тонкими стенками и большой площадью остекления.

Чтобы такое помещение сделать пригодным для зимнего проживания, нужно в первую очередь утеплять стены, боковые перегородки и окна. Любая ограждающая конструкция может быть представлена в виде многослойной стены, каждый слой которой имеет свое тепловое сопротивление и свое сопротивление прохождению воздуха. Сложив тепловое сопротивление всех слоев, получим тепловое сопротивление всей стены. Также суммируя сопротивление прохождению воздуха всех слоев, поймем, как дышит стена. Идеальная стена из бруса должна быть эквивалентна стене из бруса толщиной 15 – 20 см. Приведенная ниже таблица поможет в этом.

Для объективной картины теплопотерь всего дома необходимо учесть:

1. Потери тепла через контакт фундамента с мерзлым грунтом обычно принимают 15% от потерь тепла через стены первого этажа (с учетом сложности расчета).

2. Потери тепла, связанные с вентиляцией. Эти потери рассчитываются с учетом строительных норм (СНиП). Для жилого дома требуется около одного воздухообмена в час, то есть за это время необходимо подать тот же объем свежего воздуха. Таким образом, потери связанные с вентиляцией, составляют немногим меньше сумме теплопотерь приходящиеся на ограждающие конструкции. Получается, что потери тепла через стены и остекление составляет только 40%, а потери тепла на вентиляцию 50%. В европейских нормах вентиляции и утепления стен, соотношение тепловых потерь составляют 30% и 60%.

3. Если стена «дышит», как стена из бруса или бревна толщиной 15 – 20 см, то происходит возврат тепла. Это позволяет снизить тепловые потери на 30%, поэтому полученную при расчете величину теплового сопротивления стены следует умножить на 1, 3 (или соответственно уменьшить теплопотери).

Суммировав все теплопотери дома, Вы определите, какой мощности генератор тепла (котел) и отопительные приборы необходимы для комфортного обогрева дома в самые холодные и ветряные дни. Также, расчеты подобного рода покажут, где «слабое звено» и как его исключить с помощью дополнительной изоляции.

Рассчитать расход тепла можно и по укрупненным показателям. Так, в одно- и двухэтажных не сильно утепленных домах при наружной температуре –25 °С требуется 213 Вт на один квадратный метр общей площади, а при –30 °С – 230 Вт. Для хорошо утепленных домов – это: при –25 °С – 173 Вт на кв.м. общей площади, а при –30 °С – 177 Вт.

Выводы и рекомендации

1. Стоимость теплоизоляции относительно стоимости всего дома существенно мала, однако при эксплуатации здания основные затраты приходятся именно на отопление. На теплоизоляции ни в коем случае нельзя экономить, особенно при комфортном проживании на больших площадях. Цены на энергоносители во всем мире постоянно повышаются.

2. Современные строительные материалы обладают более высоким термическим сопротивлением, чем материалы традиционные. Это позволяет делать стены тоньше, а значит, дешевле и легче. Все это хорошо, но у тонких стен меньше теплоемкость, то есть они хуже запасают тепло. Топить приходиться постоянно – стены быстро нагреваются и быстро остывают. В старых домах с толстыми стенами жарким летним днем прохладно, остывшие за ночь стены «накопили холод».

3. Утепление необходимо рассматривать совместно с воздухопроницаемостью стен. Если увеличение теплового сопротивления стен связано со значительным уменьшением воздухопроницаемости, то не следует его применять. Идеальная стена по воздухопроницаемости эквивалентна стене из бруса толщиной 15…20 см.

4. Очень часто, неправильное применение пароизоляции приводит к ухудшению санитарно-гигиенических свойств жилья. При правильно организованной вентиляции и «дышащих» стенах она излишня, а при плохо воздухопроницаемых стенах это ненужно. Основное ее назначение это предотвращение инфильтрации стен и защита утепления от ветра.

5. Утепление стен снаружи существенно эффективнее внутреннего утепления.

6. Не следует бесконечно утеплять стены. Эффективность такого подхода к энергосбережению – не высока.

7. Вентиляция – вот основные резервы энергосбережения.

8. Применив современные системы остекления (стеклопакеты, теплозащитное стекло и т.п.), низкотемпературные обогревающие системы, эффективную теплоизоляцию ограждающих конструкций, можно сократить затраты на отопление в 3 раза.

Варианты дополнительного утепления конструкций зданий на базе строительной теплоизоляции типа «ISOVER», при наличии в помещениях систем воздухообмена и вентиляции.


Поделиться:



Последнее изменение этой страницы: 2019-10-03; Просмотров: 262; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.039 с.)
Главная | Случайная страница | Обратная связь