Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Приборы для измерения давления, температуры, расхода, уровня
В большинстве случаев давление является одним из основных параметров. Давлением определяется состояние многих веществ, например газов и паров. Технологическая аппаратура проектируется, исходя из допустимого максимального давления. Поэтому в ходе управления производственными процессами необходим непрерывный контроль за давлением в технологических аппаратах. Давлением называется величина, измеряемая отношением силы, действующей на поверхность, к площади этой поверхности. Сила давления, как и всякая другая сила, есть результат взаимодействия тел. Силы давления могут быть распределены по площади как равномерно, так и неравномерно. При их равномерном распределении давление на всех участках поверхности одинаково. В этом случае давление определяется по формуле р=F/S где р — давление; F — сила; S — площадь. Размерность единицы давления зависит от выбранной системы. В СИ за единицу давления принят паскаль (Па) —давление, вызываемое силой один ньютон (1 Н), равномерно распределенной по поверхности площадью 1 м2 ( 1 Па=1 Н/м2). Эта единица очень мала, поэтому в технологических измерениях для выражения больших значений давления применяют килопаскали (кПа) или мегапаскали (МПа). При измерении давления различают абсолютное, избыточное и атмосферное (барометрическое) давление, а также вакуум. Абсолютным (полным) называется давление, отсчитываемое от'абсолютного нуля, т. е. истинное давление. Оно может быть как выше, так и ниже атмосферного. Если абсолютное давление ниже атмосферного, его называют остаточным. Избыточным (манометрическим) называют давление, отсчитываемое от условного нуля, за который принимают атмосферное давление. Разность между атмосферным и остаточным давлением называют в а ку у м о м (разрежением). В технике в основном измеряют избыточное давление, так как большинство приборов по своей конструкции может показывать (или записывать) только избыточное давление (если они не изолированы от атмосферы). Абсолютным давлением пользуются главным образом в физике при изучении термодинамического состояния различных веществ (температуры кипения, давления паров и других параметров). Приборы для измерения давления называются манометрами. Большой диапазон измеряемых давлений, а также специфические условия измерения их в различных технологических процессах определяют разнообразие систем манометров, отличающихся как по принципу действия, так и по устройству. В зависимости от вида и величины измеряемого давления манометры условно подразделяют на: барометры — приборы для измерения барометрического давления атмосферного воздуха; м а н о м е т р ы избыточного давления — приборы для измерения избыточного давления (выше барометрического), равного разности между абсолютным и барометрическим (атмосферным); д и ф ф е р е и ц и а л ь н ы е манометры — приборы дл| измерения разности двух давлений (до 0,63 МПа), ни одно которых не является давлением окружающей среды. По принципу действия приборы для измерения давления под( разделяются на: ж и д кос т и ы е манометры — приборы, в которых ИМ меряемое давление уравновешивается давлением столба жидкости соответствующей высоты; значение измеряемого давления в таких приборах определяется по высоте столба уравновешивающей жидкости; деформационные манометры — приборы, в которых измеряемое давление определяется по деформации различных упругих чувствительных элементов или по развиваемой ими силе; грузопоршневые манометры—приборы, в которых измеряемое или воспроизводимое давление уравновешивается давлением, создаваемым массой поршня и грузов; электрические манометры — приборы, действие которых основано на зависимости электрических параметре (сопротивление, емкость и т. д.) манометрического преобразователя от измеряемого давления. Жидкостные манометры Жидкостные манометры являются самыми простыми и точными приборами для измерения давления. Они выполняются из стекла. Верхний предел измеряемого давления составляет около 200 кПа. Эта величина определяется прочностью стеклянных трубок, герметичностью соединений стекла с металлом или резиной (соединительными трубками), а также удобством визуального отсчета показаний.
Деформационные манометры Наибольшее распространение и нефтяной промышленности манометров этого вида получили сильфоновые манометры и манометры с трубчатыми пружинами. Сильфонные манометры (сильфоны) представляют собой упругие гофрированные трубки из стали, латуни или фосфористой и бериллиевой бронзы, закрытые с одном стороны. Среда, давление которой измеряется, обычно подводится к коробке с сильфоном и воздействует на его наружную поверхность. Последний, сжимаясь при увеличении давления, перемещает шток, а следовательно, и стрелку прибора или перо если прибор регистрирующий. Сильфонные манометры выпускаются как показывающими, так и самопишущими. Под действием измеряемого давления сильфон с пружиной сжимается, перемещая вверх шток. Верхний конец штока связан передаточным механизмом с держателем пера, которым давление записывается на бумажной диаграмме (картограмме) специальными чернилами. Картограмма приводится во вращение часовым механизмом или синхронным двигателем. Для измерения больших давлений применяются манометры содновитковой и многовитковой трубчатыми пружинами. Одновитковая трубчатая пружина представляет собой полую металлическую трубку овального сечения, изогнутую по дуге и закрытую с одного конца. Второй конец трубчатой (манометрической) пружины впаян в штуцер, соединяющий трубку со средой, давление которой измеряется. Под действием давления трубчатая пружина меняет форму своего сечения, в результате чего ее свободный конец перемещается пропорционально измеряемому давлению. При увеличении давления трубка разгибается. Таким образом, входной величиной трубчатой пружины является измеряемое давление р, выходной величиной -— угол перемещения свободного конца. Увеличение угла поворота стрелки достигается с помощью передаточного механизма. Для измерения давления до 5 МПа трубки изготавливают из латуни или бронзы, а для более высоких давлений — из стали. Для приведения в действие сигнальных устройств (ламп, звонков) применяются электроконтактны манометры (ЭКМ), состоящие из двух передвижных контактов (минимального и максимального), устанавливаемых на требуемые значения давления и замыкаемых стрелкой при достижении соответствующих давлений (рис. 76). В некоторых случаях для измерения высоких давлений применяют электрические манометры. К ним относятся манометры сопротивления, емкостные, пьезоэлектрические и т.д. В электрических манометрах сопротивления используется свойство проводников изменять сопротивление под действием давления. Сопротивление проводника и его изменение при изменении подводимого давления измеряются соответствующим прибором. В емкостных манометрах используется уменьшение или увеличение емкости плоского конденсатора при изменении давления, которое увеличиваем или уменьшает расстояние между обкладками.
