Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Использование выборки по значимости



Очевидно, что точность вычислений можно увеличить, если область, ограничивающая искомую функцию, будет максимально к ней приближена. Для этого необходимо использовать случайные величины с распределением, форма которого максимально близка к форме интегрируемой функции. На этом основан один из методов улучшения сходимости в вычислениях методом Монте-Карло: выборка по значимости.

Program Evaluation and Review Technique (сокращенно PERT) — техника оценки и анализа программ, которая используется при управлении проектами. Была разработана в 1958 году консалтинговой фирмой «Буз, Ален и Гамильтон» совместно с корпорацией «Локхид» по заказу Подразделения специальных проектов ВМС США в составе Министерства Обороны США для проекта создания ракетной системы «Поларис» (Polaris). Проект «Поларис» был ответом на кризис, наступивший после запуска Советским Союзом первого космического спутника.

Пример сетевой PERT диаграммы для проекта продолжительностью в семь месяцев с пятью промежуточными точками (от 10 до 50) и шестью деятельностями (от A до F)

PERT — это способ анализа задач, необходимых для выполнения проекта. В особенности, анализа времени, которое требуется для выполнения каждой отдельной задачи, а также определение минимального необходимого времени для выполнения всего проекта.

PERT был разработан в 50-ые годы главным образом для упрощения планирования и составления графиков больших и сложных проектов. Метод подразумевал наличие неопределённости, давая возможность разработать рабочий график проекта без точного знания деталей и необходимого времени для всех его составляющих.

Самая известная часть PERT — это «Сети PERT» — графики соединённых между собой временных линий. PERT предназначен для очень масштабных, единовременных, сложных, нерутинных проектов.

Диаграмма представляет собой множество точек-вершин вместе с соединяющими их ориентированными дугами. Каждая из них как направленный отрезок имеет начало и конец, причем модель содержит только одну из пары симметричных дуг (от вершины 1 к вершине 2 и от вершины 2 к вершине 1). Всякой дуге, рассматриваемой в качестве какой-то работы из числа нужных для осуществления проекта, приписываются определенные количественные характеристики. Это — объемы выделяемых на нее ресурсов и, соответственно, ее ожидаемая продолжительность (длина дуги). Любая вершина интерпретируется как событие завершения работ, представленных дугами, которые входят в нее, и одновременно начала работ, отображаемых дугами, исходящими оттуда. Таким образом, фиксируется что ни к одной из работ нельзя приступить прежде чем будут выполнены все предшествующие ей согласно технологии реализации проекта. Факт начала этого процесса — вершина без входящих, а окончание — без исходящих дуг. Остальные вершины должны иметь и те, и другие. Последовательность дуг, в которой конец каждой предшествующей совпадает с началом последующей, трактуется как путь от отправной вершины к завершающей, а сумма длин таких дуг — как его продолжительность. Обычно начало и конец реализации проекта связаны множеством путей, длины которых различаются. Наибольшая определяет длительность всего этого проекта, минимально возможную при зафиксированных характеристиках дуг графа. Соответствующий путь — критический и в каждый момент времени контролировать нужно состояние именно тех работ, которые «лежат» на нем.

Метод графической оценки и анализа (GERT, англ. Graphical Evaluation and Review Technique) — альтернативный вероятностный метод сетевого планирования, применяется в случаях организации работ, когда последующие задачи могут начинаться после завершения только некоторого числа из предшествующих задач, причём не все задачи, представленные на сетевой модели, должны быть выполнены для завершения проекта.
Разработан в США в 1966 году.
    Основу применения метода GERT составляет использование альтернативных сетей, называемых GERT-cетями. Они позволяют более адекватно задавать сложные процессы строительного производства в тех случаях, когда затруднительно или невозможно (по объективным причинам) однозначно определить, какие именно работы и в какой последовательности должны быть выполнены для достижения цели проекта (то есть существует многовариантность реализации проекта).
    Расчёт GERT-сетей, моделирующих реальные процессы, чрезвычайно сложен, однако программное обеспечение для вычисления сетевых моделей такого типа в настоящее время, к сожалению, не распространено.

