Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Торможение в атмосфере Марса – новый облик ТМК



С начала 1963 года, в соответствии со сделанными выводами, продолжалась проработка варианта с аэродинамическим торможением. Суть его в том, что снижение скорости движения экспедиционного комплекса при подлете к Марсу до величины, достаточной для перехода на орбиту его спутника, осуществляется не за счет импульса тормозного ракетного блока, а путем многократного погружения всего комплекса в марсианскую атмосферу. После каждого погружения до высоты 70–100 км и на время порядка 100 секунд комплекс переходит на вытянутую эллиптическую орбиту. В ее апогее при необходимости проводится ювелирная, с малыми затратами коррекция для обеспечения требуемой высоты следующего погружения в атмосферу. Высоты последующих эллиптических орбит постепенно уменьшаются. Примерно после седьмого погружения высота эллиптической орбиты становится равной высоте будущей круговой орбиты. В ее апогее выдается небольшой разгонный импульс, и комплекс переводится на круговую орбиту, исключая последующее погружение.

Как же возникла идея аэродинамического торможения? Однажды, обсуждая с Виктором Миненко (мы вместе работали у Лавочкина, в ОКБ‑1 он проектировал спускаемые аппараты) параметры входа аппарата в атмосферу Земли при возвращении из марсианского полета, мы обратили внимание, что незначительное отклонение траектории аппарата от заданного коридора входа в атмосферу повлечет либо недопустимые нагрев и перегрузки, либо аппарат, коснувшись верхних слоев атмосферы и потеряв скорость на неопределенную величину, уйдет в полет по нерасчетной траектории. На следующее утро я проснулся с вопросом: а можно ли сместить коридор так, чтобы после «чирканья» траектория стала расчетной? Предварительный анализ показал, что можно (рис. 3.6.1 ). Идея Тихонравову понравилась, и он рассказал о ней Королеву. Были выданы задания нашим аэродинамикам и в ЦАГИ. Процесс пошел.

Такой оборот дела коренным образом менял весь облик и, в первую очередь, конструктивную конфигурацию комплекса. Вспомнили про крылатую ракету «Буря», на которой можно было начать эксперименты в околоземном пространстве, а для ее запуска использовать носитель H11 – модификацию Н1. Пересмотрели все принятые ранее положения на соответствие их новым требованиям. А они оказались весьма существенными. Экспедиционный комплекс при погружении в марсианскую атмосферу будет испытывать нагрузки от скоростного напора и нагрев, допустимые пределы которых весьма ограничены из‑за большого количества внешних элементов. Поэтому размеры, форма и прочность элементов должны быть рассчитаны на эти новые условия или защищены от их воздействия. Все это потребовало новых компоновочных схем. Порой приходилось с досадой возвращаться к вопросу искусственной тяжести и искать хотя бы какой‑то приемлемый вариант. Эти поиски нашли свое отражение в набросках самых футуристических компоновок, сделанных в тетради (рис. 3.6.2 ). В дальнейшем от искусственной тяжести отказались, компоновка упростилась и уже прорабатывалась сразу на кульмане. Поэтому многих ее интересных вариантов, к сожалению, нет в тетради, а основной, одобренный Тихонравовым и Королевым, воспроизведен по памяти (рис. 3.6.3 ).

Проектирование сводилось к конструктивной увязке многих новых противоречивых требований. В первую очередь, внимание было уделено разработке различных вариантов жесткого экрана, который мог одновременно служить защитой внешних элементов комплекса от воздействия скоростного напора, а также обеспечить ему необходимое торможение при прохождении марсианской атмосферы. Форма защитного экрана была выбрана в виде зонтика большого диаметра, расположенного на лобовом торце комплекса и обращенного выпуклой стороной в сторону набегающего потока. Однако это делало комплекс неустойчивым, поэтому для большей устойчивости аэродинамической конфигурации комплекса хотелось придать ему вид бадминтонного волана. С этой целью планетный посадочный комплекс значительной массы был вынесен за лобовую поверхность тормозного экрана, чтобы обеспечить приемлемую центровку комплекса при движении в марсианской атмосфере. Этим также обеспечивалось беспрепятственное отделение посадочного комплекса для спуска на поверхность планеты. Вместе с ним отделялась и ненужная на орбите силовая часть тормозного экрана, что повышало эффективность его торможения в атмосфере при спуске.

