Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Химический состав вирусов



Просто организованные вирусы представляют собой нуклеопротеиды или нуклеокапсиды и состоят из нуклеи­новой кислоты (РНКили ДНК) и нескольких кодируе­мых ею белков, формирующих вирусную оболочку вокруг нуклеиновой кислоты — капсид.

Сложно организованные вирусы содержат дополнитель­ные оболочки, белковые или липопротеидные, и имеют более сложный химический состав. Помимо нуклеиновой кислоты и белков, они содержат липиды в наружных обо­лочках и углеводы в составе белков' наружных оболочек (гликопротеидов). Обычно липиды и углеводы имеют кле­точное происхождение. В составе некоторых вирусов об­наруживаются также клеточные нуклеиновые кислоты и белки.

Клетки всех живых организмов содержат два вида нуклеиновой кисло­ты — ДНК и РНК. ДНК представляет собой двунитчатую молекулу, а РНК — однонитчатую. Двунитчатая ДНК — это клеточный геном, выпол­няющий функции хране­ния и репликации наслед­ственной информации. Однонитчатая РНК пред­ставлена 3 классами мо­лекул: 1) информацион­ные РНК (иРНК), обра­зующиеся в результате транскрипции генома и передающие заложенную в геноме информацию на белокк-синтезирующий аппарат клетки; 2) рибо-сомальные РНК, являю­щиеся структурным эле­ментом рибосомы; 3) тРНК, доставляющие аминокислоты к белоксинтезирующему аппара­ту.

В отличие от клеток вирусы содержат лишь один вид нуклеиновой кислоты — либо РНК, либо ДНК. И та, и другая может быть храни­телем наследственной информации, выполняя таким обра­зом функции генома.

Вирусные нуклеиновые кислоты характеризуются пора­зительным разнообразием форм. Вирусный геном может быть представлен как однонитчатыми, так и двунитчатыми молекулами РНК и ДНК. ДНК может быть как линейной, так и кольцевой молекулой, РНК - как непрерывной, так и фрагментированной и кольцевой молеку­лой.

Молекулярная масса вирусных ДНК варьирует в широ­ких пределах от 1- 106 до 250- 106 (табл. 3). Самые большие вирусные геномы содержат несколько сотен ге­нов, а самые маленькие содержат информацию, достаточ­ную для синтеза лишь нескольких белков.

В геномах, представленных двунитчатыми ДНК, ин­формация обычно закодирована на обеих нитях ДНК. Это свидетельствует о максимальной экономии генетичес­кого материала у вирусов, что является неотъемлемым свойством их как генетических паразитов. В связи с этим оценка генетической информации не может быть проведе­на по молекулярной массе молекул.

Хотя в основном структура ДНК уникальна, т. е. боль­шинство нуклеотидных последовательностейвстречаются лишь по одному разу, однако на концах молекул имеют­ся повторы, когда в концевом фрагменте линейной ДНК повторяется ее начальный участок. Повторы могут быть прямыми и инвертированными.

Способность к приобретению кольцевой формы, кото­рая потенциально заложена в концевых прямых и, инвер­тированных повторах, имеет большое значение для виру­сов. Кольцевая форма обеспечивает устойчивость ДНК к экзонуклеазам. Стадия образования кольцевой формы обя­зательна для процесса интеграции ДНК с клеточным геномом. Наконец, кольцевые формы представляют собой удобный и эффективный способ регуляции транскрипции и репликации ДНК.

В составе вирионов, содержащих однонитчатую ДНК, обычно содержатся молекулы ДНК одной полярности. Исключение составляют аденоассоциированные вирусы, вирионы которых содержат ДНК либо одной полярности (условно называемой «плюс»), либо ДНК с противополож­ным знаком (условно — «минус»). Поэтому тотальный препарат вируса состоит из двух типов частиц, содер­жащих по одной молекуле «плюс»- или «минус» -ДНК.

Инфекционный процесс при заражении этими вирусами возникает лишь при проникновении в клетку частиц обоих типов.

Из нескольких сотен известных в настоящее время вирусов человека и животных РНК-геном содержит около 80% вирусов. Способность РНК хранить наследственную информацию является уникальной особенностью вируса.