 

 

Сетевой график

Сетевой график основан на использовании математической модели - графа. Графом (устаревшие синонимы: сеть, лабиринт, карта и т.д.) математики называют " множество вершин и набор упорядоченных или неупорядоченных пар вершин". Говоря более привычным для студента (но менее точным) языком, граф - это набор кружков (прямоугольников, треугольников и проч.), соединенных направленными или ненаправленными отрезками. В этом случае сами кружки (или другие используемые фигуры) по терминологии теории графов будут называться " вершинами", а соединяющие их ненаправленные отрезки - " ребрами", направленные (стрелки) - " дугами". Если все отрезки являются направленными, граф называется ориентированным, если ненаправленными - неориентированным.[7]

Наиболее распространенный тип сетевого графика работ представляет систему кружков и соединяющих их направленных отрезков (стрелок), где стрелки отображают сами работы, а кружки на их концах (" события" ) - начало или окончание этих работ.

Рисунок показывает упрощенно лишь одну из возможных конфигураций сетевого графика, без данных, характеризующих сами планируемые работы. Фактически на сетевом графике приводится множество сведений о производимых работах. Над каждой стрелкой пишется наименование работы, под стрелкой - продолжительность, этой работы (обычно в днях).

В графике могут использоваться пунктирные стрелки - это так называемые " зависимости" (фиктивные работы), не требующие ни времени, ни ресурсов.

Они указывают на то, что " событие", на которое направлена пунктирная стрелка, может происходить только после свершения события, из которого исходит эта стрелка.

В сетевом графике не должно быть тупиковых участков, каждое событие должно соединяться сплошной или пунктирной стрелкой (или стрелками) с каким-либо предшествующим (одним или несколькими) я последующим (одним или несколькими) событиями.

Нумерация событий производится примерно в той последовательности, в какой они будут происходить. Начальное событие располагается обычно с левой стороны графика, конечное — с правой.

Последовательность стрелок, в которой начало каждой последующей стрелки совпадает с концом предыдущей, называется путем. Путь обозначается в виде последовательности номеров событий.

В сетевом графике между начальным и конечным событиями может быть несколько путей. Путь, имеющий наибольшую продолжительность, называется критическим. Критический путь определяет общую продолжительность работ. Все остальные пути имеют меньшую продолжительность, и поэтому в них выполняемое работы имеют резервы времени.

Критический путь обозначается на сетевом графике утолщенными или двойными линиями (стрелками).

Особое значение при составлении сетевого графика имеют два понятия:

· Раннее начало работы - срок, раньше которого нельзя начать данную работу, не нарушив принятой технологической последовательности. Он определяется наиболее долгим путем от исходного события до начала данной работы

· Позднее окончание работы - самый поздний срок окончания работы, при котором не увеличивается общая продолжительность работ. Он определяется самым коротким путем от данного события до завершения всех работ.

При оценке резервов времени удобно использовать еще два вспомогательных понятия:

· Раннее окончание - срок, раньше которого нельзя закончить данную работу. Он равен раннему началу плюс продолжительность данной работы

· Позднее начало - срок, позже которого нельзя начинать данную работу, не увеличив общую продолжительность проекта. Он равен позднему окончанию минус продолжительность данной работы.

Если событие является окончанием лишь одной работы (т.е. в него направлена только одна стрелка), то раннее окончание этой работы совпадает с ранним началом последующей.

Общий (полный) резерв - это наибольшее время, на которое можно задержать выполнение данной работы, не увеличивая общую продолжительность работ. Он определяется разностью между поздним и ранним началом (или поздним и ранним окончанием - что тоже самое).

