Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Понятие вероятности. Динамические и статистические закономерности.



Вероятность - количественная мера возможности появления некоторого события при определенных условиях. Существует несколько интерпретаций понятия Вероятности. Классическая концепция Вероятности рассматривает Вероятность, как отношение числа благоприятствующих случаев к общему числу всех вознможностей.
статистическая концепция Вероятности, которая опирается на реальное появление некоторого события в ходе длительных наблюдений при фиксированных условиях. Поэтому статистическая концепция Вероятности опирается на понятие относительной частоты появления интересующего нас события, которая определяется опытным путем. Наконец, логическая Вероятность характеризует отношение между посылками и выводом правдоподобного, в частности, индуктивного рассуждения. Степень правдоподобия вывода по отношению к посылкам оценивают с помощью Вероятности. В семантических концепциях логическую Вероятность часто определяют как степень подтверждения одного высказывания другим.

СТАТИСТИЧЕСКИЕ И ДИНАМИЧЕСКИЕ ЗАКОНОМЕРНОСТИ -две осн. формы закономерной связи явлений, которые отличаются по характеру вытекающих из них предсказаний. В законах динамич. типа предсказания имеют точно определённый, однозначный характер. Так, в механике, если известен закон движения тела и заданы его координаты и скорость, то по ним можно точно определить положение и скорость движения тела в любой др. момент времени. Динамич. законы характеризуют поведение относительно изолированных систем, состоящих из небольшого числа элементов и в которых можно абстрагироваться от целого ряда случайных факторов.
В статистич. законах предсказания носят не достоверный, а лишь вероятностный характер. Подобный характер предсказаний обусловлен действием множества случайных факторов, которые имеют место в статистич. коллективах или массовых событиях (напр., большого числа молекул в газе, особей в биологич. популяциях, людей в социальных коллективах). Статистич. закономерность возникает как результат взаимодействия большого числа элементов, составляющих коллектив, и поэтому характеризует не столько поведение отд. элемента, сколько коллектива в целом. Необходимость, проявляющаяся в статистич. законах, возникает вследствие взаимной компенсации и уравновешивания множества случайных факторов.
Абсолютизация динамич. законов тесно связана с концепцией механич. детерминизма, сторонники которой рассматривали Вселенную как огромную механич. систему и экстраполировали законы динамики Ньютона на все процессы и явления мира. Лаплас утверждал, что если бы были известны такие законы для всех явлений, то можно было бы обнять в одной формуле движения как величайших тел, так и лег-чайших атомов.
Статистич. законы хотя и не дают однозначных и достоверных предсказаний, тем не менее являются единственно возможными при исследовании массовых явлений случайного характера.
С помощью динамич. законов обычно формулируются каузальные (причинные) связи явлений. Рассматривая одно явление как причину другого, мы вырываем их из всеобщей связи, изолируем друг от друга и тем самым значительно упрощаем и идеализируем действительность. Подобную идеализацию легче осуществить в механике, астрономии, классич. физике, которые имеют дело с точно известными силами и законами движения тел под их воздействием. В более сложных ситуациях приходится учитывать воздействие множества случай-ных факторов и обращаться к статистич. законам.

 

26) Виды взаимодействий в природе
Все взаимодействия в природе обусловлены четырьмя видами ФУНДАМЕНТАЛЬНЫХ ФИЗИЧЕСКИХ ВЗАИМОДЕЙСТВИЙ, которые мы чаще называем ПОЛЯМИ.

1) Сильное или ядерное взаимодействие – самый короткодействующий и сильный вид поля, благодаря которому удерживаются частицы в ядрах атомов.
2) Слабое взаимодействие – также как и ядерное, в повседневной жизни не заметно. Оно играет роль при превращении элементарных частиц.
3) Электромагнитное взаимодействие – хорошо знакомые силы (наэлектризованная расчёска притягивает волосы, магнит – кусочки железа). Протоны в атомном ядре под его действием разлетелись бы (ведь одноимённые заряды отталкиваются), если бы сила ядерного взаимодействия не была намного сильнее электромагнитного.
4) Гравитационное взаимодействие – обычное притяжение падающих на землю предметов. Проявляется также в притяжении планет к Солнцу, звёзд – к центру Галактики, галактик – между собой и обнаруживает своё действие вплоть до самых больших расстояний (порядка десятков и сотен мегапарсек) при взаимодействии отдельных галактик со скоплениями галактик. Гравитационное поле самое дальнодействующее и в то же время самое слабое в сравнении с другими фундаментальными взаимодействиями.

Механическое взаимодействие - это ваимодействие двух или более объектов на уровне макромира (например, два сталкивающихся шара). Тепловые взаимодействия - это взаимодействия между одним объектом на уровне макромира и многими объектиками на уровне микромира (молекулы горячего газа бомбардируют холодную стенку и передают ей тепло). Ядерные взаимодействия - это взаимодействия двух или многих объектов на уровне микромира (нейтрон сталкивается с ядром урана и разваливает его). Электрические взаимодействия - это взаимодействия полевого характера, здесь работают уже не материальные объекты, как в вышеприведенных случаях, а поля. Может, есть и другие типы взаимодействий.

28)Периодическая система Менделеева.
Периоди́ческая систе́ма хими́ческих элеме́нтов (табли́ца Менделе́ева) — классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона, установленного русским химиком Д. И. Менделеевым в 1869 году. Её первоначальный вариант был разработан Д. И. Менделеевым в 1869—1871 годах и устанавливал зависимость свойств элементов от их атомного веса (по-современному, от атомной массы). Всего предложено несколько сотен[1] вариантов изображения периодической системы (аналитических кривых, таблиц, геометрических фигур и т. п.). В современном варианте системы предполагается сведение элементов в двумерную таблицу, в которой каждый столбец (группа) определяет основные физико-химические свойства, а строки представляют собой периоды, в определённой мере подобные друг другу.
Периодическая система Д. И. Менделеева стала важнейшей вехой в развитии атомно-молекулярного учения. Благодаря ей сложилось современное понятие о химическом элементе, были уточнены представления о простых веществах и соединениях.

Прогнозирующая роль периодической системы, показанная ещё самим Менделеевым, в XX веке проявилась в оценке химических свойств трансурановых элементов.

Разработанная в XIX в. в рамках науки химии, периодическая таблица явилась готовой систематизацией типов атомов для новых разделов физики, получивших развитие в начале XX в. — физики атома и физики ядра. В ходе исследований атома методами физики было установлено, что порядковый номер элемента в таблице Менделеева (атомный номер) является мерой электрического заряда атомного ядра этого элемента, номер горизонтального ряда (периода) в таблице определяет число электронных оболочек атома, а номер вертикального ряда — квантовую структуру верхней оболочки, чему элементы этого ряда и обязаны сходством химических свойств.

Появление периодической системы открыло новую, подлинно научную эру в истории химии и ряде смежных наук — взамен разрозненных сведений об элементах и соединениях появилась стройная система, на основе которой стало возможным обобщать, делать выводы, предвидеть.

 

29) Структурная химия и химия процессов.
Структурная химия — раздел, область химии, изучающая связь различных физических и физико-химических свойств различных веществ с их химическим строением и реакционной способностью. Структурная химия рассматривает не только геометрическое строение молекул; изучению подвергается следующее — длины химических связей, валентные углы, координационные числа, конформации и конфигурации молекул; эффекты их взаимного влияния, ароматичность.
Химические процессы
Химический процесс всегда был в центре внимания химиков. Однако понимание его сущности стало возможным лишь в конце XIX в., а современное представление о том, что такое химический процесс, сложилось в 1950-х гг.
Одно из важнейших следствий образования молекул состоит в высвобождении энергии [2]. Этот процесс особенно нагляден при сжигании угля или других веществ. Горение любого типа связано с образованием новых молекул и, следовательно, с выделением тепловой энергии. Рассмотрим подробнее, как и почему высвобождается энергия при соединении атомов в молекулы. Понятно, что для разрыва химической связи требуется некоторое количество энергии и такое же ее количество высвобождается при образовании связи. Таким образом, нужно затратить энергию, чтобы разделить молекулу на атомы, и энергия выделяется, когда атомы образуют молекулу. Эта энергия проявляется в различных формах, например в виде колебаний. Когда атомы соединяются, образующаяся молекула начинает колебаться в результате сильного столкновения атомов. Вообще, когда атомы образуют молекулу, энергия высвобождается и обычно проявляется в форме движения, что эквивалентно теплоте. В некоторых особых случаях энергия связи не превращается в теплоту: химические реакции присоединения происходят таким образом, что энергия, выигранная при образовании молекул, передается молекулам другого рода, т.е. энергия образования молекулы запасается в другой молекуле, а не растрачивается в виде теплоты. Этот случай важен для поддержания жизни.