У просто организованных и некоторых сложно органи­зованных вирусов вирусная РНК в отсутствие белка может вызвать инфекционный процесс. Впервые инфекционная активность РНК вируса табачной мозаикибыла продемонстрирована X. Френкель-Конратом и соавт. в 1957 г. и А. Гирером и Г. Шраммом в 1958 г. Впоследствии положение об инфекционной активности РНК было пере­несено на все РНК-содержащие вирусы, однако долголет­ние усилия доказать это для таких вирусов, как вирусы гриппа, парамиксовирусы, рабдовирусы (так называемые минус-нитевые вирусы), оказались бесплодными: у этих ви­русов инфекционной структурой являются не РНК, а комплекс РНК с внутренними белками. Таким образом, геномная РНК может обладать инфекционной активно­стью в зависимости от своей структуры.

Структура вирусных РНК чрезвычайно разнообразна. У вирусов обнаружены однонитчатые и двунитчатые, ли­нейные, фрагментированные и кольцевые РНК. РНК-геном в основном является гаплоидным, геном ретровирусов — диплоидный, т. е. состоит из двух идентичных молекул РНК.

Однонитчатые РНК. Молекулы однонитчатых вирусных РНК существуют в форме одиночной полинуклеотидной цепи со спирализованными ДНК-подобными участками. При этом некомплементарные нуклеотиды, разделяющие комплементарные участки, могут выводиться из состава спирализованных участков в форме различных «петель» и «выступов» Суммарный процент спирализации вирусных РНК не обнаруживает каких-либо особенностей по сравнению с таковыми у клеточных РНК.

Вирусы, содержащие однонитчатые РНК, делятся на две группы. У вирусов первой группы вирусный геном обладает функциями информационной РНК, т. е. может непосредственно переносить закодированную в нем инфор­мацию на рибосомы. По предложению Д. Балтимора РНК со свойствами информационной условно обозначена знаком «плюс» и в связи с этим вирусы, со­держащие такие РНК (пикорнавирусы, тогавирусы, коро-навирусы, ретровирусы), обозначены как «плюс-нитевые» вирусы, или вирусы с позитивным геномом.

Вторая группа РНК-содержащих вирусов содержит ге­ном в виде однонитчатой РНК, которая сама не обладает функциями иРНК. В этом случае функцию иРНК выпол­няет РНК, комплементарная геному. Синтез этой РНК (транскрипция) осуществляется в зараженной клетке на матрице геномной РНК с помощью вирусспецифического фермента — транскриптазы. В составе «минус-нитевых» вирусов обязательно присутствие собственного фер­мента, осуществляющего транскрипцию геномной РНК и синтез иРНК, так как аналога такого фермента в клетках нет. Геном этих вирусов условно обозначают как «минуса-РНК, а вирусы этой группы как «минус-нитевые» вирусы, или вирусы с негативным геномом. К этим вирусам отно­сятся ортомиксовирусы, парамиксовирусы, буньявирусы, рабдовирусы. РНК этих вирусов не способна вызвать инфекционный процесс.

 

 


В соответствии с разными свойствами вирусных РНК между двумя группами вирусов есть и структурные разли­чия. Поскольку РНК «плюс-нитевых» вирусов выполняет функцию иРНК, она имеет специфические структурные особенности, характерные для 5'- и З'-концов этих РНК. На З'-конце информационных РНК имеются поли (А), количество которых достигает 200 и выше. Эти модификации концов иРНК, осуществляе­мые после синтеза полинуклеотидной цепи, имеют сущест­венное значение для функции иРНК: «шапочка» нужна для специфического узнавания иРНК рибосомами, функ­ции поли (А) менее точно определены и, по-видимому, заключаются в придании стабильности молекулам иРНК.

Такими же модифицированными концами обладают ге­номные РНК «плюс-нитевых» вирусов. Исключение со­ставляет 5'-конец геномной РНК вируса полиомиелита, которая не содержит «шапочку», и вместо нее имеет на 5'-конце ковалентно присоединенный к остатку урацила низкомолекулярный терминальный белок. Геномные РНК «минус-нитевых» вирусов не имеют ни «шапочки», ни по­ли (А); модифицированные концы характерны для иРНК этих вирусов, синтезирующихся в клетке на матрице вирионной РНК и комплементарных ей. Геномная РНК ретровирусов, хотя и является «плюс-нитевой», однако не содержит «шапочку»; эту структуру содержит гомологич­ная РНК, синтезируемая на матрице интегрированной про-вирусной ДНК.

 

 

Существуют вирусы, содержащие как «плюс-нитевые», так и «минус-нитевые» РНК гены (амбисенс-вирусы). К ним относятся аренавирусы.

