Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Моделирование – важный подход к пониманию функции генов



 

Естественно, что ученые не всегда могут проводить испытания на живом человеческом организме. Но из этого положения есть определенный выход. Сравнения геномов простых и сложных организмов указывает на существенный консерватизм функций генов. Этот консерватизм не только демонстрирует тот факт, что жизнь на земле основана на общих принципах, но и предоставляет экспериментаторам инструмент, позволяющий, исследуя функции генов у простых организмов, делать заключения о функции генов у более сложных, включая человека. По этой причине уже давно в экспериментах стали широко использовать различные животные организмы, говоря в этих случаях о моделировании процессов, происходящих у человека. Для моделирования используются различные животные, начиная от нематоды и кончая обезьянами.

Модель – это конечно же образец, некое подобие оригинала (свирель не может заменить соловья), но она зачастую много говорит ученым о самом оригинале. При этом модель помогает решить главную проблему–понять человека, не затрагивая в экспериментах его самого. Напрашивается такая, хотя и несколько отдаленная, литературная аналогия. Это все равно, как сравнивать достоверную летопись об определенном событии и легенду или сказку, где это также отражено. Хотя сказка несет элемент фантазии, но даже в ней всегда есть намек, который «добрым молодцам урок!»

Одним из наиболее широко используемых для моделирования организмов служит мышь. С ней мы часто боремся в быту, ругаем ее, травим, а вот в науке она остается одним из основных объектов исследования. Дело не только в том, что мышь – весьма доступный и дешевый объект, а главным образом в том (как это, может быть, не совсем приятно читателю), что устройство генома и сами гены у мыши довольно сходны с человеческими. В последние годы ученые научились даже получать мышей с генами человека. Для этой цели в качестве мишени используют обычно ее оплодотворенную яйцеклетку. Чаще всего ген вводят с помощью микропипетки в ядро этой клетки. При удачном стечении обстоятельств (обычно такое стечение происходит в 5–10% случаях) ген встраивается в геном мыши и после этого становится таким же, как и собственные мышиные гены. В результате, когда из прооперированной яйцеклетки вырастает потомство, оно содержит новый, ранее не имевшийся у них ген – трансген. Такие животные получили название трансгенных. Например, когда мышам ввели ген гормона роста человека, они увеличили размер своего тела почти в два раза (рис. 32). Когда же им вводили человеческие «больные» онкогены, то у таких трансгенных мышей

 

 

Рис. 32. Фотография нормальной мыши (справа) и трансгенной, содержащей ген гормона роста человека (слева)

 

часто развивались опухоли того же типа, что и у человека. Подобного рода эксперименты были проведены уже с десятками сотен различных генов. Изучая биологические эффекты разнообразных (порой совершенно не изученных) генов у мышей, ученые довольно уверенно делают выводы об их вероятной функции у человека.

Более того, в последние годы были созданы специальные весьма изощренные и методически сложные генетические приемы, которые позволяют направленно изменять работу определенных, уже имеющихся мышиных генов в тех или других органах и на тех или иных этапах развития. В частности, найдены молекулярные подходы, которые позволяют полностью выключать работу строго определенных генов (это называют нокаутированием генов). Мыши с такими, находящимися «в нокауте» генами, дают возможность как выяснять роль для жизнедеятельности уже известных генов, так и идентифицировать новые гены, важные для различных аспектов жизни человека.

 

 

ОТ ГЕНА – К БЕЛКУ

(протеомика)

 

Что посеяно, то и взойдет.

Русская пословица

 

Сам по себе ген – лишь определенная последовательность нуклеотидов. Его основная задача – обеспечить производство на свет строго определенного белка (в крайнем случае РНК). Существует даже выражение: «гены – поваренная книга, испещренная тысячами рецептов; белки – угощение, выставленное на стол». В постгеномную эру появились новые возможности не только для функциональной геномики, но и для исследования самих белков – основных кирпичиков живого.