Частный (свободный) резерв - это наибольшее время, на которое можно задержать выполнение данной работы, не меняя раннего начала последующей. Этот резерв возможен только тогда, когда в событие входят две или более работы (зависимости), т.е. на него направлены две или более стрелки (сплошные или пунктирные). Тогда лишь у одной из этих работ раннее окончание будет совпадать с ранним началом последующей работы, для остальных же это будут разные значения. Эта разница у каждой работы и будет ее частным резервом.

Кроме описанного типа сетевых графиков, в котором вершины графа (" кружки" ) отображают события, а стрелки - работы, существует другой тип, в котором вершинами являются работы. Различие между этими типами непринципиальное - все основные понятия (раннее начало, позднее окончание, общие и частные резервы, критический путь и т.д.) сохраняются неизменными, отличаются лишь способы их записи.[8]

Построение сетевого графика этого типа основано на том, что раннее начало последующей работы равно раннему окончанию предыдущей. Если данной работе предшествует несколько работ, ее раннее качало должно быть равно максимальному раннему окончанию предыдущих работ. Расчет поздних сроков ведется в обратном порядке - от завершающий к исходной, как и в сетевом графике " вершины - события". У завершающей работы позднее и раннее окончание совпадают и отражают продолжительность критического пути. Позднее начало последующей работы равно позднему окончанию предыдущей. Если за данной работой следует несколько работ, то определяющим является минимальное значение из поздних начал.

Сетевые графики " вершины - работы" появились позже графиков " вершины - события", поэтому они несколько менее известны и сравнительно реже описываются в учебной и справочной литературе. Тем не менее, они имеют свои преимущества, в частности их легче строить и легче корректировать. При корректировке графиков ''вершены — работы" их конфигурация не меняется, у графиков же " вершины - события" такие изменения исключить не удается. Однако в настоящее время составление и корректировка сетевых графиков автоматизированы, и для пользователя, которому важно знать лишь последовательность работ и их резервы времени, не имеет особого значения, каким способом сделан график, т.е. какого он типа. В современных специализированных пакетах компьютерных программ планирования и оперативного управления в основном используется тип " вершины - работы".

Корректировка сетевых графиков производится как на этапе их составления, так и использования. Она состоит в оптимизации строительных работ по времени и по ресурсам (в частности по движению рабочей силы). Если, например, сетевой график не обеспечивает выполнения работ в необходимые сроки (нормативные или установленные контрактом) производится его корректировка по времени, т.е. сокращается продолжительность критического пути. Обычно это делается:

· за счет резервов времени некритических работ и соответствующего перераспределения ресурсов;

· за счет привлечения дополнительных ресурсов;

· за счет изменения организационно-технологической последовательности и взаимосвязи работ.

В последнем случае у графиков " вершины - события" приходится менять их конфигурацию (топологию).

Корректировка по ресурсам производится путем построения линейных календарных графиков по ранним началам, соответствующих тому или иному варианту сетевого графика, и корректировки этого варианта.

При построении сетевых графиков необходимо соблюдать ряд правил:

1. В сети не должно быть событий, из которых не выходит ни одной работы, если только эти события не являются для данной сети завершающими.

2.  В сети не должно быть событий, в которые не входит ни одной работы, если только эти события не являются для данной сети исходными.

3. В сети не должно быть замкнутых контуров, путей, соединяющих какое-либо событие с ним же самим.

4. В сети не должно быть работ и событий, имеющих одинаковые шифры.

 

 


Пример изображения параллельных работ

5. Если какие-либо работы в сети могут быть начаты до полного окончания непосредственно предшествующей им работы, то последняя должна быть расчленена на такие последовательно выполняемые работы, результаты которых необходимы и достаточны для возможности начать интересующие нас работы.

 

 


Пример изображения совмещенных работ

6. Если для выполнения какой-либо работы необходимо получить результаты не всех входящих в ее начальное событие работ, а только части из них, то для этой работы нужно ввести новое начальное событие, и соединить его с прежним начальным событием фиктивной работой.

 

 

 

 


Пример изображения сложных зависимостей работ

7. Если необходимо укрупнить сетевой график, то группа работ на детальной модели может быть заменена одной работой, если вся заменяемая группа работ имеет одно начальное и одно конечное событие. 

