Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
УСЛОВИЯ ПЕРЕХОДА НОРМАЛЬНОГО ГОРЕНИЯ В ДЕТОНАЦИЮ. ПОНЯТИЕ ДЕТОНАЦИОННОЙ ВОЛНЫ.
Детонация представляет собой распространение горения со сверхзвуковой скоростью, точнее, распространение в горючей среде самоподдерживающейся (за счет энерговыделения при экзотермической реакции) ударной волны. Образование детонационных взрывных волн без искусственного инициирования обусловлено неустойчивостью нормального горения (процесса распространения ламинарного пламени).
В результате развития внутренней неустойчивости пламени, процесс горения автотурбулизуется, и движение пламени ускоряется: происходит резкое увеличение скорости фронта горения по сравнению с ламинарными режимами за счет увеличения площади поверхности горения.
Принципиальная возможность явления детонации следует из того, что при прохождении через любое вещество фронта ударной волны оно нагревается. Если ударная волна достаточно сильна, то это нагревание может поджечь горючую смесь, что и приводит к детонации. Возникающая при этом поверхность нормального разрыва называется детонационной волной.
Главная опасность детонации заключается в повышенной отдаче тепла от сгоревших газов в стенки камеры сгорания из-за более высоких температур в детонационной волне и увеличения коэффициента теплоотдачи в результате срыва пограничного слоя более холодного газа.
При детонации газ вступает в реакцию под действием ударной волны, сжимающей и нагревающей газ. Поэтому естественный, наиболее простой и быстрый способ вызывать детонацию заключается в том, чтобы создать во взрывчатой смеси мощную ударную волну. Такая волна вызовет практически мгновенное воспламенение смеси, а это и есть детонация Явление перехода нормального горения в детонацию заключается в том, что при распространении пламени в длинной трубе скорость его постепенно увеличивается, и на некотором расстоянии от места зажигания возникает детонационная волна. Длина преддетонационного периода зависит не только от состояния исходной смеси, но и от гидродинамических условий, при которых происходит распространение пламени, от диаметра трубы, состояния стенок (гладкие или шероховатые) и т. д.
ПОНЯТИЕ ДЫМА. ДЫМООБРАЗОВАНИЕ. ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ДЫМА: КОНЦЕНТРАЦИИ, КОЭФФИЦИЕНТА ДЫМООБРАЗОВАНИЯ, ОПТИЧЕСКОЙ ПЛОТНОСТИ, ЗАТЕМНЕНИЯ. Понятие дым, определяется как "совокупность газообразных продуктов горения органических материалов, в которых рассеяны небольшие твердые и жидкие частицы". В одном определении дым называют "совокупностью видимых летучих продуктов, образующихся при сгорании материалов". Твердые, жидкие и газообразные продукты, образующие дым, не должны рассматриваться отдельно. Сочетание сильной задымленности и токсичности представляет наибольшую угрозу тем, кто находится в здании, охваченном пожаром. Статистические данные, позволяют сделать вывод о том что более 50 % всех смертельных исходов при пожарах за счет того, что люди надышались (густым) дымом и токсичными газами. Дым уменьшает видимость, тем самым он может задержать эвакуацию людей, находящихся в помещении, что может привести к воздействию на них продуктов сгорания, причем в течение недопустимо длительного периода времени. При этих обстоятельствах люди могут быть поражены вредными составляющими дыма, даже находясь в местах, удаленных от очага пожара. Влияние пониженного содержания кислорода и вдыхаемых горячих газов становится весьма значительными лишь поблизости от пожара. Традиционно дым, состоящий из микрочастиц, рассматривается отдельно от газообразных продуктов сгорания. Существующими стандартными методами испытаний по измерению параметров дыма охвачены только те материалы, которые могут образовать при горении в определенных условиях мелкодисперсную смесь. Аспект токсичности рассматривается в совершенно другой серии испытаний; Дымообразование Дым, состоящий из мелкодисперсных частиц, образуется в результате неполного сгорания. Он образуется как при беспламенном, так и при пламенном горении. Дым при тлении аналогичен дыму, который получается, когда любой углеродсодержащий материал нагревается до температур, при которых происходит химическое разложетае и эволюция летучих продуктов горения. Фракции с большим молекулярным весом конденсируются по мере их перемешивания с холодным воздухом, что приводит к образованию тумана, состоящего из мельчайших капель смолы и высококипящих жидкостей. Эти капли стремятся в условиях спокойного воздуха слипаться, образуя мелкие частицы со средним диаметром порядка одного микрона, и осаждаются на поверхностях, образуя маслянистый остаток. По своему характеру дым при пламенном сгорании материалов отличается от дыма при тлении. Он состоит почти целиком из твердых частиц. В то время, как небольшая часть этих частиц может быть образована при абляции(унос с поверхности частиц) твердого материала в условиях воздействия на этот материал мощного теплового потока, большая часть частиц образуется в газовой фазе в результате неполного сгорания и высокотемпературных реакций пиролиза при низких концентрациях кислорода. Следует заметить, что дым, состоящий из твердых частиц, может образоваться даже, если исходным горючим материалом является газ или жидкость. Дымы обоих типов являются возгораемыми и могут образовать воспламеняемую атмосферу. При поджигании такой атмосферы может произойти взрыв. При типичном пожаре перемешивание происходит за счет турбулентных восходящих потоков, в которых наблюдаются значительные перепады концентраций. В областях с низкой концентрацией кислорода некоторая часть летучих продуктов может участвовать в ряде реакций пиролиза. В результате этих реакций образуются ряд высокомолекулярных соединений, таких, как полициклические ароматические углеводородные соединения и полиацетилены, которые, являются очагом сажи внутри пламени. Именно присутствие в пламени сажи придает диффузионному пламени его желтоватое свечение. Эти мельчайшие-частицы (10 100 им в диаметре)могут подвергаться окислению внутри пламени, но при недостаточно высоких температурах и концентрации кислорода они стремятся увеличиться и спекаться, образуя таким образом более крупные частицы, которые покидают области высокой температуры пламени в виде дыма. Важнейшую роль играет химический состав горючего, послужившего основой дымообразования. Небольшое число чистых горючих веществ горят несветящимися пламенами и не образуют дым. Другие горючие вещества, образуют значительные выходы частиц дыма в зависимости от их химического состава; Таким образом, в условиях свободного горения насыщенные кислородом горючие вещества, такие, как древесина и полиметилметакрилат, образуют существенно меньше дыма, чем углеводородные полимеры) такие, как полиэтилен и полистирол. Из пары последних полимеров полистирол производит при горении намного больше дыма, так как летучие вещества, возникающие при распаде этого полимерного соединения, состоят в основном из стирола и его олигомеров, которые по природе являются ароматическими соединениями. Преимуществом измерения оптической плотности D является то, что эта величина коррелирует с видимостью. Оптическая плотность, дБ, определяется с помощью регистрации усиления светового луча, проходящего через дым и вычисляется по формуле
где I и I 0 - интенсивности света, попадающего на фотоэлемент при наличии и отсутствии дыма соответственно. С увеличением оптической плотности падает видимость |
Последнее изменение этой страницы: 2019-06-09; Просмотров: 285; Нарушение авторского права страницы