Белки (или, как еще их называют, протеины) известны нам уже около 200 лет. В начале XIX столетия химики выбрали имя «протеины» для этих веществ от греческого слова «proteios», означающего «первый» или «важнейший». В русском языке эти вещества чаще называются белками. И вот теперь, на базе геномики возникло новое направление исследований – протеомика. Протеомика – это изучение всей совокупности белков клеток и их взаимодействия в целом организме. Ученые в области протеомики изучают «производство» белков, их структуру и состав, различные модификации после синтеза, функции и метаболизм. Все эти исследования имеют одну общую цель: идентифицировать все белки, работающие в каждом типе клеток в каждый определенный момент их жизненного цикла, и понять в совокупности их сложный метаболизм.

Масштаб предстоящей работы представляется огромным. Ведь во взрослом организме человека в 1014 его различных клеток функционирует несколько десятков тысяч генов. Но гены кодируют лишь белки, а не их сборку в работающую «машину». Белковый «текст» – это трехмерный мир, намного превышающий возможности ДНКо–вого текста. Как пишет американский биолог Роберт Поллак, «гены – это линейный текст, а белки – трехмерная скульптура». В белковом тексте, условно говоря, «буква» – это аминокислота, корень «слова» – последовательность аминокислот в единичном полипептиде. Свертываясь в трехмерную структуру, единичный полипептид формирует по сути дела полное «слово», которое уже может быть и простым «предложением». Вдобавок, в живой клетке форма белков может динамически меняться, что превращает их в подобие более сложной, «кинетической» скульптуры. Далее возникают сложнейшие «предложения» – комплексы, состоящие из десятков и даже сотен белков. Таким образом, разнообразие белковых вариантов у нас значительно больше, нежели генов. По некоторым оценкам, белковых вариантов и их всевозможных комплексов в наших клетках может набраться аж миллион! Связано это с тем, что, как говорилось выше, с одного гена за счет альтернативного сплайсинга возможно получение нескольких разных РНК–копий, которые способны кодировать разные белковые цепи (полипептиды). Последние, в свою очередь, могут по–разному взаимодействовать друг с другом, образуя комплексы, состоящие из 2–4 и более полипептидов. При этом формируются многочисленные белковые комплексы, обладающие порой разными функциями. Например, ген по имени Ikarus за счет альтернативного сплайсинга способен обеспечивать образование 6–ти различных полипептидов. А далее из них в клетке может сформироваться около 20 разнообразных белковых комплексов, состоящих или из одинаковых, или разных полипептидов. Таким образом, наш организм содержит гигантское число вариантов белковых молекул. Все это существенно осложняет на сегодняшний день возможность создания «каталога белков».

Кроме белков, в нашем организме содержится большое количество других молекул: липидов, углеводов, разнообразных низкомолекулярных органических соединений. Но все–таки основу основ составляют именно белки. Они выполняют в клетках весьма разнообразные функции: одни служат строительными материалами клетки (структурные белки), другие выполняют функции ферментов, катализируя многочисленные клеточные химические реакции, третьи являются регуляторами процессов репликации, транскрипции и трансляции. Существуют еще транспортные белки, участвующие в транспортировке метаболитов в клетке, белки–гормоны, хранилищ–ные белки, рецепторные, сократительные и др. Белки в клетке постоянно синтезируются и постоянно разрушаются (деградируют). Кроме того, в клетке они распределены между разными, относительно изолированными областями, окруженными мембранами, которые называются органеллами.