Солнечные концентраторы также проектировались в форме зонтика диаметром 15–20 м, расположенного вокруг отсека оранжереи. Внутренняя его поверхность, ориентированная на Солнце, выполнялась в виде отдельных секций. Форма поверхности каждой представляла собой часть параболоида с собственным фокусом, расположенным на обечайке отсека оранжереи, где для каждой секции устанавливался свой иллюминатор. Всего секций с иллюминаторами предполагалось от 12 до 24. Солнечный поток попадал на секции, отражался ими, концентрировался и направлялся через иллюминаторы внутрь корабля, где с помощью линз Френеля и пленочных отражателей распределялся по потребителям.

Концентратор вместе с оранжереей желательно было располагать на торце комплекса вогнутой стороной наружу для ориентации на Солнце. Но, будучи самой ажурной конструкцией, он, в первую очередь, требовал защиты от скоростного напора и поэтому был конструктивно объединен с тормозным защитным экраном, форма которого была геометрически совмещена с формой концентратора и приближена к параболоиду.

С целью дальнейшего улучшения центровки рядом с посадочным комплексом предполагалось разместить разгонный блок, также имеющий значительную массу. Однако это вступало в противоречие с другими соображениями. Спускаемый аппарат с корректирующей двигательной установкой должен был располагаться с противоположного торца комплекса, обеспечивая тем самым возможность экстренного отделения на околоземной орбите в нештатных ситуациях и безопасность экипажа. Разгонный блок с большим запасом топлива, скомпонованный в единый блок со спускаемым аппаратом, мог значительно повысить маневренные возможности СА, в том числе обеспечить при необходимости возвращение его с экипажем на Землю после разгона комплекса с ОИСЗ на траекторию полета к Марсу.

В пользу этого варианта было и то, что размещение разгонного блока рядом с посадочным комплексом не позволяет его включение для проверки перед стартом с ОИСЗ и для коррекции траектории полета к Марсу. А при его включении для старта с ОИСМ к Земле экипаж в СА будет находиться в перевернутом положении.

Приведенные соображения – лишь незначительная часть противоречивых требований, которые пришлось увязывать при выборе оптимальной компоновки марсианского комплекса. Сюда же можно отнести и размещение панелей солнечных батарей площадью 85 м2, радиаторов и жалюзи системы терморегулирования площадью 34 м2, антенн, обеспечение необходимых полей зрения оптических датчиков системы ориентации, взаимное расположение обитаемых отсеков, выбор оптимального соотношения диаметра и длины комплекса и многое другое. Все эти проблемы приходилось решать при проектировании. Большинство из них нашли отражение в тетради в виде конкретных ежемесячных планов всех участников работ.

 

 

3.7. Преимущества весовых характеристик нового варианта ТМК

Правильность выбора принятой схемы экспедиции на Марс с применением ЖРД и аэродинамического торможения должны были подтвердить новые весовые характеристики межпланетного комплекса. Параллельно с анализом компоновочных схем и определением конструктивного облика ТМК было проведено большое количество расчетов по определению характеристик всех его бортовых систем (рис. 3.7.1 ).

Это позволило провести ревизию весовых сводок всех 24 систем межпланетного и 22 систем посадочного комплексов (рис. 3.7.2 ). В результате определены весовые характеристики в варианте с аэродинамическим торможением (рис. 3.7.3 ). Масса комплекса составила 83,1 т, в том числе: ТМК – 16,8 т, посадочный комплекс – 30 т, разгонный блок – 36,3 т. Затраты веса на обеспечение аэродинамического торможения, включая вес защитного тормозного экрана, составляли по предварительным расчетам примерно 20 % (около 20 т) от тормозимого веса, в то время, как вес ракетного блока мог достичь 200 % (около 180 т).

