Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Нейронные ансамбли: Розеттский камень, связывающий физиологию и феноменологию



Теперь, исходя из имеющихся знаний, мы можем рассматривать различные ситуации с точки зрения общего фактора, бесценного Розеттского камня – нейронных ансамблей. Давайте обратимся к одному примеру. Ключевая разница между депрессией и, скажем, тревожным расстройством заключается в том, что депрессия характеризуется определенным лейтмотивом, например переживаниями, вызванными смертью супруга или затяжной болезнью и постоянно накладывающими отпечаток на общее настроение. Тревога, напротив, порождает множественные, разнообразные воображаемые сцены, вызывающие сильные переживания, как если бы они происходили в реальности: беспокойство по поводу платежей по ипотечным кредитам может вызвать в воображении сцены судебных разбирательств, изъятия имущества, ссоры с супругом и т. д.

Хотя депрессия и тревога будут основываться на устойчивой, обширной нейронной схеме, последующие события будут разными в каждом случае. Уровни нейромодуляторов ниже при депрессии, в то время как у тех, кто страдает от тревожных расстройств, они выше, как при банальном страхе, но, опять же, тревога будет отличаться от страха тем, что страх вызывает интенсивная внешняя стимуляция. В случае тревоги формирование ансамблей в первую очередь определяется внутренними факторами, что роднит ее с депрессией: все три разных состояния могли бы отличаться неодинаковым вкладом различных факторов, которые приводят к возникновению соответствующих нейронных ансамблей и, следовательно, определенного состояния сознания.[330]

То, что нейробиология способна нам дать, – это не столько ответы, сколько грамотные вопросы, которые можно исследовать эмпирически: в известной терминологии Карла Поппера – «фальсифицируемые гипотезы».[331] Однако чтобы выйти за рамки одних лишь рассуждений, нужно приступить к экспериментам.

В главе 2 мы познакомились с профессором Брайаном Поллардом из Манчестерского университета, который разработал новаторскую методику исследования мозга, известную как функциональная электрическая импедансная томография по реакции отклика (fEITER). Этот метод позволяет его команде рассматривать мозг не только на очень коротких временных масштабах, но и неинвазивно, так что эта методика открывает возможность для применения у людей.[332] Другие неинвазивные методы, такие как fMRI, сравнительно безболезненны и практичны, но они позволяют оценивать только косвенные параметры, такие как изменения в кровотоке, в то время как fEITER напрямую считывает изменения состояний мозга, а именно изменения электрического сопротивления нейронов,[333] а это прекрасная возможность для мониторинга человеческого мозга в реальном времени. Вы можете представить себе наш восторг, когда профессор Поллард сообщил в прессе, что его данные подтверждают справедливость подхода нашей лаборатории к изучению «природы сознания». Такие исследования в будущем, возможно, обеспечат нас бесценной информацией о механизмах работы мозга, лежащих в основе различных субъективных состояний сознания.

Мозг и тело

Существенный и основной факт, который мы до сих пор игнорировали, заключается в том, что мозг существует внутри тела – он не плавает свободно в каком-то сюрреалистическом пространстве, как иногда представляют себе философы.[334] Нервная система постоянно взаимодействует с иммунной и эндокринной системами, в противном случае не существовало бы эффекта плацебо, влияния гормонов одновременно на физическое и психическое состояние. Любая реалистическая теория сознания, основанная на физиологических предпосылках, должна учитывать это взаимодействие.

Следующая сложность заключается в том, как мозг осуществляет тонкое и многостороннее управление огромным количеством различных процессов, протекающих в теле.

Какой бы сигнал он ни посылал в ту или иную часть тела, этот сигнал должен отражать не только размер нейронного ансамбля, но и характер его внутренней активности, продолжительность временного окна и информацию о месте его возникновения. Эта проблема решается путем учета различных и сильно изменяющихся факторов. Их соотношения всегда уникальны: это означает, что, в отличие от тех или иных анатомических областей мозга и их электрической сигнатуры, каждый ансамбль будет уникальным, что дает ему неоспоримое преимущество по сравнению с другими претендентами на роль нейронального коррелята сознания (см. главу 1). Но если это так, теперь необходимо доставить этот комбинированный пакет качественной и количественной информации таким образом, чтобы он мог оказывать влияние на участок периферической нервной системы, соответствующий тому или иному органу – скажем, кишечнику, – а также на другие крупные системы (автономную нервную, эндокринную и иммунную). Должно существовать некое системное сопряжение, обеспечивающее прямую и обратную связь между периферическими органами и мозгом.[335]