В основном однонитчатые РНК являются линейными молекулами, однако РНК-фрагменты буньявирусовобна­ружены в виде кольцевой формы. Кольцевая форма воз­никает за счет образования водородных связей между концами молекул.

Двунитчатые РНК. Этот необычный для клетки тип нуклеиновой кислоты, впервые обнаруженный у реовирусов, широко распространен среди вирусов животных, растений и бактерий. Вирусы, содержащие подобный геном, называют диплорнавирусы.

Общей особенностью диплорнавирусов является фрагментированное состояние генома. Так, геном реовирусов состоит из 10 фрагментов, ротавирусов — из 11 фрагмен­тов.

Молекулярная масса РНК таких вирусов варьирует в широких пределах.


БЕЛКИ

В зараженной клетке вирусный геном кодирует синтез двух групп белков: 1) структурных, которые входят в со­став вирусных частиц потомства, и 2) неструктурных, которые обслуживают процесс внутриклеточной репродук­ции вируса на разных его этапах, но в состав вирусных частиц не входят.

Структурные белки. Количество структурных белков в составе вирусной частицы варьирует в широких пределах в зависимости от сложности организации вириона. Наибо­лее просто организованный вирус табачной мозаики со­держит всего один небольшой белок с молекулярной массой 17—18- 103, некоторые фаги содержат 2—3 белка, просто организованные вирусы животных — 3—4 белка. Сложно устроенные вирусы, такие как вирусы оспы, содержат более 30 структурных белков.

Структурные белки делятся на 2 группы:

1) капсидные белки, образующие капсид, т. е. футляр для нуклеиновой кислоты вируса (от лат. capsa — вме­стилище), и входящие в состав капсида геномные белки, и ферменты;

2) суперкапсидные белки, входящие в состав суперкапсида, т. е. наружной вирусной оболочки.

Поскольку суперкапсид называют также «пеплос» (от греч. peplos — покров, мантия), эти белки называют пепломерами.

Просто организованные вирусы, представляющие собой нуклеокапсид, содержат только капсидные белки. Сложно организованные вирусы содержат капсидные и суперкапслдные белки.

Капсидные белки. Первоначальное представление о том, что капсидные белки являются всего лишь инерт­ной оболочкой для вирусной нуклеиновой кислоты, сложи­лось на основании изучения наиболее просто организо­ванного вируса табачной мозаики, частица которого со­стоит из одной молекулы РНК и одного типа белка, образующего чехол для РНК. Однако такое представление неправильно. Хотя основной функцией капсидных белков является функция защиты вирусного генома от неблаго­приятных воздействий внешней среды, у многих вирусов в составе капсида есть белки и с другими функциями. Поэтому термин «капсид» далеко выходит за пределы представления о нем как о футляре или чехле для вирус­ной нуклеиновой кислоты.

В составе капсида некоторых вирусов (пикорнавирусы, паповавирусы, аденовирусы) содержатся белки, ковалентно связанные с вирусным геномом (геномные белки). Эти белки являются терминальными, т. е. соединенными с концом вирусной нуклеиновой кислоты. Функции их неразрывно связаны с функциями генома и их регуля­цией.

У ряда сложно организованных вирусов в составе кап­сида имеются ферменты, осуществляющие транскрипцию и репликацию вирусного генома — РНК и ДНК (РНК-и ДНК-полимеразы), а также ферменты, модифицирую­щие концы иРНК. Если ферменты и геномные белки представлены единичными молекулами, то капсидные бел­ки представлены множественными молекулами. Эти белки и формируют капсидную оболочку, в которую у сложно организованных вирусов вставлены молекулы белков с дру­гими функциями.

Основным принципом строения капсидной оболочки вирусов является принцип субьединичности, т. е. построе­ние капсидной оболочки из субъединиц-капсомеров, обра­зованных идентичными полипептидными цепями. Пра­вильно построенные белковые субъединицы — капсомеры возникают благодаря способности вирусных капсидных белков к самосборке. Самосборка объясняется тем, что упорядоченная структура — капсид имеет наименьшую свободную энергию по сравнению с неупорядоченными белковыми молекулами. Сборка капсидной оболочки из субъединиц запрограммирована в первичной структуре белка и происходит самопроизвольно или при взаимо­действии с нуклеиновой кислотой.