 

30) эволюционная химия и проблема возникновения живого
Под эволюционными проблемами в химии понимают процессы самопроизвольного (без участия человека) синтеза новых химических соединений, являющихся более сложными и высокоорганизованными продуктами по сравнению с исходными веществами. Поэтому эволюционную химию заслуженно считают предбиологией, наукой о самоорганизации и саморазвитии химических систем.

До последней трети XX в. об эволюционной химии ничего не было известно. В отличие от биологов, которые вынуждены были использовать эволюционную теорию Дарвина для объяснения происхождения многочисленных видов растений и животных, химиков вопрос о происхождении вещества не волновал, потому что получение любого нового химического соединения всегда было делом рук и разума человека. Молекулы новых химических соединений конструировались по законам структурной химии из атомов и атомных групп, как здание из кирпичей. Живые же организмы из блоков собрать было нельзя. Но изучение и освоение опыта живой природы было давней мечтой ученых.

Первые шаги на этом пути были сделаны еще И. Берцелиусом, который установил, что в основе функционирования живого организма лежит биокатализ. Затем исследования в этом направлении велись немецким ученым Ю. Либихом, французом П. Бертло и, наконец,
Н.Н. Семеновым, что способствовало укреплению связи химии с биологией.

Постепенное развитие науки XIX в., приведшее к раскрытию структуры атома и детальному познанию строения и состава клетки, открыло перед химиками и биологами практические возможности совместной работы над химическими проблемами учения о клетке. На повестке дня стояло изучение характера химических процессов в живых тканях, обусловленности биологических функций химическими реакциями.

Действительно, если посмотреть на обмен веществ в организме с точки зрения химии, то можно увидеть совокупность большого числа сравнительно простых и однообразных химических реакций, которые сочетаются между собой во времени, протекают не случайно, а в строгой взаимопоследовательности, в результате чего образуются длинные цепи реакций. И этот порядок закономерно направлен к постоянному самосохранению и самовоспроизведению всей живой системы в целом в данных условиях окружающей среды. Так что такие специфические свойства живого, как рост, размножение, подвижность, возбудимость, способность реагировать на изменения внешней среды, связаны с определенными комплексами химических превращений.

Поэтому химии среди наук, изучающих жизнь, принадлежит ведущая роль. Именно химией была выявлена важнейшая роль хлорофилла как химической основы фотосинтеза, гемоглобина – как основы процесса дыхания, установлена химическая природа передачи нервного возбуждения, определена структура нуклеиновых кислот и т.д. Но главное заключалось в том, что объективно в самой основе биологических процессов, функций живого лежат химические механизмы. Все функции и процессы, происходящие в живом организме, оказывается возможным изложить на языке химии, в виде конкретных химических реакций.

Конечно, было бы неверным сводить явления жизни только к химическим процессам. Это было бы грубым механистическим упрощением. Даже сама химия подчеркивает специфичность химических процессов в живых системах, показывает их отличия от того, что происходит в неживых системах. Специфичность и одновременно взаимосвязь химической и биологической форм движения материи подчеркиваются и другими науками, возникшими на границе биологии, химии и физики. Среди них биохимия – наука об обмене веществ и химических процессах в живых организмах; биоорганическая химия – наука о строении, функциях и путях синтеза соединений, составляющих живые организмы; физико-химическая биология – наука о функцио-нировании сложных систем, передаче информации и регулировании биологических процессов на молекулярном уровне; а также биофизика, биофизическая химия и радиационная биология.

В рамках перечисленных наук были определены химические продукты клеточного метаболизма (обмена веществ); установлены циклы биосинтеза этих продуктов и реализован их искусственный синтез; открыты материальные основы регулятивного и наследственного молекулярного механизма, а также выяснено значение химических процессов в энергетических процессах клетки и живых организмов в целом.

Сейчас для химии особенно важным становится применение биологических принципов, в которых сконцентрирован опыт приспособления живых организмов к условиям Земли в течение многих миллионов лет, опыт создания наиболее совершенных механизмов и процессов.

Как было понято учеными еще в XIX в., основой исключительной эффективности биологи-ческих процессов является биокатализ. Поэтому химики ставят своей целью создать новую химию, основанную на каталитическом опыте живой природы. Они стремятся к новым принципам управления химическими процессами, в которых будет применяться синтез себе подобных молекул, по принципу ферментов будут созданы катализаторы с таким разнообразием качеств, которые далеко превзойдут существующие в нашей промышленности до сих пор.

Ферменты - органические вещества белковой природы, которые синтезируются в клетках и во много раз ускоряют протекающие в них реакции, не подвергаясь при этом химическим превращениям. Ферменты (от лат. fermentum – брожение, закваска) иногда называют энзимами (от греч. en – внутри, zyme – закваска).

Несмотря на то, что ферменты обладают общими свойствами, присущими всем катализа-торам, тем не менее, они не тождественны последним, поскольку функционируют в рамках живых систем. Поэтому все попытки использовать опыт живой природы для ускорения химических процессов в неорганическом мире сталкиваются с серьезными ограничениями. Пока речь может идти только о моделировании некоторых функций ферментов и использовании этих моделей для теоретического анализа деятельности живых систем. Также возможно частичное практическое применение выделенных ферментов для ускорения некоторых химических реакций. Для этого нужно изучить весь каталитический опыт живой природы, в том числе и опыт формирования самого фермента, клетки и даже организма. На этой основе и возникла эволюционная химия как новая наука, пролагающая пути принципиально новой химической технологии, способной стать аналогом живых систем.

Таким образом, возникновению эволюционной химии способствовали исследования в области моделирования биокатализаторов – ферментов. Для освоения опыта живой природы и реализации полученных знаний в промышленности химики наметили ряд перспективных путей.

Во-первых, химики ведут исследования в области металло-комплексного катализа, который обогащается приемами, используемыми живыми организмами в реакциях с участием ферментов.

Во-вторых, ученые пытаются моделировать биокатализаторы. Уже удалось создать модели многих ферментов, которые извлекаются из живой клетки и используются в химических реакциях. Но проблема осложняется тем, что ферменты, устойчивые внутри живой клетки, вне ее быстро разрушаются.

В-третьих, развивается химия иммобилизованных систем. При этом ферменты, выделенные из живого организма, закрепляются на твердой поверхности путем адсорбции. Пионером в этой области выступил русский химик И.В. Березин. Благодаря его исследованиям биокатализаторы стали стабильными, устойчивыми в химических реакциях, появилась возможность их многократ-ного использования.

В-четвертых, глобальной целью современной химии является решение самой широкой
задачи – освоение и использование всего опыта живой природы. Это позволит химикам создать полные аналоги живых систем, в которых будут синтезироваться самые разнообразные вещества. Таким образом, будут созданы принципиально новые химические технологии.

Зарождение эволюционной химии произошло в 1960-х годах, когда были открыты случаи самосовершенствования катализаторов в ходе реакции, тогда как обычно в процессе работы они дезактивировались, ухудшались и выбрасывались. Так, химики обратили внимание на процессы самоорганизации в химических системах, на существование в природе химических систем разной степени сложности, а также на процесс перехода от химических систем к биологическим, подняв тем самым химию на качественно новый, четвертый уровень.