К счастью, существуют идеальные посредники: молекулы пептидов. Пептиды состоят из тех же строительных блоков (аминокислот), что и белки, но отличаются от них по размеру – они могут быть намного меньше. Сам термин происходит от греческого слова peptós – «питательный», поскольку эти молекулы уже давно ассоциируются с кишечником, хотя, как выяснилось, могут также функционировать в качестве эффективных передатчиков в мозге. Фактически кишечники мозг, кажется, находятся в тесном диалоге, что невольно отражается во фразе «чувствовать нутром».[336] Клетки кишечника способны выделять пептиды, которые в интересующем нас случае действуют как гормоны, которые влияют не только на местное пищеварение, но и на периферические нервы, посылая сигналы в спинной мозг. Поразительно, что они могут оказывать значительное влияние на мозговые процессы, лежащие в основе памяти и эмоций, воздействуя на широкий спектр областей мозга.[337] Но, разумеется, не только кишечник способен общаться с мозгом при помощи этих услужливых и универсальных лазутчиков: например, пептид, вызывающий повышение артериального давления, – ангиотензин – продуцируется почками, но также может оказывать влияние на сложные функции мозга, такие как обучаемость.

Пожалуй, самым известным случаем интимного взаимодействия между различными системами организма является процесс, сопряженный со стрессом. Он начинается с выделения специализированного гормона (кортикотропин-высвобождающего гормона) и передатчика (норадреналина), который, помимо прочего, борется с воспалениями, вызванными повреждением ткани. Этот процесс может быть замешан в более продолжительных психологических состояниях: например, долгосрочная активация этой системы иногда приводит к депрессии. Широкий спектр нарушений, от воспалительных заболеваний вроде ревматоидного артрита до менее очевидных психических проблем, возникает, когда в трехстороннем союзе эндокринной, иммунной и нервной систем происходит сбой.

Хотя мы еще не имеем представления, как она устроена, но точно знаем, что такая трехсторонняя связь существует. Например, депрессия увеличивает риск различных заболеваний вследствие нарушений работы иммунной системы. В исследовании, длившемся более двадцати лет с участием двух тысяч американцев средней возрастной категории, было выявлено, что депрессия в два раза увеличивает риск развития раковых заболеваний независимо от других факторов, таких как курение или семейный анамнез.[338]

В еще одном эксперименте, уже на крысах, сладкий вкус сам по себе стал оказывать тот же эффект, что и иммуносупрессант, изначально добавляемый в сладкую пищу. Сформировался парадоксальный пищевой стимул: иммунная система крыс подавлялась не самим препаратом, а простой ассоциацией эффектов препарата со сладким вкусом.[339]

Совершенно очевидно, что определенная выученная ассоциация, например сладкий вкус, может спровоцировать каскад таких веществ, как пептиды, которые влияют и на мозг, и на иммунную систему. Но остается загвоздка: как происходит такое взаимодействие? Маловероятно, что локальные выбросы определенных веществ возникали беспорядочно без учета состояния организма в целом. Такой сценарий породил бы настоящий хаос…

Помимо выполнения целого ряда функций вне мозга, пептиды могут работать внутри мозга как полноценные нейротрансмиттеры. Энкефалин, например, является аналогом морфина и несет функцию облегчения боли. Однако примечательное общее свойство почти всех пептидов в центральной нервной системе заключается в том, что они часто нацелены на тот же нейрон, что и другой передатчик.[340] Так, дофаминергические клетки могут быть столь же восприимчивы к энкефалину.[341] Почему природа перегружает нейрон двумя разными типами рецепторов, если оба передатчика выполняют одну и ту же функцию?

Но предположим, что это не так. Пептиды выборочно высвобождаются на определенных участках и только при определенных условиях: активность клетки должна быть выше и продолжительнее обычного. Поскольку в мозге насчитывается около сотни различных пептидов,[342] отличающихся по количеству и химическим свойствам, мозг имеет в своем распоряжении мощный дополнительный инструмент. Цифровой параметр «все или ничего» теперь можно разумно преобразовать в аналоговый. Поэтому, возможно, нет ничего нелепого и экстравагантного в том, что два типа молекул нацелены на один нейрон: классический передатчик работает на локальном, кратковременном уровне, в то время как пептидный функционирует на больших временных и пространственных масштабах.