Измерение температуры Температура является одним из важнейших параметре определяющих протекание многих технологических процессе Температурными пределами процесса определяется качество получаемых продуктов, давление их паров, плотность и вяз кость жидкостей и паров и т. д. В настоящее время для нахождения температуры используются следующие основные физические явления, происходящие веществах при изменении температуры: 1) изменение линейных размеров и объема жидких и твердых тел; 2) изменение давления жидкостей и газов, заключенных постоянный объем; 3) возникновение и изменение термоэлектродвижущих сил в термоэлементах; 4) изменение активного электрического сопротивления про 5) изменение лучеиспускательной способности нагретых тел. боры для измерения температуры, называемые термометрами. Термометрами расширения называются такие приборы, в которых используется наблюдаемое при изменен температуры изменение объема или линейных размеров к В зависимости от веществ, используемых в приборах, термометры расширения подразделяются на жидкостные и деформационные. Действие жидкостных термометров расширения основано на принципе теплового расширения жидкости, заключенной в стеклянный резервуар малого объема. Действие же механических термометров основано на изменении линейных размеров твердых материалов (металлов и сплавов) при изменении их температуры. В качестве рабочей жидкости для жидкостных термометров применяют ртуть и органические жидкости. Ртутные жидкостные термометры обычно используют для измерения высоких температур (до 750°С), а термометры с органическими жидкостями— для измерения низких температур (спирты до —100°С, толуол до —90°С). Жидкостные стеклянные термометры относятся к местным приборам контроля за температурой. Они изготавливаются прямыми и угловыми под углами 90 и 135°. В производственных условиях ртутные термометры обычно устанавливают в металлической защитной арматуре (стальной трубке с окном для наблюдения за показаниями), что предохраняет термометры от механических повреждений. В технологических процессах с повышенными- температурами широко применяются термоэлектрические термометры, принцип действия которых основан на термоэлектрическом эффекте. Если взять два проводника с разной проводимостью А и В и одни концы их спаять или сварить, а вторые оставить свободными, то при нагревании спая на свободных концах возникнет разность потенциалов ЕАв или термоэлектродвижущая сила (т.э.д.с). Эта разность потенциалов (т.э.д.с.) будет тем выше, чем больше разность температур спая и свободных концов. Образованный таким образом термоэлемент называется термопарой. Чтобы измерить т.э.д.с. в цепи термопары, необходим измерительный прибор, подсоединенный к ее свободным концам (свободным концам термоэлектродов). При измерении температуры термопара как чувствительный элемент помещается в измеряемую среду, причем каждому значению температуры среды будет соответствовать определенная т.э.д.с. термопары. Т.э.д.с. термопары зависит от материала термоэлектродов, из которых изготавливаются термопары. Это, главным образом, металлические сплавы с малым коэффициентом температурного сопротивления. В промышленности широко применяются термопары из благородных и неблагородных металлов. Один термоэлектрод термопары ТПП (платинородий — платина) выполнен из сплава (10% Rh и 90% Rt). второй электрод— из чистой платины. Такая термопара обладает повышенной жаростойкостью и стабильной характеристикой. Она применяется для измерения температур от 200до1300°С при длительном использовании в промышленных условиях и до 1600°С при кратковременных измерениях. Диаметр термоэлектродов 0,5 мм. Термопара. ТХА (хромсль-алюмсль) имеет один термоэлектрод из хромеля (89 % Ni, 9,8 % Сг, 1 % Fe, 0,2 % Мn), а второй из алюмеля (94 % Ni, 2 %А1, 2,5 % Мn, 1 % Si, 0,5 % Fe). Применяется для измерения температуры от —50 до 1000 °С при продолжительных измерениях в промышленных условиях и до 1300 °С при кратковременных измерениях. Диаметр этих термоэлектродов не менее 3,2 мм. Термопара ТХК (хромель-копель) имеет один электрод из хромеля, а второй из копеля (56% Ni, 44% Сг). Применяется для измерения температуры от —50 до 600 °С при продолжительных и до 800 °С при кратковременных измерениях. Диаметр термоэлектродов ТХК не менее 3,2 мм. При измерении температуры в нескольких местах одного и того же объекта или в нескольких различных объектах контроля часто один измерительный прибор работает в. комплекте с несколькими термопарами (рис. 79). В этом случае температура изменяется путем поочередного подключения термопар к измерительному прибору. На принципе использования милливольтметров для измерения температуры разработаны специальные приборы, называемые потенциометрами.
|
Последнее изменение этой страницы: 2019-06-10; Просмотров: 281; Нарушение авторского права страницы