Также было отмечено, что ведущую роль на предбиологической стадии эволюции играл катализ. Роль каталитических процессов усиливалась по мере усложнения состава и структуры химических систем. Именно на этом основании некоторые ученые напрямую стали связывать химическую эволюцию с самоорганизацией и саморазвитием каталитических систем. Иными словами, такая эволюция если не целиком, то в значительной мере связана с процессами самоорганизации каталитических систем.

 

31) Понятие живого. Структурные уровни живого.
Живые организмы и тела неживой природы состоят из одних и тех же химических элементов. В клетках живых организмов обнаружено свыше 60 элементов периодической системы. Сходство органического и неорганического мира на атомном уровне указывает на связь и единство живой и неживой природы. И вместе с тем в силу качественного своеобразия живого мы без труда одни тела относим к живым, другие - к неживым.

К свойствам живого обычно относят: обмен веществ, способность к росту, индивидуальному развитию, воспроизведению себе подобных, способность к эволюционному развитию, раздражимость, подвижность. Наличие лишь некоторых из этих свойств не является, однако, достаточным для определения жизни. Ледник или река характеризуются ростом, подвижностью, обменом веществ, развитием, но они не способны к воспроизведению себе подобных. В насыщенных растворах при внесении туда кристалла идет образование новых кристаллов, подобных внесенному. Однако кристаллы нельзя отнести к живым телам, так как, несмотря на способность к воспроизведению, они не могут эволюционировать - форма кристаллов определяется строением из атомов и не может изменяться. Звезды, планеты, звездные системы (галактики) рождаются, стареют и умирают, т.е. эволюционируют, они подвижны и даже могут образовывать новые звезды, но эти новые образования не будут подобны исходным. С другой стороны, мы, не задумываясь, к живому относим растения, хотя подвижность многим из них не свойственна. Таким образом, лишь комплекс свойств: раздражимость, обмен веществ, способность к росту, индивидуальному и историческому развитию, воспроизведению себе подобных - может считаться необходимым и достаточным для определения жизни.

Основываясь на важнейших признаках живого, известных науке конца XIX в., Ф. Энгельс дал определение жизни, ставшее классическим: "Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка".

Только в 50-х годах нашего столетия стало ясно, что жизнь связана не только с белками, но и с нуклеиновыми кислотами - носителями наследственной информации.

Исходя из определения жизни Ф. Энгельсом, некоторые ученые были склонны считать живыми уже единичные молекулы белка. Но нельзя согласиться с этой точкой зрения, так как белки не обладают способностью к самовоспроизведению и обмену веществ. Следовательно, образование белка в результате химического процесса не равносильно возникновению жизни.

Свойством воспроизведения себе подобных обладают нуклеиновые кислоты и даже отдельные фрагменты молекулы ДНК. Можно ли их считать носителями жизни? Экспериментально доказано, что самокопирование ДНК и реализация заключенной в ней информации происходит только при наличии ферментов, источников энергии - молекул АТФ, воды и других соединений, а также при условии изоляции реакций от среды и связи с окружающим миром. Очевидно, отдельные молекулы нуклеиновых кислот тоже не являются живыми.

 

32) Принципы теории эволюции Ч. Дарвина.
Основные принципы эволюционной теории Ч. Дарвина. Сущность дарвиновской концепции эволюции сводится к ряду логичных, проверяемых в эксперименте и подтвержденных огромным количеством фактических данных положений:

1. В пределах каждого вида живых организмов существует огромный размах индивидуальной наследственной изменчивости по морфологическим, физиологическим, поведенческим и любым другим признакам. Эта изменчивость может иметь непрерывный, количественный, или прерывистый качественный характер, но она существует всегда.

2. Все живые организмы размножаются в геометрической прогрессии.

3. Жизненные ресурсы для любого вида живых организмов ограничены, и поэтому должна возникать борьба за существование либо между особями одного вида, либо между особями разных видов, либо с природными условиями. В понятие «борьба за существование» Дарвин включил не только собственно борьбу особи за жизнь, но и борьбу за успех в размножении.

4. В условиях борьбы за существование выживают и дают потомство наиболее приспособленные особи, имеющие те отклонения, которые случайно оказались адаптивными к данным условиям среды. Это принципиально важный момент в аргументации Дарвина. Отклонения возникают не направленно — в ответ на действие среды, а случайно. Немногие из них оказываются полезными в конкретных условиях. Потомки выжившей особи, которые наследуют полезное отклонение, позволившее выжить их предку, оказываются более приспособленными к данной среде, чем другие представители популяции.

5. Выживание и преимущественное размножение приспособленных особей Дарвин назвал естественным отбором.

6. Естественный отбор отдельных изолированных разновидностей в разных условиях существования постепенно ведет к дивергенции (расхождению) признаков этих разновидностей и, в конечном счете, к видообразованию.

На этих постулатах, безупречных с точки зрения логики и подкрепленных огромным количеством фактов, была создана современная теория эволюции.

Главная заслуга Дарвина в том, что он установил механизм эволюции, объясняющий как многообразие живых существ, так и их изумительную целесообразность, приспособленность к условиям существования. Этот механизм — постепенный естественный отбор случайных ненаправленных наследственных изменений.

 

33) Генетика: основные понятия и принципы. Достижения генетики в
ХХ веке.

Генетика- наука о законах и механизмах наследственности и изменчивости. В зависимости от объекта исследования классифицируют генетику растений, животных, микроорганизмов, человека и другие; в зависимости от используемых методов других дисциплин — молекулярную генетику, экологическую генетику и другие. Идеи и методы генетики играют важную роль в медицине, сельском хозяйстве, микробиологической промышленности, а также в генетической инженерии.
Первоначально генетика изучала общие законы наследственности и изменчивости на основании фенотипических данных.

Понимание механизмов наследственности, то есть роли генов как элементарных носителей наследственной информации, хромосомная теория наследственности и т. д. стало возможным с применением к проблеме наследственности методов цитологии, молекулярной биологии и других смежных дисциплин.

Сегодня известно, что гены реально существуют и являются специальным образом отмеченными участками ДНК или РНК — молекулы, в которой закодирована вся генетическая информация. У эукариотических организмов ДНК свёрнута в хромосомы и находится в ядре клетки. Кроме того, собственная ДНК имеется внутри митохондрий и хлоропластов (у растений). У прокариотических организмов ДНК, как правило, замкнута в кольцо (бактериальная хромосома, или генофор) и находится в цитоплазме. Часто в клетках прокариот присутствует одна или несколько молекул ДНК меньшего размера — плазмид.
В 1865 году монах Грегор Мендель (занимавшийся изучением гибридизации растений в Августинском монастыре в Брюнне (Брно), ныне на территории Чехии) обнародовал на заседании местного общества естествоиспытателей результаты исследований о передаче по наследству признаков при скрещивании гороха (работа Опыты над растительными гибридами была опубликована в трудах общества в 1866 году). Мендель показал, что наследственные задатки не смешиваются, а передаются от родителей к потомкам в виде дискретных (обособленных) единиц. Сформулированные им закономерности наследования позже получили название законов Менделя. При жизни его работы были малоизвестны и воспринимались критически (результаты опытов на другом растении, ночной красавице, на первый взгляд, не подтверждали выявленные закономерности, чем весьма охотно пользовались критики его наблюдений).

Классическая генетика

В начале XX века работы Менделя вновь привлекли внимание в связи с исследованиями Карла Корренса, Эриха фон Чермака и Гуго Де Фриза по гибридизации растений, в которых были подтверждены основные выводы о независимом наследовании признаков и о численных соотношениях при «расщеплении» признаков в потомстве.

Вскоре английский натуралист Уильям Бэтсон ввёл в употребление название новой научной дисциплины: генетика (в 1905 г. в частном письме и в 1906 г. публично). В 1909 году датским ботаником Вильгельмом Йоханнсеном введён в употребление термин «ген».