Мы знаем, что одно из основных свойств нейронных ансамблей заключается в их продолжительной активности, обычно в сотни раз превышающей продолжительность единичного потенциала действия (ПД). Из этого следует, что ансамбли создают идеальные условия для освобождения пептидов, сообщая другим нейронным группам и телу, что возникла значимая активность, а не только одна или две изолированных вспышки. Более того, эта информация не будет простым тумблером. Дополнительный качественный фактор – химическая идентичность выделяемого пептида – может дать развернутую информацию о конкретном нейронном ансамбле вкупе с: 1) уровнями высвобождаемых веществ, 2) продолжительностью релиза (высвобождения) и 3) конкретным сочетанием различных пептидов, которое, в свою очередь, дает представление о размере и даже анатомическом происхождении ансамбля, поскольку разные области мозга будут иметь разные пептидные сигнатуры. В свою очередь, эти функции отражают и считывают разнообразную функциональную информацию, будь то возбуждение, пластичность (запоминание), сенсорное раздражение или внутренний сигнал (голод, боль и т. д.).

Повторим еще раз: при генерации нейронного ансамбля разнообразные факторы будут дифференциально определять конечный размер (силу ряби), который уже определяется степенью сенсорной стимуляции (силой броска камня), характером когнитивных ассоциаций (размером камня), химическим ландшафтом (вязкостью водоема) и взаимодействием конкурирующих, вновь возникающих ансамблей (частотой последующих бросков). Все эти факторы, как мы видели неоднократно в разных ситуациях в течение дня, определяют уникальные свойства каждого нейронного ансамбля.

Упрощенная схема того, как мозг и тело могут взаимодействовать посредством ансамблей, показана на рис. 6, и сама по себе неизбежно порождает еще много вопросов. Но чего же следует ждать от завтрашнего дня?..

Рис. 6. Возможный механизм формирования сознания. Два набора концентрических кругов представляют собой два временных нейронных ансамбля, охватывающих десятки миллионов клеток мозга: самый крупный ансамбль будет доминировать и определять текущий момент сознания. Степень его охвата и, следовательно, степень сознания будет определяться множеством факторов, таких как сила сенсорных входов, ранее существовавшие связи (ассоциации) и степень конкуренции с вновь формирующимися ансамблями. Внутри ансамбля будут высвобождаться пептидные передатчики. Тип, количество и концентрация этих химических веществ являются уникальной сигнатурой данного нейронного ансамбля и передают эту информацию другим системам организма через кровеносную систему. В свою очередь, химические вещества, высвобождаемые под контролем иммунной системы и жизненно важных органов, влияют на характер нейронных ансамблей. Такие вещества, как гормоны и амины, высвобождаются в ответ на возбуждение. Следовательно, сознание зависит от сплоченности всего организма

Завтра

Проснувшись, вы не сумеете с уверенностью сказать, как долго вы спали, и вам вполне может показаться, что вы только что задремали на несколько мгновений или же, напротив, были в отключке на протяжении многих часов. И тут возникает вопрос: может ли тот факт, что сон подразумевает и отсутствие сенсорной стимуляции, и искаженное восприятие времени, означать, что они каким-то образом связаны?[343]

Течение времени

Время – самый фундаментальный элемент нашей жизни. Но чем больше вы думаете о природе времени и его течении, тем непостижимее оно кажется. И если с первым вопросом действительно не все так просто, то единица измерения времени – секунда – определена четко. Это время, равное 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133. Однако даже это – произвольная градация.[344] С другой стороны, течение времени неоспоримо и является предметом всеобщего сожаления для всех нас, ведь по своей природе оно однонаправленно. И хотя Исаак Ньютон считал, что время существует как совершенно независимое явление, теперь физики рассматривают его в тесном взаимодействии с пространством.

Пробудившись ото сна или анестезии, вы не можете определить, как долго были без сознания. И даже когда вы бодрствуете, время может вести себя по-разному: «пролетать» незаметно, двигаться размеренно, «тянуться вечность», в зависимости от того, что вы делаете и нравится ли это вам. Восприятие времени субъективно и, следовательно, является неотъемлемой частью сознания. Подобно тому, как мы создаем собственный внутренний мир, мы создаем свое собственное течение времени. Излишне говорить, что квинтэссенция субъективности времени поддается дальнейшему разделению. С одной стороны, есть память, охватывающая периоды от секунды до нескольких месяцев,[345] для которой характерно ретроспективное восприятие времени, позволяющее выстраивать события в произвольном, а не хронологическом порядке. С другой стороны, существует непосредственное ощущение течения времени.[346] Непосредственное осознание на узком временном масштабе от миллисекунд до нескольких секунд, описанное в начале двадцатого века философом и психологом Э. Робертом Келли как «правдоподобное настоящее»,[347] иллюзия затянувшегося «сейчас». Допустим, когда в процессе разговора мы доходим до середины предложения, значит ли это, что мы уже закончили его начало и оно осталось в прошлом? Или же вся фраза – это часть «настоящего»? По мнению Келли, субъективное «настоящее» может охватывать некоторый промежуток времени, в течение которого складывается «момент сознания».

