Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Как влияют на свариваемость сталей легирующие элементы и примеси?



 

Марганец (Мn) не ухудшает свариваемости стали, если его содержание не превышает 0,3—0,8 %. В средне-марганцовистых (1,8—2,5 % Мn) сталях марганец повышает закаливаемость стали и склонность ее к образованию трещин при сварке.
Кремний (Si) не влияет отрицательно на свариваемость стали, если его содержание не превышает 0,3 %. В обычных углеродистых сталях содержится не более 0,2—0,3 % кремния. В специальных сталях содержание кремния достигает 0,8—1,5 %. В таких количествах кремний затрудняет сварку из-за высокой жидкотекучести стали, легкой ее окисляемости и образования тугоплавких окислов.
Хром (Cr) содержится в низкоуглеродистых сталях в количестве 0,2—0,3 %, в конструкционных 0,7—3,5 %, хромистых 12—18 %, хромоникелевых 9—35 %. Хром затрудняет сварку, так как усиливает окисление металла, образует химические соединения с углеродом, повышает твердость металла в переходных зонах и т. п. Однако при правильном выборе режимов сварки, присадочных материалов, а также при соблюдении технологического процесса хром не влияет отрицательно на свариваемость стали.
Никель (Ni) в низкоуглеродистых сталях содержится в количестве до 0,2—0,3 %, в конструкционных 1—5 %, в легированных 8—35 %. Никель измельчает зерна, повышает пластичность сталей, не ухудшает их свариваемость.
Молибден (Мо) при содержании в стали 0,15—0,2 % затрудняет сварку, служит причиной образования трещин в сварном шве и переходной зоне, сильно окисляется и выгорает при сварке.
Вольфрам (W) при содержании в стали 0,8—1,8% увеличивает твердость и работоспособность при высоких температурах, сильно окисляется при сварке, требует хорошей защиты от кислорода, затрудняет сварку.
Ванадий (V) обычно содержится в сталях в количестве 0,2—0,8 %, в штамповых сталях 1—1,5 %, сильно окисляется, требует надежной защиты металла при сварке, затрудняет сварку.
Титан (Ti) и ниобий (Nb) содержатся в коррозионно-стойких сталях в количестве до 1 %, не усложняют сварочный процесс и не ухудшают свариваемость стали.
Медь (Сu) в специальных сталях находится в количестве 0,3—0,8 %, улучшает ряд свойств стали (прочность, пластичность, ударную вязкость, коррозионную стойкость) и не ухудшает свариваемость стали.
Сера (S) в стали в количествах, превышающих предельно допустимые, ухудшает свариваемость, вызывает появление горячих трещин.
Фосфор (Р) в стали в количествах, превышающих предельно допустимые, ухудшает свариваемость, вызывает появление холодных трещин.
Кислород (О) содержится в сплаве в виде закиси железа, ухудшает свариваемость стали, снижая ее механические свойства.
Азот (N) образует химические соединения с железом (нитриды) в металле сварочной ванны при ее охлаждении, что снижает пластичность стали.
Водород (Н) является вредной примесью в стали; скапливаясь в отдельных местах сварного шва, он образует газовые пузырьки, вызывает появление пористости и мелких трещин.

                                    Механические свойства:

прочность — способность материала выдерживать внешнюю нагрузку без разрушения. Количественно это свойство характеризуется пределом прочности и пределом текучести;
предел прочности — механическое напряжение, при превышении которого образец разрушается;
предел текучести — механическое напряжение, при превышении которого образец продолжает удлиняться при отсутствии нагрузки;
пластичность — способность стали изменять форму под действием нагрузки и сохранять ее после снятия нагрузки. Количественно характеризуется углом загиба и относительным удлинением при растяжении;
ударная вязкость — способность стали противостоять динамическим нагрузкам. Количественно оценивается работой, необходимой для разрушения специального образца, отнесенной к площади его поперечного сечения;
твердость — способность стали сопротивляться проникновению в нее других твердых тел. Количественно определяется нагрузкой, отнесенной к площади отпечатка при вдавливании стального шарика (метод Бринелля) или алмазной пирамиды (метод Виккерса)  

                                                            Физические свойства:

плотность — масса вещества, заключенного в единичном объеме. Все металлы обладают высокой плотностью;
теплопроводность — способность передавать теплоту от более нагретых участков к менее нагретым;
электропроводность — способность пропускать электрический ток. Все металлы и их сплавы обладают высокой тепло- и электропроводностью.