Важным вкладом в развитие генетики стала хромосомная теория наследственности, разработанная, прежде всего, благодаря усилиям американского генетика Томаса Ханта Моргана и его учеников и сотрудников, избравших объектом своих исследований плодовую мушку Drosophila melanogaster. Изучение закономерностей сцепленного наследования позволило путем анализа результатов скрещиваний составить карты расположения генов в «группах сцепления» и сопоставить группы сцепления с хромосомами (1910—1913 гг.).

Молекулярная генетика

Эпоха молекулярной генетики начинается с появившихся в 1940—1950-х гг. работ, доказавших ведущую роль ДНК в передаче наследственной информации. Важнейшими шагами стали расшифровка структуры ДНК, триплетного кода, описание механизмов биосинтеза белка, обнаружение рестриктаз и секвенирование ДНК.

34) Синтетическая теория эволюции
Синтетическая теория эволюции (СТЭ) — современная эволюционная теория, которая является синтезом различных дисциплин, прежде всего, генетики и дарвинизма. СТЭ также опирается на палеонтологию, систематику, молекулярную биологию и другие.
Возникновение и развитие СТЭ

Синтетическая теория в её нынешнем виде образовалась в результате переосмысления ряда положений классического дарвинизма с позиций генетики начала XX века. После переоткрытия законов Менделя (в 1901 г.), доказательства дискретной природы наследственности и особенно после создания теоретической популяционной генетики трудами Рональда Фишера, Джона Б. С. Холдейна-младшего и Сьюэла Райта, учение Дарвина приобрело прочный генетический фундамент.

Статья С. С. Четверикова «О некоторых моментах эволюционного процесса с точки зрения современной генетики» (1926) по сути стала ядром будущей синтетической теории эволюции и основой для дальнейшего синтеза дарвинизма и генетики. В этой статье Четвериков показал совместимость принципов генетики с теорией естественного отбора и заложил основы эволюционной генетики. Главная эволюционная публикация С. С. Четверикова была переведена на английский язык в лаборатории Дж. Холдейна, но никогда не была опубликована за рубежом. В работах Дж. Холдейна, Н. В. Тимофеева-Ресовского и Ф. Г. Добржанского идеи, выраженные С. С. Четвериковым, распространились на Запад, где почти одновременно Р. Фишер высказал очень сходные взгляды о эволюции доминантности.

Толчок к развитию синтетической теории дала гипотеза о рецессивности новых генов. Говоря языком генетики второй половины XX века, эта гипотеза предполагала, что в каждой воспроизводящейся группе организмов во время созревания гамет в результате ошибок при репликации ДНК постоянно возникают мутации — новые варианты генов.

Влияние генов на строение и функции организма плейотропно: каждый ген участвует в определении нескольких признаков. С другой стороны, каждый признак зависит от многих генов; генетики называют это явление генетической полимерией признаков. Фишер говорит о том, что плейотропия и полимерия отражают взаимодействие генов, благодаря которому внешнее проявление каждого гена зависит от его генетического окружения. Поэтому рекомбинация, порождая всё новые генные сочетания, в конце концов создает для данной мутации такое генное окружение, которое позволяет мутации проявиться в фенотипе особи-носителя. Так мутация попадает под действие естественного отбора, отбор уничтожает сочетания генов, затрудняющие жизнь и размножение организмов в данной среде, и сохраняет нейтральные и выгодные сочетания, которые подвергаются дальнейшему размножению, рекомбинации и тестированию отбором. Причем отбираются прежде всего такие генные комбинации, которые способствуют благоприятному и одновременно устойчивому фенотипическому выражению изначально мало заметных мутаций, за счет чего эти мутантные гены постепенно становятся доминантными. Эта идея нашла выражение в труде Р. Фишера «The genetical theory of natural selection» (1930). Таким образом, сущность синтетической теории составляет преимущественное размножение определённых генотипов и передача их потомкам. В вопросе об источнике генетического разнообразия синтетическая теория признает главную роль за рекомбинацией генов.

Считают, что эволюционный акт состоялся, когда отбор сохранил генное сочетание, нетипичное для предшествующей истории вида. В итоге для осуществления эволюции необходимо наличие трёх процессов:
мутационного, генерирующего новые варианты генов с малым фенотипическим выражением;
рекомбинационного, создающего новые фенотипы особей;
селекционного, определяющего соответствие этих фенотипов данным условиям обитания или произрастания.

Все сторонники синтетической теории признают участие в эволюции трёх перечисленных факторов.

 

35) Основные концепции антропогенеза
Центральное место в комплексе естественно-научных дисциплин, изучающих человека, занимает антропология - общее учение о происхождении и эволюции человека, образовании человеческих рас и вариациях физического' строения человека. Современная антропология рассматривает антропогенез - процесс происхождения человека - как продолжение биогенеза. Основными вопросами антропологии являются вопросы о месте и времени появления человека, основных этапах его эволюции, движущих силах и детерминирующих факторах развития, соотношении антропогенеза и социогенеза. По мере становления и развития антропологической науки на все эти вопросы пытались дать ответы пять основных концепций антропогенеза:
1) креационистская концепция - человек сотворен Богом или мировым разумом;
2) биологическая концепция - человек произошел от общих с обезьянами предков путем накопления биологических изменений;
3) трудовая концепция - в появлении человека решающую роль сыграл труд, превративший обезьяноподобных предков в людей;
4) мутационная концепция - приматы превратились в человека вследствие мутаций и иных аномалий в природе;
5) космическая концепция - человек как потомок или творение инопланетян.

36) Основные черты биосферы как системы
Два главных компонента биосферы - живые организмы и среда их обитания - непрерывно взаимодействуют между собой и находятся в тесном, органическом единстве, образуя це­лостную динамическую систему. Биосфера как глобальная суперсистема в свою очередь состоит из ряда подсистем.
Отдельные живые организмы не существуют изолированно. В процессе своей жизнедеятельности они соединяются в различные системы (сообщества), например, в популяции.
В ходе эволюции образуется другой, качественно новый уровень живых систем, так называемые биоценозы - совокупность растений, животных и микроорганизмов в локальной среде обитания.
Эволюция жизни постепенно приводит к росту и углублению дифференциации внутри биосферы. В совокупности с окружающей средой обитания, обмениваясь с ней веществом и энергией, биоценозы образуют новые системы - биогеоценозы.
Они могут быть разного масштаба: море, озеро, лес, роща и т.д.
Биогеоценоз представляет собой естественную модель биосферы в миниатюре, включающую все звенья биотического круговорота: от зеленых растений, создающих органическое вещество, до их потребителей, в итоге превращающих его вновь в минеральные элементы. Иначе говоря, биогеоценоз является элементарной ячейкой биосферы. Таким образом, в совокупности все живые организмы и экосистемы образуют суперсистему - биосферу.
Одним из первых в науке комплексное учение о биосфере стал разрабатывать выдающийся русский ученый В. И. Вернадский. В отличие от предшествующих исследователей природы, В.И. Вернадский не ограничивал понятие биосферы только «живым веществом», под которым он понимал совокупность всех живых организмов планеты. В биосферу он включал и все продукты жизнедеятельности, выработанные за время существования жизни. Так называемый «культурный слой» особенно наглядно заметен в городах. На целые метры уходят в землю здания, построенные человеком всего каких-то 100-300 лет тому назад. Почва, богатая гумусом, другими питательными органическими веществами, дает возможность существовать и развиваться новым проявлениям жизни, как и кислород, вырабатываемый отдельными растениями и лесами, которые называют «легкими планеты».
Говоря о принципах существования биосферы, В. И. Вернадский прежде всего уточняет понятие и способы функционирования живого вещества. Живой организм является неотьемлемой частью земной коры и изменяющим ее агентом, а живое вещество - это совокупность организмов, участвующих в геохимических процессах. Организмы берут из окружающей среды химические элементы, строящие их тела, и возвращают их после смерти и в процессе жизни в ту же самую среду. Тем самым и жизнь, и косное вещество находятся в непрерывном тесном взаимодействии, в круговороте химических элементов. При этом живое вещество служит основным системообразующим фактором и связывает биосферу в единое целое.
Человек и биосфера.
Человек как особая форма жизни и существо, обладающее разумом, вносит принципиально новые элементы во взаимоотношения с природой. Он выступает как автономная целостность внутри биосферы. Живое вещество, преобразуя косное и взаимодействуя с ним, создает биосферу.
Аналогично человек, преобразуя биосферу, создает техносферу. Но если при формировании биосферы все биоценозы лишь поддерживают системную целостность путем обмена веществом и энергией, то человек, помимо этих функций, в первую очередь производит овеществление природы, создавая новые искусственные предметы.
Однако далеко не все творения человека находятся в гармонии с окружающей действительностью. И если живые организмы, созданные человеком, в большинстве своем вписываются в общую систему природы, то этого никак нельзя сказать о других предметах, созданных им: зданиях, сооружениях, ландшафтах... Кроме того, сделанное человеком, как правило, не способствует созданию новых запасов энергии. Бесконечное же истребление полезных ископаемых и живого вещества ставит на грань катастрофы само существование не только разумной жизни, но и жизни как таковой (изобретение ядерного оружия).