Иными словами, большая часть полезного груза, выводимого на ОИСЗ при запусках ракеты Н1, приходилась на топливо (около 450 т), необходимое для доставки к Марсу тормозного блока. Сравнительные весовые характеристики двух вариантов – с аэродинамическим торможением и с тормозным блоком – представлены на рис. 3.7.4 . Так, масса ракетного комплекса для разгона с ОИСЗ к Марсу для обоих вариантов составляет, соответственно, 211 т и 655 т, а масса всего комплекса на ОИСЗ перед стартом – 378 т и 1141 т.

При использовании схемы с аэродинамическим торможением появлялась перспектива существенно снизить общее потребное количество ракет Н1. Так, для формирования на околоземной орбите комплекса массой порядка 1200 тонн необходимо 14–15 носителей Н1 и время для сборки 3–4 года, что не позволяет относиться к этому варианту серьезно. Если же исключить из схемы тормозной блок и заменить его на тормозные аэродинамические устройства, то ракет может понадобиться всего пять, а время сборки сократится до 1 года. Такой проект имеет право на дальнейшее развитие в качестве основного варианта экспедиции.

В дальнейшем, увеличивая грузоподъемность ракеты Н1 до 95 тонн, улучшая весовые характеристики систем межпланетного и посадочного комплексов и снижая вес тормозных устройств за счет их объединения с конструкцией ТМК и ПК, можно было сократить стартовый вес до 350 тонн, а количество ракет до четырех и даже трех. В этом случае вариант полета на Марс на ЖРД, с учетом перспективных возможностей Н1 выводить на орбиту до 240 тонн, во всех отношениях был весьма перспективным.

Таким образом, проведенные в отделе Тихонравова в 1960–1964 годах проектные проработки по марсианской экспедиции полностью подтвердили правильность принятого Королевым в июле 1962 года решения ориентироваться на жидкостные ракетные двигатели вместо ЭРДУ. Это избавляло от проблем, связанных с созданием ЭРДУ, которые не решены до сих пор, а с учетом аэродинамического торможения обеспечивало удовлетворительное решение весовых проблем и вселяло твердую уверенность в возможности осуществления пилотируемого полета на Марс до конца 70‑х годов.

 

 

Планы экспериментальной отработки ТМК

С января 1964 года, в соответствии с главным выводом отчета 1962 года, были развернуты работы по двум направлениям: проектированию тяжелой орбитальной станции (ТОС) для отработки ТМК на ОИСЗ и проектированию ТМК для проведения его наземной отработки в ИМБП (рис. 3.8.1 ). При создании ТОС выбирались оптимальные высоты орбит станции с учетом ее торможения в атмосфере, необходимости одновременной доставки на нее экипажей и грузов и наличия вокруг Земли радиационных поясов.

Понимая, какие возможности открываются с появлением на орбите такой станции, Королев поручает сформировать комплексную программу исследований, проводимых на ТОС параллельно с отработкой ТМК. Мы ожидали большого интереса у заинтересованных организаций, однако наши надежды не оправдались. Академия наук и военные отнеслись к новым возможностям с прохладцей. Ни о каких официальных предложениях мне, по крайней мере, в то время не было известно. Тем не менее, такая программа в интересах науки, народного хозяйства и обороны была нами сформирована, и предполагаемые задачи были сгруппированы по следующим направлениям.

Летная отработка ТМК. Автономные и комплексные испытания по соответствующим программам должны были пройти все составные части ТМК: отсеки для отдыха, бытовых нужд экипажа и проведения работ с аппаратурой; оранжерея, силовые установки для проведения маневров, системы обеспечения жизнедеятельности, энергопитания, терморегулирования, ориентации и стабилизации, и другие.

