Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Устройство геномов, механизмы копирования и происхождение ДНК



Вся клеточная жизнь на Земле имеет общее происхождение. На это указывают сходство рибосом и, как правило, одинаковая таблица генетического кода во всех клетках. Следовательно, когда-то жил общий для них предок, который дал начало двум весьма разным группам клеток – бактериям и археям. Археи похожи на бактерии по размерам и форме клеток, но отличаются многими биохимическими особенностями. Многие археи населяют горячие источники, толщу земной коры, кислые рудничные воды и другие экстремальные местообитания. Третья клеточная линия, эукариоты (клетки с ядром) возникли позже, и мы рассмотрим их происхождение в главе 18.

Последний общий предок бактерий и архей, сокращенно называемый LUCA (Last Universal Common Ancestor), доступен для изучения методами сравнительной геномики. Поэтому о нем мы знаем намного больше, чем обо всех предыдущих стадиях развития жизни. Сравнивая последовательности генов разных современных организмов, мы можем построить родословные деревья этих генов. Чем меньше различий в последовательностях двух генов, тем позже разделились их предки. Именно таким способом, сравнивая последовательности генов рибосомных РНК, Карл Везе в 1977 году открыл архей. Точнее, ряд видов архей, конечно, был известен микробиологам задолго до 1977 года, но их биохимические особенности считались просто приспособлениями к жизни в горячих источниках. Только сравнение последовательностей рибосомных РНК показало, что отличия архей от бактерий очень глубоки и отражают древность их расхождения.

К сожалению, родословные деревья, построенные по разным генам, часто не совпадают между собой. Причин этому много, и одна из них – горизонтальный перенос генов, т. е. перемещение гена из одного организма в другой, неродственный. Часто это происходит при участии вирусов, а некоторые микробы при наступлении неблагоприятных условий сами начинают поглощать любую ДНК из окружающей среды «в надежде», что в ней окажутся гены, полезные для новых условий. Гены рибосомных РНК, судя по всему, наименее подвержены горизонтальному переносу, поэтому дерево, построенное по ним, хорошо отражает реальную историю видов.

Сравнение деревьев, построенных по разным генам, позволяет нам найти события горизонтального переноса в эволюции этих генов. Если изучаемый ген имелся еще у LUCA и с тех пор передавался только по наследству от родителей к потомкам, то его родословное дерево будет похоже на дерево клеток, от его корня будут расходиться две большие ветви бактерий и архей. Если же дерево генов имеет другой вид, то эволюционная история этого генного семейства была сложнее. Например, если его архейные гены вклиниваются на дереве между бактериальными и присутствуют у меньшинства архей – здесь можно предположить появление гена в линии бактерий и последующий его горизонтальный перенос в некоторые группы архей.

Набор генов LUCA

Сравнение прочитанных на сегодня геномов бактерий и архей показывает, что общий предок имел довольно внушительный набор разнообразных генов – более 1000 семейств. Это число соответствует уровню достаточно сложных бактерий. Удивительно, что в этот предковый набор входят гены множества разных метаболических путей, которые ныне не встречаются вместе у одного одноклеточного организма.

Что же нам говорит сравнительная геномика об истории различных клеточных систем? Большинство компонентов системы синтеза белков были уже у LUCA. Это все рибосомные РНК, 33 из 60–65 рибосомных белков и как минимум 17 из 20 аминоацил-тРНК-синтетаз. Рибосомы бактерий и архей отличаются между собой только вспомогательными рибосомными белками.

Несколько отличается история аминоацил-тРНК-синтаз – они претерпели множество горизонтальных переносов, особенно между разными группами бактерий. Аминоацил-тРНК-синтазы, по-видимому, достаточно автономны и взаимодействуют только с тРНК и неизменными аминокислотами. Но главное, что все они восходят к двум общим предкам I и II семейств, возникших еще до LUCA.