37) Учение о ноосфере
Ноосфе́ра-фера взаимодействия общества и природы, в границах которой разумная человеческая деятельность становится определяющим фактором развития (эта сфера обозначается также терминами «антропосфера», «биосфера», «биотехносфера»
В ноосферном учении человек предстаёт укоренённым в природу, а «искусственное» рассматривается как органическая часть и один из факторов (усиливающийся во времени) эволюции «естественного». Обобщая с позиции натуралиста человеческую историю, Вернадский делает вывод о том, что человечество в ходе своего развития превращается в новую мощную геологическую силу, своей мыслью и трудом преобразующую лик планеты. Соответственно, оно в целях своего сохранения должно будет взять на себя ответственность за развитие биосферы, превращающейся в ноосферу, а это потребует от него определённой социальной организации и новой, экологической и одновременно гуманистической этики.

Ноосферу можно охарактеризовать как единство «природы» и «культуры». Сам Вернадский говорил о ней то как о реальности будущего, то как о действительности наших дней, что неудивительно, поскольку он мыслил масштабами геологического времени. «Биосфера не раз переходила в новое эволюционное состояние… — отмечает В. И. Вернадский. — Это переживаем мы и сейчас, за последние 10—20 тысяч лет, когда человек, выработав в социальной среде научную мысль, создаёт в биосфере новую геологическую силу, в ней не бывалую. Биосфера перешла или, вернее, переходит в новое эволюционное состояние — в ноосферу — перерабатывается научной мыслью социального человека» («Научная мысль как планетное явление»). Таким образом, понятие «ноосфера» предстаёт в двух аспектах:
ноосфера в стадии становления, развивающаяся стихийно с момента появления человека;
ноосфера развитая, сознательно формируемая совместными усилиями людей в интересах всестороннего развития всего человечества и каждого отдельного человека.
Понятие «ноосфера» было предложено профессором математики Сорбонны Эдуардом Леруа (1870—1954), который трактовал ее как «мыслящую» оболочку, формирующуюся человеческим сознанием. Э. Леруа подчёркивал, что пришёл к этой идее совместно со своим другом — крупнейшим геологом и палеонтологом-эволюционистом и католическим философом Пьером Тейяром де Шарденом. При этом Леруа и Шарден основывались на лекциях по геохимии, которые в 1922/1923 годах читал в Сорбонне Владимир Иванович Вернадский (1863—1945).

Наиболее полное воплощение теория Леруа нашла в разработке Тейяра де Шардена, который разделял не только идею абиогенеза (оживления материи), но и идею, что конечным пунктом развития ноосферы будет слияние с Богом. Развитие ноосферного учения связано в первую очередь с именем Вернадского.

В основе теории ноосферы Леруа лежат представления Плотина (205—270) о эманации Единого (непознаваемой Первосущности, отождествляемой с Благом) в Ум и мировую Душу, с последующей трансформацией последних снова в Единое. Согласно Плотину, сначала Единое выделяет из себя мировой Ум (нус), заключающий в себе мир идей, затем Ум производит из себя мировую Душу, которая дробится на отдельные души и творит чувственный мир. Материя возникает как низшая ступень эманации. Достигнув определенной ступени развития, существа чувственного мира начинают осознавать собственную неполноту и стремиться к приобщению, а затем и слиянию с Единым.

Эволюционная модель Леруа и Тейяра де Шардена повторяет основные положения неоплатонизма. Разумеется, возникновение Вселенной, появление и развитие жизни на Земле описывается в терминах современной науки, но принципиальная схема концепции соответствует принципам неоплатоников. Человек у Плотина стремится выйти за пределы Души в сферу Разума, чтобы затем, через экстаз, приобщиться к Единому. Согласно Тейяру де Шардену, человек также стремится перейти в сферу разума и раствориться в Боге.

Идеи Плотина были восприняты Леруа в бергсонианском духе. Влияние Анри Бергсона (1859—1941) на создание теории ноосферы заключалось главным образом в выдвинутом им положении о творческой эволюции («L'évolution créatrice», 1907. Русский перевод: «Творческая эволюция», 1914). Подлинная и первоначальная реальность, по Бергсону, — жизнь как метафизически-космический процесс, творческая эволюция; структура её — длительность, постигаемая только посредством интуиции, различные аспекты длительности — материя, сознание, память, дух. Универсум живёт, растет в процессе творческого сознания и свободно развивается в соответствии с внутренне присущим ему стремлением к жизни — «жизненным порывом» (l'élan vital).

Влияние Бергсона прослеживается и у Тейяра де Шардена. В частности, в «Феномене человека» он несколько раз обращается к бергсоновским категориям порыва (l'élan) и длительности (durée).

Термин антропосфера в 1902 году ввел в научный оборот Д. Н. Анучин.

 

38) Экология как наука. Сущность экологических проблем.
Современное значение понятия экология имеет более широкое значение, чем в первые десятилетия развития этой науки. В настоящее время чаще всего под экологическими вопросами ошибочно понимаются, прежде всего, вопросы охраны окружающей среды (см. также энвайронментализм). Во многом такое смещение смысла произошло благодаря всё более ощутимым последствиям влияния человека на окружающую среду, однако необходимо разделять понятия ecological («относящееся к науке экологии») и environmental («относящееся к окружающей среде»). Всеобщее внимание к экологии повлекло за собой расширение первоначально довольно чётко обозначенной Эрнстом Геккелем области знаний (исключительно биологических) на другие естественнонаучные и даже гуманитарные науки.

Классическое определение экологии: наука, изучающая взаимоотношения живой и неживой природы.

Два альтернативных определения данной науки:
Экология — познание экономики природы, одновременное исследование всех взаимоотношений живого с органическими и неорганическими компонентами окружающей среды… Одним словом, экология — это наука, изучающая все сложные взаимосвязи в природе, рассматриваемые Дарвином как условия борьбы за существование.
Экология — биологическая наука, которая исследует структуру и функционирование систем надорганизменного уровня (популяции, сообщества, экосистемы) в пространстве и времени, в естественных и изменённых человеком условиях.


Глобальная экологическая проблема, сущность которой была определена выше, имеет множество сторон. Каждая из них представляет собой самостоятельную, нередко масштабную экологическую проблему, тесно связанную с другими. В настоящее время чаще всего отмечаются следующие экологические проблемы:
+ рациональное использование невозобновимых природных ресурсов (полезных ископаемых, минеральных ресурсов);
+ рациональное использование возобновимых природных ресурсов (почв, вод, растительного и животного мира);
+ борьба с загрязнениями и другими поражениями природной среды (ядохимикатами, радиоактивными отходами и т.д.);
+ защита природы от некомпетентного и безответственного вмешательства в ее процессы.