Принцип субъединичности в строении вирусного капси­да является универсальным свойством капсидных белков и имеет огромное значение для вирусов. Благодаря этому свойству достигается огромная экономия генетического материала. Если бы капсидная оболочка была построена из разных белков, то на кодирование ее потребовалась бы основная часть генетической информации, заложенной в вирусном геноме. В действительности на кодирование, например, одной полипептидной цепи вируса табачной мозаики, расходуется менее 10% генома. Далее, в меха­низме самосборки заложена возможность контроля за полноценностью вирусных полипептидов: дефектные и чу­жеродные полипептидные цепи при таком способе сборки вирионов будут автоматически отбрасываться.

Описанная способность к самосборке в пробирке и в зараженной клетке характерна только для простых виру­сов. Сборка сложно организованных вирусов является го­раздо более сложным многоступенчатым процессом, хотя отдельные ее этапы, например формирование капсидов и нуклеокапсидов, также основаны на самосборке.

Суперкапсидные белки. Гликопротеиды. Суперкапсидные белки, или пепломеры, располагаются в липопротеидной оболочке (суперкапсиде или пеплосе) сложно устроенных вирусов. Они либо пронизывают насквозь липидный бислой как, например, гликопротеиды альфа-вирусов (вируса леса Семлики), либо не доходят до внутренней поверхности. Эти белки являются типичны­ми внутримембранными белками и имеют много общего с клеточными мембранными белками. Как и последние, суперкапсидные белки обычно гликозилированы. Углевод­ные цепочки прикреплены к молекуле полипептида в опре­деленных участках. Гликозилирование осуществляют кле­точные ферменты, поэтому один и тот же вирус, проду­цируемый разными видами клеток, может иметь разные у углеводные остатки: может варьировать как состав угле­водов, так и длина углеводной цепочки и место прикреп­ления ее к полипептидному остову.

У большинства вирусов гликопротеиды формируют «шипы» на поверхности вирусной частицы, длина которых достигает 7—10 им. Шипы представляют собой морфоло­гические субъединицы, построенные из нескольких моле­кул одного и того же белка. Вирусы гриппа имеют два типа шипов, построенных соответственно из гемагглютинина и нейраминидазы. Парамиксовирусы также имеют два типа шипов, построенных соответственно из двух глико-протеидов (HN и F), рабдовирусы имеют только один гликопротеид и, соответственно, один тип шипов, а альфа-вирусы имеют два или три гликопротеида, формирующих один тип шипов.

Гликопротеиды являются амфипатическими молекула­ми: они состоят из наружной, гидрофильной части, кото­рая содержит на конце аминогруппу (N-конец), и погру­женной в липидный бислой, гидрофобной части, которая содержит на погруженном конце гидроксильную группу (С-конец). С-концом полипетид «заякоривается» в липидном бислое. Есть, однако, и исключения из этого общего положения: нейраминидаза вируса гриппа взаимодействует с липидным бислоем не С-, а N-концом.

Основной функцией гликопротеидов является взаимо­действие со специфическими рецепторами клеточной поверхности. Благодаря этим белкам осуществляется рас­познавание специфических клеточных рецепторов и прик­репление к ним вирусной частицы, т. е. адсорбция вируса на клетке. Поэтому гликопротеиды, выполняющие эту функцию, называют вирусными прикрепительными белка­ми.

Другой функцией гликопротеидов является участие в слиянии вирусной и клеточной мембран, т. е. в событии, ведущем к проникновению вирусных частиц в клетку. Ви­русные белки слияния ответственны за такие процессы, как гемолиз и слияние плазматических мембран соседних кле­ток, приводящие к образованию гигантских клеток, синцитиев и симпластов.

«Адресная функция» вирусных белков. Вирусы вызывают инфекционный процесс у относительно небольшого круга хозяев. Вирус должен «узнать» чувст­вительную клетку, которая сможет обеспечить продукцию полноценного вирусного потомства. Если бы вирус прони­кал в любую клетку, которая встретилась на его пути, это привело бы к исчезновению вирусов в результате деструк­ции " «родительской» вирусной частицы и отсутствия вирус­ного потомства. В процессе эволюции у вирусов выраба­тывалась так называемая адресная функция, т. е. поиск чувствительного хозяина среди бесконечного числа нечув­ствительных клеток. Эта функция реализуется путем на­личия специальных белков на поверхности вирусной ча­стицы, которые узнают специфический рецептор на по­верхности чувствительной клетки.