                                                                    Химические свойств

окисляемость — способность вещества соединяться с кислородом. Окисляемость усиливается с повышением температуры металла. Низкоуглеродистые стали под действием влажного воздуха или воды окисляются с образованием ржавчины — оксидов железа;
коррозионная стойкость — способность металла не окисляться и не вступать в химические реакции с окружающими веществами;
жаростойкость — способность стали не окисляться при высокой температуре и не образовывать окалины;
жаропрочность — способность стали сохранять свои прочностные свойства при высокой температуре.

                                                           Технологические свойства:

ковкость — способность стали принимать новую форму под действием внешних сил;
жидкотекучесть — способность стали в расплавленном состоянии заполнять узкие зазоры и пространства;
обрабатываемость резанием — свойство стали поддаваться механической обработке режущим инструментом;
свариваемость — способность стали образовывать высококачественное сварное соединение, не содержащее дефектов.

                      Влияние химических элементов на свойства сталей
В состав стали кроме железа и углерода входят и другие химические элементы, которые содержатся в ней в малых количествах из-за несовершенства технологии производства либо специально вводятся в нее для придания особых свойств. В последнем случае эти элементы называются легирующими. Все элементы в стали условно подразделяются на полезные и вредные.

                                                                                    Полезные элементы

углерод — определяет прочность, вязкость и закаливаемость стали. Содержание углерода до 0,25 % не влияет на свариваемость. Увеличение содержания углерода в стали ухудшает ее свариваемость;
кремний — при содержании до 0,3% повышает пределы текучести и прочности, но ухудшает свариваемость и снижает ударную вязкость стали; при содержании до 0,6% улучшает упругие свойства стали;
марганец — при содержании до 1,8% оказывает незначительное влияние на свариваемость стали, но способствует ее закалке; при высоком содержании сварка затруднена, поскольку велика вероятность появления трещин;
хром — при содержании от 0,3% до 35% повышает твердость и прочность стали, однако снижает ее пластичность и вязкость. При высокой температуре образует карбиды, затрудняющие процесс сварки;
никель — улучшает прочностные и пластические свойства стали; на свариваемость практически не влияет;
молибден — улучшает прочностные характеристики стали, делает ее теплоустойчивой, увеличивает твердость стали и несущую способность конструкций при ударных нагрузках и высоких температурах. Затрудняет сварку, так как активно окисляется и выгорает;
ванадий — повышает вязкость и пластичность стали, улучшает ее структуру, способствует закалке, ухудшает свариваемость;
вольфрам — увеличивает твердость и работоспособность стали при высоких температурах, ухудшает свариваемость;
титан — повышает коррозионную стойкость стали, способствует образованию горячих трещин при сварке;
медь — повышает прочность и коррозионную стойкость стали, не влияет на свариваемост

                                                               Вредные элементы:

сера — придает красноломкость, т.е. большую хрупкость при высоких температурах, оказывает отрицательное влияние на свариваемость;
фосфор — придает хладноломкость — хрупкость при нормальных температурах, отрицательно влияет на свариваемость;
азот — увеличивает хрупкость стали и способствует ее старению;

 

 







































Классификация металлов

Все существующие металлы условно принято подразделять на черные и цветные.

Черные металлы– промышленное название железа и его сплавов (чугун, сталь, ферросплавы и др.). Черные металлы составляют более 90 % всего объёма, используемых в экономике металлов, из них основную часть составляют различные стали.

Цветные металлы – все остальные, например:K(калий),Na(натрий),Ca(кальций),Al(алюминий),Mg(магний);Ni(никель),Cu(медь),Pb(свинец),Zn(цинк),Sn(олово),W(вольфрам),Ti(титан),Mо (молибден),V(ванадий),Nb(ниобий),Zr(цирконий),Au(золото),Ag(серебро),Pt(платина) и т.д.