39) Понятие самоорганизации. Условия и механизмы самоорганизации
Самоорганизация, процесс, в ходе которого создаётся, воспроизводится или совершенствуется организация сложной динамической системы. Процессы Самоорганизация могут иметь место только в системах, обладающих высоким уровнем сложности и большим количеством элементов, связи между которыми имеют не жёсткий, а вероятностный характер. Свойства Самоорганизация обнаруживают объекты самой различной природы: живая клетка, организм, биологическая популяция, биогеоценоз, человеческий коллектив и т. д. Процессы Самоорганизация происходят за счёт перестройки существующих и образования новых связей между элементами системы. Отличительная особенность процессов Самоорганизация - их целенаправленный, но вместе с тем и естественный, спонтанный характер: эти процессы, протекающие при взаимодействии системы с окружающей средой, в той или иной мере автономны, относительно независимы от неё.

Различают 3 типа процессов Самоорганизация Первый - это самозарождение организации, т. е. возникновение из некоторой совокупности целостных объектов определенного уровня новой целостной системы со своими специфическими закономерностями (например, генезис многоклеточных организмов из одноклеточных). Второй тип - процессы, благодаря которым система поддерживает определенный уровень организации при изменении внешних и внутренних условий её функционирования [здесь исследуются главным образом гомеостатические механизмы (см. Гомеостаз), в частности механизмы, действующие по принципу отрицательной обратной связи]. Третий тип процессов Самоорганизация связан с совершенствованием и с саморазвитием таких систем, которые способны накапливать и использовать прошлый опыт (см. Самообучающаяся система).

 

39. Понятие самоорганизации. Условия и механизмы самоорганизации.
Согласно общепринятому определению, Самоорганизация (см. Само), процесс, в ходе которого создаётся, воспроизводится или совершенствуется организация сложной динамической системы. Процессы (см. Процесс) С. могут иметь место только в системах, обладающих высоким уровнем сложности и большим количеством элементов, связи между которыми имеют не жёсткий, а вероятностный характер. Свойства С. обнаруживают объекты самой различной природы: живая клетка, организм, биологическая популяция, биогеоценоз, человеческий коллектив и т. д. Процессы (см. Процесс) С. происходят за счёт перестройки существующих и образования новых связей между элементами системы. Отличительная особенность процессов С. - их целенаправленный, но вместе с тем и естественный, спонтанный характер: эти процессы, протекающие при взаимодействии системы с окружающей средой, в той или иной мере автономны, относительно независимы от неё. Различают 3 типа процессов С. Первый - это самозарождение организации, т. е. возникновение из некоторой совокупности целостных объектов определенного уровня новой целостной системы со своими специфическими закономерностями (например, генезис многоклеточных организмов из одноклеточных). Второй тип - процессы, благодаря которым система поддерживает определенный уровень организации при изменении внешних и внутренних условий её функционирования [здесь исследуются главным образом гомеостатические механизмы (см. Гомеостаз (см. Гомеостаз)), в частности механизмы, действующие по принципу отрицательной обратной связи]. Третий тип процессов С. связан с совершенствованием и с саморазвитием таких систем, которые способны накапливать и использовать прошлый опыт (см. Самообучающаяся (см. Само) система). Специальное исследование проблем С. впервые было начато в кибернетике. Термин (см. Термин) (см. Терми) "самоорганизующаяся система" ввёл английский кибернетик У. Р. Эшби (1947). Широкое (см. Широкое) изучение С. началось в конце 50-х гг. в целях отыскания новых принципов построения технических устройств, обладающих высокой надёжностью, и создания вычислительных машин, способных моделировать различные стороны интеллектуальной деятельности человека. Исследование (см. Исс) проблем С. стало одним из основных путей проникновения идей и методов кибернетики, теории информации и теории систем в биологическое и социальное познание.

 

40. Принцип универсального эволюционизма.
Одним из важнейших шагов в развитии науки стало появление эволюционной теории. Основываясь, в частности, на этих идеях, во второй половине XX-го века появилась синергетика, распространившая принципы эволюции на разные уровни — косную материю, жизнь и общество. Подобный подход, получивший название «универсальный эволюционизм» служит основой современного мировоззрения о Вселенной и используется как базис для интеграции науки и культуры. То есть, все развитие Вселенной, включая и наше развитие, описывается в рамках схожих эволюционных процессов.

Эволюция ли это?
В качестве основных принципов эволюции выделяется триада изменчивость – наследственность – отбор. Когда утверждается, что универсальный эволюционизм описывает всё множество фаз самоорганизации вселенной, включая историю человеческой цивилизации, неявно предполагается, что во всех фазах соблюдаются необходимые базовые предпосылки для хода эволюционных процессов. Подразумевается, что и будущая самоорганизация Вселенной должна описываться в рамках универсального эволюционизма. Однако, подобные утвержедния малообоснованны.
Мы утверждаем, что начиная с некоторого момента, некорректно рассматривать направленное развитие как эволюционное. Следует различать самоорганизацию Вселенной в широком смысле от осознанной самоорганизации разумной системы. Конечно, у Вселенной есть свойство, что в ней идут эволюционные процессы. Но разумная система, которая сама определяет, как ей развиваться, подчиняется совершенно иным правилам. Можно, конечно, с натяжкой говорить, к примеру, о наличии у неё аттракторов, но это не совсем корректно. Потому что, в той степени, в какой этот процесс развития является управляемым, следует говорить не об аттракторах, а о целях этой системы. Например, если мы строим дом, то вряд ли корректно называть аттрактором чертежи этого дома, к которым «стремится» результат этого строительства.
Выделяют три уровня организации природы — материя, жизнь и общество. Материя развивается не целенаправленно, жизнь развивается не целенаправленно и общество большую часть истории, тоже развивалось не целенаправленно. Развитие природы на этих трёх уровнях корректно описывалось эволюционными принципами.
Когда мы говорим об осознанном развитии, где человек уже является творцом эволюции, контролируя процесс своего развития и процесс развития Вселенной, то анализировать такое будущее следует, переходя от эволюционизма к изучению самонаправляемого развития самомодифицирующих систем.
Это можно связать с ролью интеллекта. Интеллект в своей деятельности не полагается на эволюцию и на естественный отбор (даже искусственный отбор уже не является эволюцией), интеллект моделирует возможные варианты внутри себя и в этом своём виртуальном мыслительном пространстве он осуществляет выбор. Но в этом интеллектуальном анализе не обязательно должен идти перебор вариантов или какой-то эволюционный процесс. Вместо этого возможен «дизайн»: известна цель и известны необходимые шаги для достижения правильной структуры. К примеру, когда инженеры разрабатывают мост, то они делают это не на основании перебора вариантов или эволюционного отбора, а по определённым правилам, то есть по алгоритму.
В целом, по мере расширения роли интеллекта, эволюция заменялась прямой работой интеллекта. Интересен вопрос, в какой момент развитие человечества перестает описываться моделью универсального эволюционизма. По всей видимости, это происходит постепенно и связано с уровнем интеллектуальности и ростом влияния интеллекта на развитие.
Взгляд с позиций универсального эволюционизма утверждает, что есть принципы эволюции и что общество (и разум) всегда будет развиваться по этим принципам. Но сейчас весьма актуален возможный будущий переход от развития случайного к развитию управляемому (то есть от эволюции к дизайну). Рассматривая это в контексте общества, мы видим переход от демократии и рынка (на всех уровнях социума) к полностью управляемому процессу (рефлексивное управление. Вопрос об управляемом развитии общества (человечества) напрямую связан с вопросом о выборе стратегии. Интересно, что одна из наиболее обсуждаемых стратегий — устойчивое развитие — подразумевает, что мы можем управлять процессом, но должны управлять им не в своих интересах (а чтобы сохранить природу, сохранить ресурсы). Мы считаем главным в таком контексте не вопрос о характере развития природы или общества (или, тем более, косной материи), а вопрос о развитии разума. Как будет развиваться самомодифицирующая система? Этот вопрос тесно связан с вопросом о характере технологической сингулярности, с проблемой создания сильного искусственного интеллекта.
В современной философии только трансгуманизм правильно ставит вопрос о глобальном развитии — вопрос о сингулярности. По нашему мнению, идеи Шардена и Вернадского следует развивать не в направлении универсального эволюционизма, поскольку, если даже эволюционное развитие и приведёт к какой-то ноосфере (что зависит от выбранного определения ноосферы), то ноосфера — это ещё не конец. Если под ноосферой можно понимать как делают некоторые авторы, развитый интернет, то в ней, действительно, пока ещё царствует стохастичность и действуют эволюционные принципы. Но, когда процесс развития этой системы станет управляемым (а к этому все и идет), то это будет уже выход за ноосферу, к сверхразуму.
Если мы говорим о будущем, то мы говорим не просто о развитии человека и его интеллекта, мы говорим о сверхразуме, о постчеловеке. На этом этапе стихийные силы природы будут взяты под контроль, и можно будет говорить об исчезновение случайности на высших уровнях организации.. Это неизбежно входит в противоречие с «обычной» эволюцией, ведь без случайности нет ни изменчивости, ни естественного отбора, ни аттракторов, ни бифуркаций. Есть только полностью управляемая система, развитие которой направляется сверхинтеллектом, в соответствии с определённой стратегией, с определёнными целями, в рамках «малозатратной» обработки информации внутри самого интеллекта. Такая система, конечно же, не является эволюционирующей, она является «саморазворачивающейся», «самораскрывающей».
Мы считаем, что следует развивать идеи Вернадского, делая шаг дальше. Ноосфера — это не конечный этап развития, это не цель. Ноосфера (общепринятого чёткого определения пока нет) сейчас понимается в рамках того, что мы называем «общество знания» и т. д. То, что мог описать Вернадский на уровне понимания своего времени, это не более, чем надиндивидуальная информационная структура, то есть, интернет и его будущие аналоги.
Сверхразум же — это намного более сложная и совершенная система, чем ноосфера. С позиций проективной философии, очень важно сказать, что не к ноосфере должно стремиться человечество, а к сверхразуму. Соответственно, человечеству нужно не устойчивое (ноосферное или какое-нибудь ещё) развитие, а именно трансформация человека в Сверхразум, а также создание Сверхразума (на базе ИИ). Ну и, разумеется, решение тех проблем и вопросов, которые с этим связаны, включая математические проблемы стабильных систем целей и экзистенциальные риски, связанные со сверхразумом.