Важно также отметить, что в настоящий момент анализировать белки существенно труднее, чем гены. Если процесс севенирования ДНК уже автоматизирован так, что «с ней справилась бы любая обезьяна», как едко заметил нобелевский лауреат Джеймс Уотсон, то методы анализа белков оказались гораздо более сложными. В далеком 1962 г. вместе с Уотсоном и Криком в Стокгольм были приглашены из Кембриджа Джон Кэндрью и Макс Перутц. Они были тогда удостоены Нобелевской премии по химии за впервые осуществленную расшифровку трехмерной структуры двух белков – миоглобина и гемоглобина, – ответственных за перенос кислорода в мышцах и эритроцитах соответственно. Даже в начале 1990–х годов расшифровка структуры каждого нового белка представляла значительные трудности. Каждый анализ занимал порой до десятка лет. Сейчас методы анализа белков значительно усовершенствованы. Однако все еще перспективы создания «каталога протеинов» намного более отдаленны, чем перспективы создания упомянутых выше каталогов генов, снипсов или вариаций метилирования ДНК.

Хотя и от самого по себе синтеза белка еще далеко до создания целого организма, но без белков этот процесс никогда не пойдет. Белки не только составляют большую часть клетки как структурные элементы, они осуществляют также постоянный тонкий контроль за всеми химическими процессами, происходящими внутри клетки, избирательно включая и выключая их в строго определенные сроки и в строго определенных местах. Это теперь понятно. Но не понятно до конца другое: как именно происходит в конечном итоге развитие целого организма из одной единственной клетки – зиготы. Белки, конечно же, активно участвуют в этом процессе как основные компоненты.

Работа белков, как и работа генов, тоже зависит от многих факторов, прежде всего влияющих на их пространственную структуру. Более того, многие белки со временем могут меняться (модифицироваться), и здесь уже гены не оказывают никакого влияния. Происходит это путем присоединения к белковым молекулам особых побочных групп – фосфатидов, сахаридов или ненасыщенных углеродных цепочек. Все эти события – как и образование пространственной структуры белка – никак не отмечены в генах. Гены содержат лишь общий план активной жизни клеток, а сама жизнь определяется в конечном итоге белками.

Гены во всех клетках всегда одни и те же, но вот белки, наоборот, постоянно меняются в зависимости от стадии развития клетки, возраста организма, состояния клетки и множества других обстоятельств. Иными словами, как пишет акад. Л. Л. Киселев, «протеом – понятие динамическое, а геном, напротив, статическое».

Белки позволяют себе импровизацию типа джазовой, т.е. коллективной, когда вместо одних белков их функцию выполняют другие. Это очень важно, поскольку все ситуации, с которыми сталкивается организм в процессе своей жизни, заранее предусмотреть нельзя. Известно и другое – один и тот же белок может иметь отличающийся эффект в разных типах клеток и на разных стадиях развития. Все это имеет аналогии с обычным литературным текстом. В лингвистике для описания подобных случаев имееются специальные термины. Так, термин синонимия обозначает предложения, несущие один слысл, но состоящие из разных слов (например, «Мамонтов погубило внезапное похолодание» и «Резкое понижение температуры на планете привело к гибели мамонтов»). Под термином омонимия подразумевают смысловое различие внешне совпадающих предложений (например, предложение «Мы проехали остановку» может обозначать две разные ситуации: мы проехали расстояние, равное перегону между двумя остановками, или мы миновали то место, где должны были выйти).

Одна из важнейших целей, стоящих перед учеными, занятыми анализом протеома, заключается в поиске характерных изменений в белках, присущих различным видам заболеваний. Действительно, нередко удается проследить взаимосвязь между изменениями белков и разными болезненными состояниями. Секвенирование генома человека дало в руки исследователей важную информацию для борьбы с наследственными недугами. Однако не все болезни передаются нам по наследству. Многие никак не связаны с «родовым проклятием». Выявить эти болезни можно, лишь узнав, как изменился состав белков внутри патологической клетки. По этой перемене можно заранее заметить и патологические процессы, начавшиеся в организме.