Система транскрипции (создания РНК на матрице ДНК) тоже существовала у общего предка бактерий и архей, однако ее устройство отличалось от существующей в современных клетках аналогичной системы. Центральным белком системы транскрипции является ДНК-зависимая РНК-полимераза, которая строит РНК на матрице ДНК. В современных клетках бактерий и архей гены организованы в опероны – блоки из нескольких генов, с которых читается единая матричная РНК. Транскрипция начинается на специальном участке (промоторе) в начале оперона и заканчивается на участке терминации в конце оперона. Для жизнедеятельности клеток активность разных генов должна регулироваться. Многие гены нужны только в определенных ситуациях. Например, кишечная палочка имеет гены, кодирующие ферменты усвоения молочного сахара (лактозы). Эти гены включаются (с них идет транскрипция) только тогда, когда в среде есть лактоза и нет более доступных сахаров, таких как глюкоза и фруктоза.

Регуляция активности генов происходит прежде всего на этапе начала транскрипции. Связывание РНК-полимеразы с промотором сложно регулируется с участием множества белков – транскрипционных факторов. Например, лактозный репрессор – это транскрипционный фактор, т. е. белок, который может связываться с промоторной областью лактозного оперона. Он мешает связыванию РНК-полимеразы с ДНК и не позволяет ей начать транскрипцию. Однако если в клетке есть лактоза, то лактозный репрессор связывается с ней, а не с ДНК, и РНК-полимераза может начать работу на лактозном опероне. Регуляция транскрипции на последующих этапах путем досрочного отделения РНК-полимеразы от ДНК, когда готова только часть мРНК, тоже используется, но ее роль гораздо менее значима.

Только два белка системы транскрипции унаследованы бактериями и археями от LUCA. Это ДНК-зависимая РНК-полимераза и транскрипционный фактор NusG. Он регулирует как раз досрочное отделение РНК-полимеразы. Сложные системы начала транскрипции у бактерий и архей не имеют между собой ничего общего. Следовательно, транскрипция была у LUCA, но регулировалась совсем не так, как в современных клетках.

Система репликации (так в молекулярной биологии называют копирование) ДНК у бактерий и архей устроена в общих чертах похоже, но одинаковые роли в ней играют разные, часто совершенно неродственные белки. То же относится и к системе синтеза дезоксинуклеотидов для ДНК. Мы в деталях рассмотрим сходства и различия этих систем у бактерий и архей ниже в данной главе. Это касается, прежде всего, главного участника процесса – ДНК-зависимой ДНК-полимеразы. Данный фермент у архей и бактерий отличается разительно.

Ферменты, которые делают дезоксинуклеотиды для построения ДНК, тоже, скорее всего, возникали не один раз. Существует два неродственных семейства тимидилат-синтаз, ThyA и ThyX, которые много раз подвергались горизонтальным переносам. Оба семейства есть среди бактерий, архей и вирусов, так что мы не знаем, у кого они впервые возникли.

Рибонуклеотид-редуктазы делятся на три семейства, отличающихся коферментами, механизмами реакции и чувствительностью к кислороду. Все три семейства известны у бактерий, архей, эукариот и вирусов, и часто у одного организма есть рибонуклеотид-редуктазы разных семейств. У бактерий Lactobacillus casei и Pseudomonas aeruginosa есть все три семейства, которые используются в зависимости от наличия кислорода. При этом на уровне трехмерной структуры все три семейства сходны между собой и с еще одним ферментом – пируват-формат-лиазой, разделяющей молекулу пировиноградной кислоты на ацетил-КоА и муравьиную кислоту. Так что мы не знаем, имеют ли рибонуклеотид-редуктазы единое происхождение или они несколько раз возникали из других ферментов, проводящих реакции с радикалами, например пируват-формат-лиазы.

Мы видим, что различные клеточные системы пришли к современному виду не одновременно. Устройство рибосом стабилизировалось еще до LUCA, а вот системы транскрипции и особенно репликации (копирования) ДНК пришли к современному виду уже после разделения бактерий и архей.


Поделиться:



Последнее изменение этой страницы: 2019-06-19; Просмотров: 58; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.012 с.)
Главная | Случайная страница | Обратная связь