 

41. Корпускулярно-волновой дуализм. Принцип дополнительности.
Корпускулярно-волновой дуализм в современной физике
Представления А. Эйнштейна о квантах света, послужившие в 1913 г. отправным пунктом теории Н. Бора, через 10 лет снова оказали плодотворное воздействие на развитие атомной физики. Они привели к идее о «волнах материи» и тем самым заложили основу новой стадии развития квинтовой теории.

В 1924 г. произошло одно из величайших событий в истории физики: французский физик Л. де Бройль выдвинул идею о волновых свойствах материи. В своей работе «Свет и материя» он писал о необходимости использовать волновые и корпускулярные представления не только в соответствии с учением А. Эйнштейна в теории света, но также и в теории материи.

Л. де Бройль утверждал, что волновые свойства, наряду с корпускулярными, присущи всем видам материи: электронам, протонам, атомам, молекулам и даже макроскопическим телам.

В 1926 г. австрийский физик Э. Шредингер нашел математическое уравнение, определяющее поведение волн материи, так называемое уравнение Шредингера. Английский физик П. Дирак обобщил его.

Смелая мысль Л. де Бройля о всеобщем «дуализме» частицы и волны позволила построить теорию, с помощью которой можно было охватить свойства материи и света в их единстве. Кванты света становились при этом особым моментом всеобщего строения микромира.

Волны материи, которые первоначально представлялись как наглядно-реальные волновые процессы по типу волн акустики, приняли абстрактно-математический облик и получили благодаря немецкому физику М. Борну символическое значение как «волны вероятности».

Однако гипотеза де Бройля нуждалась в опытном подтверждении. Наиболее убедительным свидетельством существования волновых свойств материи стало обнаружение в 1927 г. дифракции электронов американскими физиками К. Дэвисоном и Л. Джермером.

Корпускулярно-волновой дуализм в современной физике стал всеобщим. Любой материальный объект характеризуется наличием как корпускулярных, так и волновых свойств.

Тот факт, что один и тот же объект проявляется и как частица и как волна, разрушал традиционные представления. Форма частицы подразумевает сущность, заключенную в малом объеме или в конечной области пространства, тогда как волна распространяется по его огромным областям. В квантовой физике эти два описания реальности являются взаимоисключающими, но равно необходимыми для того, чтобы полностью описать рассматриваемые явления.

Квантово-механическое описание микромира основывается на соотношении неопределенностей, установленном немецким физиком В. Гейзенбергом, и принципе дополнительности Н. Бора.

В своей книге «Физика атомного ядра» В. Гейзенберг раскрывает содержание соотношения неопределенностей. Он пишет, что никогда нельзя одновременно точно знать оба параметра — координату и скорость. Никогда нельзя одновременно знать, где находится частица, как быстро и в каком направлении она движется. Если ставится эксперимент, который точно показывает, где частица находится в данный момент, то движение нарушается в такой степени, что частицу после этого невозможно найти. И наоборот, при точном измерении скорости нельзя определить место расположения частицы.

С точки зрения классической механики, соотношение неопределенностей представляется абсурдом. Чтобы лучше оценить создавшееся положение, нужно иметь в виду, что мы, люди, живем в макромире и, в принципе, не можем построить наглядную модель, которая была бы адекватна микромиру. Соотношение неопределенностей есть выражение невозможности наблюдать микромир, не нарушая его. Любая попытка дать четкую картину микрофизических процессов должна опираться либо на корпускулярное, либо на волновое толкование.

Фундаментальным принципом квантовой механики, наряду с соотношением неопределенностей, является принцип дополнительности, которому Н. Бор дал следующую формулировку «Понятие частицы и волны дополняют друг друга и в то же время противоречат друг другу, они являются дополняющими картинами происходящего».

С теоретической точки зрения, микрообъекты, для которых существенным является квант действия М. Планка, не могут, рассматриваться так же, как объекты макромира, ведь для них планковская константа h из-за ее малой величины не имеет, значения. В микромире корпускулярная и волновая картин сами по себе не являются достаточными, как в мире больших тел. Обе «картины» законны, и противоречие между ними снять нельзя. Поэтому корпускулярная и волновая картины должны дополнять одна другую, т. е. быть комплементарными. Только при учете, обоих аспектов можно получить общую картину микромира.

Согласно современным представлениям, структура элементарных частиц описывается посредством непрерывно возникающих и снова распадающихся «виртуальных» частиц. Например, мезон строится из виртуального нуклона и антинуклона, которые в процессе аннигиляции (лат. annihilatio, букв, уничтожение) непрерывно исчезают, а затем образуются снова.

Формальное привлечение виртуальных частиц означает, что внутреннюю структуру элементарных частиц невозможно описать через другие частицы.

Удовлетворительной теории происхождения и структуры элементарных частиц пока нет. Многие ученые считают, что такую теорию можно создать только при учете космологических обстоятельств. Большое значение имеет исследование рождения элементарных частиц из вакуума в сильных гравитационных и электромагнитных полях, поскольку здесь устанавливается связь микро- и мегамиров. Фундаментальные взаимодействия во Вселенной, в мегамире определяют структуру элементарных частиц и их превращения. Очевидно, потребуется выработка новых понятий для адекватного описания структуры материального мира.