Восприятие времени

С какой же стороны подступиться к изучению восприятия времени? Самая очевидная стратегия заключается в том, чтобы выяснить, есть ли в нейронных сетях мозга что-то особенное, обусловливающее эту способность. Но, учитывая имеющийся опыт, мы не должны возлагать какую-либо сложную функцию лишь на одну область мозга – мы вынуждены мыслить шире.

Одним из кандидатов выступает структура, располагающаяся в задней части мозга, – мозжечок. Ранее мы называли его «автопилотом» мозга, регулирующим сенсорные входы и выходы, координирующим движения. Также есть «базальные ганглии», ключевой мозговой контур, обеспечивающий регуляцию ряда двигательных и вегетативных функций. Он, опять же, очень чувствителен к времени. Еще один возможный претендент на роль – теменная кора. Это сложная структура, занимающая важное место в пространственном и временном ориентировании. Давно известно, что типичными симптомами повреждения теменной коры являются пространственная и временная дезориентация,[348] кроме того, эта область имеет большое значение для синхронизации слуховых и зрительных стимулов.[349] Также нельзя обойти вниманием лобную кору, которая связана с более сложным восприятием времени,[350] – ее повреждение может привести к развитию «исходной амнезии», являющейся не потерей памяти как таковой, а скорее стертостью воспоминаний об источнике знания без утраты его содержания.

Совершенно ясно, что одни аспекты восприятия времени сложнее других.[351] Однако само по себе перечисление элементов мозговой анатомии не поможет нам продвинуться дальше. Теперь мы должны сформировать представление об их коллективном взаимодействии.

Как и большинство сложных психических процессов, таких как зрение, восприятие времени не простая операция. Подобно тому как зрение обеспечивают порядка тридцати различных областей мозга, отвечающих за восприятия цвета, формы, движения и т. п., так и восприятие времени может быть разделено на различные аспекты, формирующие целостную картину. Например, продолжительность, скорость поступления и порядок входящих стимулов оказывают влияние на субъективное восприятие времени.[352]

Все нейробиологи, изучающие проблему восприятия времени, сходятся во мнениях по крайней мере в одном: в мозге нет никаких централизованных часов. Американский невролог Дэвид Иглмен, ведущий специалист в этой области, утверждает, что время не является унитарным явлением, указывая на три примера, которые должны развеять представление, будто «время едино».[353] Первый заключается в том, что субъективная оценка длительности временных интервалов может ощутимо отличаться от их реальной продолжительности.[354] Всем нам знакомо это чувство: час, проведенный в зале ожидания аэропорта, кажется невыносимо долгим, в то время как час за просмотром любимого сериала пролетает совсем незаметно.

Теперь второе: если мы слышим особый звук в серии повторяющихся одинаковых звуков, промежутки времени между таким «особым» стимулом и предшествующим ему / следующим за ним нам кажутся более длинными, хотя на самом деле длительность всех промежутков одинакова. Это наблюдение снова демонстрирует, что восприятие времени не является единым процессом, а состоит из независимых нейронных операций, которые обычно подсознательно координируются, но могут быть явно дифференцированы в условиях эксперимента.[355]

Третий пример – увлекательный и необычный эксперимент, в котором течение времени для испытуемых целенаправленно «замедлялось»: добровольцы оказывались в ситуациях, кажущихся жуткими и угрожающими жизни. Многие из нас хоть однажды испытывают особенное ощущение – как будто время «спотыкается» и застывает на несколько мгновений. Такое случается в моменты крайней физической угрозы или когда мы получаем особенно плохие новости.

Участники одного эксперимента должны были шагнуть назад с вершины пятидесятиметровой башни и упасть в защитную сетку у ее подножия.[356] После этого добровольцев спрашивали, как долго, по их мнению, длилось падение. 36 % испытуемых сообщили, что падение показалось им более долгим по сравнению с наблюдаемыми падениями других участников эксперимента. Однако доказательств об обогащении опыта восприятия в процессе падения получено не было, поскольку испытуемые не смогли сообщить о каких-либо дополнительных деталях.

