Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Решение (4 способ, М.В. Кузнецова и её ученики, г. Новокузнецк):
1) пусть – искомое конечное число, количества программ получения числа 2) тогда для построения рекуррентной формулы определения , нужно знать 2 факта: а) какой может быть последняя команда и сколько есть видов этого последнего действия? б) для каждого «последнего» действия нужно знать число программ получения предыдущего числа, сумма этих количеств и есть искомое значение – число программ получения числа . Например, общее количество программ получения числа 6 с помощью Утроителя равно , т.к. есть ДВА способа завершения программ получения этого значения: 6=5+1 и 6=2∙ 3. 3) число программ получения числа зависит от числа программ получения предыдущего значения, и что программы получения чисел, кратных 3-м могут завершаться 2-мя способами: или , а все остальные числа получают только первым способом: . 4) составим рекуррентную формулу для определения числа программ получения числа : при имеем если не кратно 3: если делится на 3: 5) с помощью это формулы заполняем таблицу следующим образом: – в первом столбце записываем все натуральные числа от 1 до заданного ; – во втором столбце – числа, на единицу меньшие (из которых может быть получено последней операцией сложения с 1); – в третьем столбце для чисел, кратных 3-м, записываем частное от деления числа, записанного в первом столбце, на 3 (из этого числа может быть получено последней операцией умножения на 3); – в последнем столбце вычисляем , складывая соответствующие значения для тех строк, номера которых записаны во втором и третьем столбцах:
6) ответ – 12. Решение (5 способ, А. Сидоров): 1) основная идея – число программ, преобразующих начальное число 1 в конечное 20 с помощью заданных в условии команд, равно числу программ, преобразующих конечное число 20 в начальное 1 с помощью обратных команд: « вычти 1 » и « раздели на 3 » 2) будем строить «обратное дерево» – дерево всех способов преобразования конечного числа в начальное; это лучше (в сравнении с построением «прямого» дерева, от начального числа к конечному), потому что операция умножения необратима – каждое число можно умножить на 3, но не каждое можно разделить на 3; из-за этого сразу отбрасываются тупиковые ветви, не дающие новых решений 3) рисуем сокращенное дерево, в котором черные стрелки показывают действие первой команды («прибавь 1»), а красные – действие второй команды («умножь на 3»); красные стрелки подходят только к тем числам, которые делятся на 3: 4) чтобы получить количество программ для каждого числа из верхней строки, нужно сложить соответствующие количества программ для всех чисел из нижнего ряда, которые не больше данного (программы с умножением), и добавить 1 (программа, состоящая из одних сложений) 5) очевидно, что для получения 1 существует одна (пустая) программа; тогда для числа 2 тоже получается одна программа, а для числа 3 – две программы: 6) далее, для чисел 4 и 5 получаем 2 программы (после числа 3 нет «разветвлений» – подходящих красных стрелок), а для числа 6 – 3 программы, так как «подошло» еще одно разветвление (6 можно получить умножением 2 на 3), а для числа 2 мы уже подсчитали количество программ – оно равно 1: 7) находить число программ для следующих чисел нам уже не понадобится, потому что при умножении на 3 они дают числа, большие, чем заданное конечное число 20 8) запишем полученные результаты в самой нижней строке для всех множителей от 1 до 6: 9) теперь остается сложить все числа в скобках в нижнем ряду (количество программ с командами умножения) и добавить 1 (одна программа, состоящая только из команд сложения): 3 + 2 + 2 + 2 + 1 + 1 + 1 = 12 10) ответ – 12.
Еще пример задания: Р-01. У исполнителя Калькулятор две команды, которым присвоены номера: Прибавь 1 |
Последнее изменение этой страницы: 2019-06-19; Просмотров: 189; Нарушение авторского права страницы