 

43. Принцип неопределенности. Понятие физического вакуума.
«Принцип неопределенности» - один из базовых принципов квантовой механики. Согласно ему некоторые пары физических величин, например, координаты и скорость иливремя и энергия, не могут одновременно иметь полностью определенные значения. Так чем точнее известна скорость частицы, тем больше «размазано» ее местоположение, или чем меньше время жизни возбужденного состояния атома, тем больше его ширина (разброс энергий). Считается, что неопределенность выражается в невозможности точного измерения значений пар этих величин.
В полевой физике тоже возникают похожие соотношения, только они приобретают диаметрально противоположный смысл и связаны снеустойчивостью квантовых процессов. Так в классической физике большинство функций y = f(x), которые описывают движение, является непрерывными: – сколько угодно малому изменению аргумента ∆x соответствует сколь угодно малое изменение значения функции ∆y:

Например, за малый промежуток времени ∆t энергия классической системы изменяется на малую величину ∆E.
В квантовых условиях все происходит наоборот. Квантовые системы обычно имеют дискретные характеристики, а значит, сколь угодно малое изменение одного из параметров уже не может привести к сколь угодно малому изменению другого параметра. К этому и приводит полевая физика. Так в отличие от классического случая сколь угодно малое изменение характерного времени системы (периода или собственной частоты) оказывается возможным только при сколько угодно большом изменении энергии системы. В результате переход с одной собственной частоты на другую происходит скачком, при этом также скачком изменяется и величина энергии системы. Причем чем меньше оказывается при таком скачкообразном переходе изменение собственного времени системы ∆t, тем большее изменение величины энергии ∆E ему соответствует и наоборот.
Другими словами, в квантовых условиях между такими парами величин, как характерное время и энергия, или положение и импульс, выполняется обратная связь малых приращений, нежели для дифференцируемых функций. Для этих зависимостей сколь угодно малое изменение аргумента соответствует сколь угодно большому изменению значений функции и наоборот. То есть малые приращения оказываются не пропорциональными друг другу, а обратно пропорциональными:

Эту связь можно выразить и по-другому, записав, что произведение двух приращений должно иметь порядок некой константы h (есть речь идет не о безразмерных, а о реальных физических величинах)

В этом и состоит смысл принципа неопределенности в полевой физике. По сути, он не связан с соотношением погрешности измерений, а выражает то обстоятельство, что в случае дискретных функций связь приращений физических величин иная, нежели у дифференцируемых функций.
«Физический вакуум» - одно из понятий современной физики, в частности квантовойтеории поля. Слово вакуум означает пустота, и в классической физике может применяться, например, к очень разряженному газу – некой области, в которой нет или почти нет частиц. Аналогично в квантовой теории поля понятие физический вакуум применяется к низшему энергетическому состоянию полей при отсутствии реальных частиц. Однако характер квантовых законов таков, что даже в этом состоянии могут существовать «нулевые» колебания поля, а также происходить «виртуальные»процессы.
С философской точки зрения возникновение понятия физического вакуума в современной физике имеет интересное значение. По сути, это очередное возвращение, пусть и на новом уровне, к идее наличия некой нематериальной подосновы, отвечающей за наблюдаемые процессы в материальном мире. В прошлые столетия роль такой подосновы или посредника физическихвзаимодействий отводилась эфиру, от которого впоследствии отказались. Однако современная физика вновь пришла к некому современному «эфиру» под названием «физический вакуум».
Полевая физика не использует ни понятие физический вакуум, ни понятие эфир. В ней возникли представления о полевой среде – своеобразном расширении понятия физического поля. Отчасти полевая среда наследует идеи эфира, как посредника физических взаимодействий, однако устраняет все связанные с ним противоречия. С другой стороны, поведение полевой среды отчасти напоминает физический вакуум. В ней могут существовать два типа возмущений. Первый из них обусловлен движением частиц и приводит в основном к классическому поведению. Второй связан с собственными процессами и возмущениями в полевой среде, что приводит, как правило, к квантовому поведению. В какой-то степени это напоминает нулевые колебания физического вакуума, на которые уже накладываются движения частиц.
Так или иначе, полевая среда – самостоятельное понятие. При этом многие идеи, присутствующие в концепции физического вакуума на полумистическом или излишне математизированном уровне, в концепции полевой средыполучают наглядную и очевидную интерпретацию «на пальцах».

 

44. Принцип соответствия. Соотношение между классической механикой
и теорией относительности, классической и квантовой механиками.

В мире квантовой механики, где всё определяют принцип неопределенности Гейзенберга и уравнение Шрёдингера, картина происходящего кардинально отличается от привычного нам мира классической механики, где действуют законы движения Ньютона. Однако же наш макроскопический мир соткан из микроскопических атомов, и законы макро- и микромира не могут не быть увязаны между собой. Впервые принцип соответствия законов микро- и макромира был озвучен датским физиком-теоретиком Нильсом Бором, и за иллюстрацией для лучшего понимания этого принципа лучше всего обратиться к упрощенной модели атома, которую также впервые представил миру этот же ученый (см.Атом Бора).
В атоме Бора электроны могут находиться только на «разрешенных» орбитах. Орбиты выстраиваются по главным квантовым числам. Ближайшая к ядру орбита имеет главное квантовое число, равное 1, следующая — 2 и т. д. Чем выше квантовое число электронной орбиты, тем дальше она удалена от ядра. По контрасту — в классическом ядре, предсказываемом ньютоновской механикой, электроны могут обращаться вокруг ядра по произвольным орбитам, находящимся от ядра на любом удалении (это, собственно, и могло бы происходить, не принимай мы во внимание квантовые эффекты).
Теперь, хотя физический радиус орбит и увеличивается неуклонно по мере возрастания главного квантового числа, кинетическая энергия электронов на этих орбитах увеличивается отнюдь не пропорционально расширению орбит, а снижающимися темпами, причем имеется верхний предел энергии удержания электронов на орбите вокруг ядра, который принято называть энергией срыва или энергией ионизации. Разогнавшись до такой энергии, электрон, теоретически, оказывается на орбите бесконечного радиуса, то есть, иными словами, превращается в свободный электрон и высвобождается из ионизированного атома. Между этим крайним пределом энергии высвобождения электрона и другим крайним пределом энергии нахождения электрона на первой к ядру орбите имеется счетный (но бесконечный) ряд допустимых дискретных энергетических состояний, в которых может находиться удерживаемый ядром электрон, причем, согласно законам квантовой механики, на достаточно удаленных от ядра расстояниях допустимые орбиты электронов начинают накладываться одна на другую. Происходит это в силу того, что допустимая энергия электрона на определенной орбите (и радиус этой орбиты, как следствие) определяется не точным квантовым числом, а, в соответствии с принципом неопределенности Гейзенберга, размыто — то есть, мы имеем лишь распределение вероятностей нахождения электрона на одной из соседних орбит. Здесь и начинается «стирание различий» между квантовомеханической моделью атома, где электрон может находиться лишь в фиксированных энергетических состояниях, поглощать и испускать энергию фиксированными порциями (квантами) и, соответственно, обитать на строго определенных орбитах, и классической моделью атома, где электрон обладает произвольной энергией и движется по произвольным орбитам. Иными словами, на больших удалениях от ядра атом начинает представлять собой классическую систему, подчиняющуюся законам механики Ньютона. Это, пожалуй, самый иллюстративный пример принципа соответствия в действии.
Принцип соответствия вступает в силу на нечеткой границе между квантовой и классической механикой и еще раз демонстрирует нам, что в природе нет явных границ между явлениями, как нет и четкого разграничения между теоретическими описаниями природных явлений. И еще он демонстрирует нам то, о чем уже говорилось во Введенииотносительно тенденций развития теоретической науки. Квантовая механика, например, отнюдь не отменяет и не подменяет собой классическую механику Ньютона, а лишь представляет собой предельный случай при переходе явлений в масштабы микромира. Вообще, естественнонаучные теории вырастают одна из другой по мере расширения наших ранее накопленных знаний подобно новым свежим побегам на древе познания окружающего мира.

 


Поделиться:



Последнее изменение этой страницы: 2019-06-19; Просмотров: 303; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.107 с.)
Главная | Случайная страница | Обратная связь