 

 

 


а)

 

 

 


б)

Примеры укрупнения фрагментов сетевой модели

а) простейший случай для группы работ с одной входной и выходной работой (до укрупнения); б) тоже, после укрупнения

    Анализируя сетевые графики, можно заметить, что они отлича­ются не только количеством событий, но и числом взаимосвязей между ними. Сложность сетевого графика оценивается коэффициентом слож­ности. Коэффициент сложности представляет собой отношение количества работ сетевого графика к количеству событий и определя­ется по формуле:

                                                 К=Р/С,

где К – коэффициент сложности сетевого графика;
Р и С – количество работ и событий, ед.
    Сетевые графики, имеющие коэффициент сложности от 1, 0 до 1, 5, являются простыми, от 1, 51 до 2, 0 – средней сложности, более 2, 1 – сложными.

Приступая к построению сетевого графика, следует установить: [9]

1. какие работы должны быть завершены ранее, чем начнется дан­ная работа;

2. какие работы могут быть начаты после завершения данной ра­боты;                                                       

3. какие работы могут выполняться одновременно с данной работой. Кроме того, надо придерживаться общих положений и правил:

ü сеть вычерчивается слева направо (это же направление имеют и стрелки-работы);

ü каждое событие с большим порядковым номером изображается правее предыдущего;

ü график должен быть простым, без лишних пересечений;

ü все события, кроме завершающего, должны иметь последую­щую работу (в сети не должно быть события, кроме исходного, в которое не входила бы ни одна работа);

ü один и тот же номер события нельзя использовать дважды;

ü в сетевом графике ни один путь не должен проходить дважды через одно и то же событие (если такие пути обнаружены, то это свидетельствует об ошибке);

ü если начало какой-либо работы зависит от окончания двух предшествующих работ, выходящих из одного события, тогда между событиями – окончаниями этих двух работ – вводится фиктивная работа (зависимость).

Заключение

Цель сетевого планирования – представить любой проект в виде последовательности связанных между собой задач. В итоге возникает иерархическая структура проекта.

Любая работа может быть оценена по времени, необходимому для ее выполнения. Пространство, которым представляется на схеме время, должно соответствовать тому объему работ, который должен быть произведен в это время. Использование этих двух принципов позволяет понять всю систему; при этом становится возможным графическое представление любого рода работ, общим мерилом которых является время.

Сетевое планирование как часть системы управления проектами стало объектом внимания и внедрения по причине обострения конкуренции и падения прибыли. Уже давно интересуются им строительные компании, отрасли информационных технологий и телекоммуникаций. Сейчас растет спрос со стороны банков и металлургов. Однако, несмотря на всю свою технологичность и четкую логику, сетевое планирование не становится реальностью в тех компаниях, где не созданы предпосылки для его внедрения.

Сетевые графики, составленные тщательно, но без учета рисков имеют низкую вероятность успешного исполнения. Технология сетевого планирования включает и работу с рисками. Часть рисков можно нейтрализовать, если заранее предусмотреть планы работы с ними.

Основным плановым документом в системе СПУ является сетевой график (сетевая модель или сеть), представляющий собой информационно-динамическую модель, в которой отражаются взаимосвязи и результаты всех работ, необходимых для достижения конечной цели разработки.

Преимущества моделей сетевого планирования и управления обеспечивают своевременное внесение корректив в процесс управления и в работу различных управленческих органов, эффективное предвидение будущего и надлежащего воздействия на ход выполнения работ. Обеспечиваются также необходимые условия для применения опыта, творческих возможностей человека на этапах постановки задач, корректировки хода их решения и оценки конечных результатов. Управленческие работники освобождаются от рутинной деятельности.

Использование компьютерных графиков в организации и проведении оперативных совещаний позволяет с высокой степенью четкости, ясности, убедительности и предметности своевременно решать возникающие вопросы.