Из результатов этого эксперимента Иглман сделал вывод, что поскольку память характеризуется ретроспективным восприятием времени, то чем больше воспоминаний или ассоциаций возникает в связи с «пугающим» эпизодом, тем более продолжительным он кажется.

Такая «дилатация времени» – кажущееся растяжение промежутка между двумя событиями – происходит в самых разных ситуациях в нашей повседневной жизни, но может быть обусловлена неким единым механизмом. Похоже, что приковывающие внимание стимулы обрабатываются дольше, что растягивает субъективную продолжительность времени.[357] Кроме того, восприятие времени пропорционально величине силы стимула: более мощные/яркие стимулы «растягивают» время.[358] Третий фактор – сильные эмоции:[359] в реальной жизни он проявляется, когда вы взволнованы, торопитесь или попадаете в другую неприятную или опасную ситуацию. Ключевым моментом здесь оказывается повышенное возбуждение.

Особым примером неравномерности восприятия времени является детство. Дети воспринимают мир в самом узком диапазоне – «здесь и сейчас». Возможно, поэтому один день для пятилетнего ребенка – это гораздо более значительный период, чем для тридцатипятилетнего взрослого. Для детей с синдромом дефицита внимания время проходит особенно медленно.[360] Это справедливо и для больных шизофренией,[361] для которых время уже не сливается в гладкий поток событий,[362] а состоит из разрозненных эпизодов, и каждый связан с эмоциональными переживаниями.

Эти данные свидетельствуют о том, что существует явная связь между различными факторами, касающимися восприятия времени: значимость возбуждения, эмоций, стимуляции и дефицита внимания. Все они включают, помимо прочего, чрезмерную активность дофаминовой системы.[363] Дофамин подавляет работу префронтальной коры,[364] что приводит, как мы уже знаем, к формированию «детской» модели восприятия, в которой вероятность более активного взаимодействия с внешним миром ведет к более непосредственной обработке информации[365] – как и в случае стрессовых ситуаций.

Наше субъективное ощущение времени также зависит от хода[366] и сложности[367] событий поэтому еще одна идея состоит в том, что мозг оценивает течение времени на основе фактического количества стимулов, обработанных мозгом. Это объяснило бы ощущение, которое возникает после пробуждения ото сна или анестезии, когда кажется, что время пролетело мгновенно. Так что именно количество поступающей информации определяет восприятие времени, а не наоборот.

Каждый входящий стимул имеет свои уникальные координаты в пространстве и времени. Интересно, что дети часто объединяют время и пространство[368] и не могут, например, понять, что быстрее не то же самое, что дальше. Возможно, когда мозг обрабатывает важную входящую информацию, которая будет определять темпы последующего восприятия времени, пространственно-временные параметры рассматриваемого раздражителя играют значительную роль. Таким образом, восприятие времени с точки зрения нейронауки может определяться не одним явным параметром, а паттерном изменений, основанным на пространственно-временных характеристиках поступающей информации.

В этой идее нет новизны. Еще в 1915 году Эмиль Дюркгейм определил время и пространство как «жесткие рамки, которые окаймляют мысли», а в 1953 году невролог Макдональд Критчли отметил, что «чисто временная дезориентация, наступающая независимо от пространственной, является редким явлением – чаще они сопутствуют друг другу».

Эта идея непосредственно проиллюстрирована в увлекательном исследовании,[369] в котором испытуемые судили о течении времени, сталкиваясь с различными пространственными средами. В каждом эксперименте было три разных типа моделей: модели железной дороги, гостиной и абстрактные модели – каждая из них представлена в малом, «кукольном», и крупном масштабе. Меньший масштаб соотносился с ускорением субъективного течения времени.[370] Выявленная закономерность такова: чем крупнее масштаб, тем более продолжительным кажется временной отрезок.

Поскольку пространство и время так тесно связаны, это накладывает отпечаток на наше повседневное мироощущение. Обширные пространства – луга, озера и горы – могут создать эффект «растяжения» времени, как и грандиозные архитектурные сооружения, например соборы, поскольку такие места вызывают благоговение и спокойствие.[371] Но чтобы понять природу этих закономерностей, мы должны вернуться к поиску соответствующих механизмов в мозге.


Поделиться:



Последнее изменение этой страницы: 2019-06-19; Просмотров: 211; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.033 с.)
Главная | Случайная страница | Обратная связь