Чтобы увидеть белковый состав клетки, ученые прибегают к так называемому двумерному электрофорезу. Сначала белки сортируют по их заряду, а затем они попадают в гель, выполняющий роль сита, в котором белки разделяют по их размерам. Таким образом, удается разделить до десяти тысяч белков и маркировать их. На этой основе можно составить что–то вроде паспорта данной клетки, где примерно указан состав белков. Если человек заболевает, «паспорт» изменится. Сравнивая наборы белков больной и здоровой клеток, удается оценить течение болезни и процессы, ей сопутствующие. Все это позволяет значительно ускорить поиск белков–мишеней и осуществлять разработку лекарственных средств, чтобы как можно быстрее обеспечить больных новыми эффективными лекарствами. Сегодня более 95% всех фармакологических средств на рынке нацелены на воздействие на белки–мишени. Протеомика порой может помочь идентифицировать и оценить новые целевые белки гораздо эффективнее, чем геномика. Это позволяет резко ускорить разработку новых диагностик и терапевтических средств.

Можно привести такой пример. Известно, что к повышению артериального давления прямое отношение имеет так называемый ангиотензин–конвертирующий фермент (ACE). Антиотензин, образующийся под действием ACE, воздействует на стенки артерии, что и ведет к гипертонии. Уже относительно давно были найдены бло–каторы АСЕ, которые стали продаваться в качестве лекарств от повышенного давления. Однако все эти лекарственные средства оказались малоэффективными. В результате анализа генома человека был выявлен наиболее распространенный и эффективный вариант фермента. Затем была определена структура белкового продукта, после чего подобраны химические вещества, активно связывающиеся с ним. В результате был найден новый эффекивный препарат против артериального давления, причем за вдвое меньшее время и всего лишь за 200 млн долларов вместо 500 млн!

Окончательных результатов этого нового грандиозного исследования, которое можно назвать «Протеом человека», конечно же, в ближайшие месяцы ожидать не приходится. Понадобится, видимо, много десятков лет, если не все новое столетие. Лишь после того, как человечество получит в свое распоряжение всю эту информацию, можно будет говорить об окончательном завершении программы «Геном человека».

Но и это еще не конец предстоящих исследований. Не завершение процесса создания Энциклопедии человека. Не вызывает сомнения, что гены и кодируемые ими белки – продукт эволюции. Вместе с тем очевидно, что когда гены еще вообще не существовали, в неорганическом мире, у кристаллов и минералов, имелись определенные формы, подобные тем, что есть сейчас у вирусов, белков и даже клеток. До сих пор мы еще мало знаем о тех механизмах, которые побуждают группы молекул объединяться вместе, формируя те или иные клетки и ткани. Тем не менее, следует отметить, что в последние годы возникло некое новое представление о процессе самосборки молекул, которое может оказаться важным для нашего понимания процессов формирования и вообще функционирования человека. Возможно, во всем многообразии природных систем существует некий единый фундаментальный способ построения разнообразных структур. Его иногда назвывают «тенсегрити» (при переводе слова «tensegrity» с английского, получится что–то вроде «напряженности стойкости», что довольно коряво и малопонятно звучит по–русски). Термин «тенсегрити» означает, что система стабильна за счет баланса в ее структуре сил сжатия–растяжения. Это общий принцип, который, вероятно, работает и в организме человека. Считается, что все 206 костей человека противостоят силе тяжести, что дополнительно к мышцам, сухожилиям и связкам позволяет ему удерживаться в вертикальном положении. Таким образом, по тен–сегрити, основные структуры внутри нас – кости, которые служат прочными распорками, а также мускулы, сухожилия и связки, являющиеся упругими элементами. Согласно этому представлению, законы тенсегрити действуют как на молекулярном уровне (им подчиняются наши белки и другие важные для клетки молекулы), так и на клеточном и даже организменном уровнях (при формировании тканей и органов, при морфогенезе). И все эти «сопроматные» механизмы, действующие in vivo наряду с генетическими, нам еще предстоит изучить.

 


Поделиться:



Последнее изменение этой страницы: 2019-06-19; Просмотров: 191; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.022 с.)
Главная | Случайная страница | Обратная связь