Система сетевого планирования и управления является комплексом расчетных алгоритмов, организационных мероприятий, контрольных и координационных приемов. Она представляет собой средство динамического и сбалансированного представления и анализа сложных социально-экономических программ. Целями функционирования системы являются: выявление и мобилизация резервов времени и материальных ресурсов, скрытых в рациональной организации социально-экономических процессов; осуществление управления программой с постоянной концентрацией внимания на решении главных, наиболее значимых задач; прогнозирование и предупреждение возможных сбоев в ходе программы; повышение эффективности управления в целом при четком распределении ответственности между руководителями разных уровней.

 

 

Литература

1. Попов В. М., Солодков Г. П., Топилин В. М. Системный анализ в управлении социально-экономическими и политическими процессами. – Р-н-Д.: СКАГС, 2002.

2.  Зуховицкий С. И., Радчик И. А., Математические методы сетевого планирования, М., 1965.

3. Основные положения по разработке и применению систем сетевого планирования и управления, 2 изд., М., 1967.

4. Сетевые графики в планировании, М., 1967.

5. Сетевые модели и задачи управления, М., 1967.

6. Модер Дж., Филлипс С., Метод сетевого планирования в организации работ, пер. с англ., М. — Л., 1966.

7. Основные положения по разработке и применению систем сетевого планирования и управления, 2 изд., М., 1967.

8. Ребрин Ю.И. Основы экономики и управления производством. Конспект лекций, Таганрог: Изд-во ТРТУ, 2000.

9. Алешина С. Наука плетения сетей // Секрет фирмы. № 47 (86) 13.12.2004.

10.  Кремер Н.Ш., Путко Б.А., Тришин И.М., Фридман М.Н./Исследование операций в экономике: Учебное пособие для ВУЗов/ под ред. Проф. Кремера Н.Ш– М.: ЮНИТИ, 2000.

11.  Рыбальский В. И. Автоматизированные системы управления строительством. – Киев, Высш. шк., 1979.

12.  Рыкунов В. И. Основы управления: Монография. – М.: Изограф, 2000.

13. Сытник В. Ф. АСУП и оптимальное планирование. – Киев.: Выща шк., 1978.

14.  Прыкин Б. В. и др. Основы управления. Производственно-строительные системы: Учебник для вузов. – М.: Стройиздат, 1991.

15.  Павловский Ю. Н. Декомпозиция моделей управляемых систем- М.: Наука, 1979.

16.  Потапов А. Б. Технология творчества. – М.: НТК «Метод», 1992.

17.  Опнер С. Л. Системный анализ для решения деловых и промышленных проблем. Пер. с англ. – М.: Сов. Радио, 1969.

18.  Ларин А. А. Теоретические основы управления. Г. 1.: Процессы и системы управления. – М.: РВСН, 1994.   

 


[1] Гребнев Е. Т. Управленческие нововведения. – М.: Экономика, 1983

[2] Основы построения автоматизированных систем управления/ Под ред. В. И. Костюка. – М.: Сов. Радио, 1977

[3] Кремер Н.Ш., Путко Б.А., Тришин И.М., Фридман М. Н./Исследование операций в экономике: Учебное пособие для ВУЗов/ под ред. Проф. Кремера Н.Ш– М.: ЮНИТИ, 2000– С291 – 294

[4] Основные положения по разработке и применению систем сетевого планирования и управления, 2 изд., М., 1967.

[5] Сетевые модели и задачи управления, М., 1967.

[6] Модер Дж., Филлипс С., Метод сетевого планирования в организации работ, пер. с англ., М. — Л., 1966.

[7] Сетевые графики в планировании, М., 1967.

[8] Ковалева Л.Ф. “Математическая логика и теория графов”/МЭСИ, 1977

[9]. Зуховицкий С. И., Радчик И. А., Математические методы сетевого планирования, М., 1965.


Поделиться:



Последнее изменение этой страницы: 2020-02-16; Просмотров: 158; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.059 с.)
Главная | Случайная страница | Обратная связь