Цветные металлы в свою очередь подразделяются на следующие группы:

- легкие цветные, например:K(калий),Na(натрий),Ca(кальций),Al(алюминий),Mg(магний);

- тяжелые цветныес плотностью более 5 г/см3, например:Ni(никель)i,Cu(медь),Pb(свинец),Zn(цинк),Sn(олово);

- благородные, например:Au(золото),Ag(серебро),Pt(платина);

- редкие.

Редкие металлы в свою очередь подразделяют на:

- тугоплавкие (с температурой плавления выше 1875 °С), например: W(вольфрам),Ti(титан),Mо (молибден),V(ванадий),Nb(ниобий),Zr(цирконий), Та (тантал);

- легкие, например: Sr(стронций),Sc(скандий),Rb(рубидий),Cs(цезий);

- радиоактивные, например: U(уран);Ra(радий),Ae(актинидий),Pd(палладий);

- редкоземельные, например: Ge(германий),Ga(галлий),Hf(гафний),In(индий),La(лантан),Tl(таллий), Се (церий),Re(рений).

Классификация сплавов

Технически чистые металлы обладают низкой прочностью и поэтому применение их ограничено. В промышленности, как правило, применяются сплавы металлов.

Сплавом (металлов) называют твёрдые и жидкие системы, образованные главным образом сплавлением двух или более металлов, а также металлов с различными неметаллами. Сплавы являются одним из основных конструкционных материалов. Среди них наибольшее значение имеют сплавы на основежелезаиалюминия. В технике применяется более 5 тыс. сплавов.

По характеру металла (основы) различают:

- черные или железоуглеродистыесплавы- стали, чугуны (основа - Fe);

- цветные сплавы(основа - цветные металлы), в т.ч. :

  • сплавы на основе цветных металлов, таких как K(калий),Na(натрий),Ca(кальций),Al(алюминий),Mg(магний) называются легкими цветными сплавами;
  • на основе цветных металлов, таких как Ni(никель)i,Cu(медь),Pb(свинец),Zn(цинк),Sn(олово) называются тяжёлыми цветными сплавами;
  • на основе тугоплавких металлов, таких как W(вольфрам),Ti(титан),Mо (молибден),V(ванадий),Nb(ниобий),Zr(цирконий), и т.д. называются тугоплавкими сплавами;

- сплавырадиоактивных металлов (основа – радиоактивные металлы);

- сплавыредкоземельных металлов (основа – радиоактивные металлы).

В зависимости от количества основных компонентов, входящих в состав сплава, различают сплавы двойные (бинарные) и сложные (тройные, четверные и т. д.)

Примеси сплавов.

Помимо основных компонентов в состав сплавов входят примеси:

- случайные (попадают в сплав во время его приготовления);

- специальные (вводятся в сплав в виде добавок для придания ему необходимых эксплуатационных свойств)

Введение в сплав специальных добавок называется легированием, а сама добавка – лигатурой. Составляющими лигатуры могут быть как отдельные элементы (легирующие элементы), так и сплавы этих элементов (например: ферросплавы FeTi:FeV;FeCrи т.д.).

Помимо этого различают примеси вредные (S,P,O2,H2,N2), ухудшающие свойства материалов, и полезные, улучшающие их свойства - (легирующие элементы).

Структура сплавов.

По структуре сплавы разделяют на твердые растворы, механические смеси и химические соединения.

1. Если атомы входящих в состав сплава компонентов имеют незначительные различия в размерах и строении электронной оболочки, то они, как правило, образуют общую кристаллическую решетку. Такая структура называется твердым раствором.

2. Механическая смесь получается в том случае, когда компоненты сплава не могут образовать общую решетку и каждый из них кристаллизуется самостоятельно.

3. Если при химическом взаимодействии компонентов сплава получается новое вещество, свойства которого резко отличаются от свойств исходных компонентов, то такой сплав называют химическим соединением.

В одном сплаве могут одновременно присутствовать все три структуры.


Поделиться:



Последнее изменение этой страницы: 2019-06-10; Просмотров: 140; Нарушение авторского права страницы


lektsia.com 2007 - 2025 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.033 с.)
Главная | Случайная страница | Обратная связь