Исследования и эксперименты по созданию новой техники. Проверка новых узлов и агрегатов. Испытания двигательных установок, материалов. Исследования по использованию солнечной энергии. Отработка технологии постройки, монтажа и ремонта внешних сооружений. Изучение принципов создания новой аппаратуры. Отработка системы обеспечения жизнедеятельности (СОЖ) для длительных полетов.

Обеспечение космических полетов. Предстартовый контроль и подготовка космических комплексов. Ретрансляция сигналов «земля – космос» и «космос – земля». Слежение за полетом объектов, определение параметров их движения.

Научные задачи. Изучение деятельности Солнца. Астрономические исследования. Геомагнитные исследования. Изучение космических излучений, микрометеоритов. Метеонаблюдения. Изучение распространения радиоволн. Медико‑биологические исследования.

Военные исследования и задачи. Исследование принципов решения военных задач. Испытания систем для решения военных задач. Ведение военной разведки. Оборона станции. Перехват космических аппаратов противника. Изучение принципов поражения наземных целей.

При формировании облика ТОС особое внимание уделялось модульности (рис. 3.8.2 ). Элементы ТМК и ТОС должны были создаваться независимо друг от друга, иметь возможность автономного изготовления, отработки, модернизации, замены, что должно было исключить срыв подготовки всего комплекса из‑за неготовности одного из них. Совместимость входных и выходных параметров, геометрия мест стыковки, габариты зон обслуживания составных частей ТМК, а также возможность их доставки на орбиту, стыковки и подключения к системам ТОС должна была обеспечить возможность их замены на модернизированные. А для заменяемых необходимо было предусмотреть возможность складирования, модернизации и ремонтопригодности на орбите.

При формировании перечня исследований особое внимание уделялось совместимости требований к условиям их проведения: к направлению и точности ориентации, к высотам орбит и участию экипажа.

В случаях, когда условия для проведения экспериментов были несовместимы с основным режимом работы станции, экспериментальная аппаратура могла быть размещена на универсальной платформе и доставлена на синхронную орбиту орбитальным буксиром, а при необходимости возвращена на станцию для профилактики и ремонта.

Модульная структура и другие принципы, положенные в основу проектирования ТОС в 1964 году Королевым как первым главным конструктором тяжелых орбитальных станций, на долгие годы определили основные принципы их создания. К сожалению, материалы по ТОС, как и по ТМК, в 1974 году были уничтожены, а идеи Королева начали реализовываться на станциях только через 25 лет – в 1986–1987 годах.

 

 

Требуется помощь страны

К лету 1964 года были разработаны теоретические чертежи корпуса станции для выпуска рабочих чертежей в конструкторских отделах (рис. 3.9.1 ). Рассматривалась возможность использования в качестве корпуса топливных баков верхней ступени ракеты‑носителя Н1. Были также определены основные положения по ТМК (рис. 3.9.2 ), применительно к его летной и наземной отработке, а также исходные данные для проектирования составных частей (рис. 3.9.3 ). Были подготовлены все необходимые исходные материалы, чтобы расширить фронт работ внутри ОКБ‑1 и, что гораздо важнее, обеспечить участие в проекте смежных организаций. Практически были созданы все условия для выпуска постановления правительства о привлечении к работам по марсианской экспедиции широкой кооперации предприятий других министерств и ведомств, многие из которых практически уже начали с нами работать.

Однако этим планам не суждено было сбыться. Прежде чем детально проанализировать конкретные причины и обстоятельства, помешавшие фактически начатому воплощению в жизнь грандиозного замысла Королева, хотелось бы показать, что называется «из первых рук», какие события разворачивались вокруг марсианского проекта.

 

Глава 4


Поделиться:



Последнее изменение этой страницы: 2019-06-19; Просмотров: 85; Нарушение авторского права страницы


lektsia.com 2007 - 2025 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.02 с.)
Главная | Случайная страница | Обратная связь