Неструктурные белки. Неструктурные белки изучены гораздо хуже, чем структурные, поскольку их выделяют не из очищенных препаратов вирусов, а из зараженных клеток, и возникают трудности в их идентификации и очи­стке от клеточных белков.

К неструктурным белкам относятся:

1) предшественники вирусных белков, которые отлича­ются от других неструктурных белков нестабильностью в зараженной клетке в результате быстрого нарезания на структурные белки;

2) ферменты синтеза РНК и ДНК (РНК- и ДНК- полимеразы), обеспечивающие транскрипцию и реплика­цию вирусного генома;

3) белки-регуляторы;

4) ферменты, модифицирующие вирусные белки, на­пример протеиназы и протеинкиназы.

Однако многие неструктурные белки при ряде вирус­ных инфекций еще не идентифицированы и функции их не определены.

Липиды

Липиды обнаружены у сложно организованных виру­сов и в основном находятся в составе липопротеиднои оболочки (суперкапсида), формируя ее липидной бислой, в который вставлены суперкапсидные белки.

Все сложно организованные РНК-содержащие вирусы имеют в своем составе значительное количество липидов (от 15 до 35% от сухого веса). Из ДНК-содержащих вирусов липиды содержат вирусы оспы, герпеса и гепа­тита В. Примерно 50—60% липидов в составе вирусов представлено фосфолипидами, 20—30% состав­ляет холестерин.

Липидный компонент стабилизирует структуру вирус­ной частицы. Экстракция липидов органическими раст­ворителями, обработка вирусной частицы детергентами или липазами приводит к деградации вирусной частицы и потере инфекционной активности.

Вирусы, содержащие липопротеидную мембрану, фор­мируются путем почкования на плазматической мембране клеток (или на мембранах эндоплазматической сети с выходом во внутриклеточные вакуоли). Поэтому липопротеидная оболочка этих вирусов представляет собой мембрану клетки-хозяина, модифицированную за счет наличия на ее наружной поверхности вирусных суперкапсидных белков. Из этого следует, что состав липидов почкующихся вирусов близок к составу липидов клетки-хозяина. К почкующимся вирусам относятся крупные РНК-содержащие вирусы: ортомиксовирусы, парамиксо­вирусы, рабдовирусы, тогавирусы, ретровирусы, бунья­вирусы, аренавирусы, коронавирусы.

В связи с клеточным происхождением липидов общий состав липидной фракции и содержание ее отдельных компонентов у одного и того же вируса могут сущест­венно различаться в зависимости от клетки-хозяина, где происходила репродукция вируса. Наоборот, если разные почкующиеся вирусы репродуцировались в одних и тех же клетках, их липиды оказываются более или менее сходными.

У вирусов оспы и гепатита В липиды имеют иное происхождение, так как эти вирусы не почкуются через плазматическую мембрану. У вирусов оспы липиды не образуют дифференцированной оболочки. Обработка вируса осповакцины эфиром не приводит к потере инфек­ционной активности или каким-либо структурным измене­ниям вириона. Липиды вируса гепатита В образуются путем инвагинации мембран эндо­плазматической сети. Вирус герпеса формируется путем почкования через ядерную оболочку, поэтому в его составе есть липиды ядерной оболочки.

Углеводный компонент вирусов находится в составе гликопротеидов. Количество сахаров в составе гликопротеидов может быть достаточно большим, достигая 10—13% от массы вириона. Химичес­кая специфичность их полностью определяется клеточ­ными ферментами, обеспечивающими перенос и присоединение соответствующих сахарных остатков. Обычными сахарными остатками, обнаруживаемыми в вирусных белках, являются фруктоза, сахароза, манноза, галактоза, нейраминовая кислота, глюкозамин. Таким образом, подобно липидам, углеводный компонент определяется клеткой-хозяином, благодаря чему один и тот же вирус, выращенный в клетках разных видов, может значительно различаться по составу сахаров в зависимости от спе­цифичности клеточных гликозилтрансфераз.

Углеводный компонент гликопротеидов играет существенную роль в структуре и функции белка. Он является каркасом для локальных участков гликопротеида, обеспечивая сохранение конформации белковой молекулы, и обусловливает защиту молекулы от протеаз. Возможны и другие функции углеводов, пока достоверно не уста­новленные.


Поделиться:



Последнее изменение этой страницы: 2019-06-19; Просмотров: 326; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.04 с.)
Главная | Случайная страница | Обратная связь