Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Цифровая радиолиния КИМ-ЧМ-ФМ



РГРТА

Кафедра РУС

Курсовая работа на тему:

Цифровая радиолиния КИМ-ЧМ-ФМ

Рязань 2004


Содержание

1) Общая характеристика системы управления

2) Расчет и выбор основных технических характеристик системы

2.1 Определение частоты опроса

2.2 Определение разрядности квантователя

2.3 Выбор группового сигнала и расчет его параметров

2.4 Выбор несущей частоты передатчика

2.5 Расчет энергетического потенциала

3)Контур управления и его анализ

4)Разработка функциональной схемы радиолинии

4.1 Спектр сигнала КИМ-ЧМ-ФМ

4.2 Описание функциональной схемы передатчика

4.3 Описание функциональной схемы приемника

5) Конструкция бортового приемника

6) Заключение

7) Литература

 


Общая характеристика системы управления

сигнал дискретизация квантование кодирование приемник

Командное радиоуправление применяется для широкого класса летательных аппаратов. В системах командного радиоуправления команды вырабатываются на пункте управления и передаются на Л.А. по командной радиолинии.

В системах управления снарядами с помощью радиокоманд обеспечивается наведение снаряда по заданной траектории и выполнение разовых операций (перевод снаряда в режим самонаведение, аварийный подрыв и т.п.). В комплексах космических аппаратов радиокоманды используются для корректирующего управления движением центра масс К.А. и управление работой различной бортовой аппаратуры.

При формировании команд управления траекторией полета Л.А. используются данные, полученные с помощью визиров (средств наблюдения за Л.А. и целями).

Различают следующие системы командного радиоуправления 1): КРУ-1, КРУ-2 и КРУ-3. В системах КРУ-1 визир цели размещается на пункте управления, в системах КРУ-2- на борту Л.А.

Средства визирования цели, которые применяются в системах КРУ-1 и КРУ-2, могут существенно отличаться друг от друга. В системах КРУ-1 основным типом визира цели является активная радиолокационная станция. В системах КРУ-2 в качестве визира можно использовать радиолокационные, телевизионные, оптические и тепловые (инфракрасные) устройства. Применение телевизионной камеры на борту Л.А. повышает эффективность участия оператора в решении задачи селекции целей.

В системах КРУ-1 и КРУ-2 средства визирования Л.А. размещаются на пункте управления. Эти средства работают, как правило, в диапазоне сверхвысоких частот с использованием сигналов активного ответа, что повышает дальность действия таких визиров и точность измерений координат Л.А.

В системах следящего управления снарядами находит применение радиовизир снаряда, который представляет собой радиолокационные станции с активным ответом. Для определения координат космического аппарата используются системы траекторных измерений.

Требования к дальности действия визиров, составу измеряемых величин и точности измерений зависят от назначения системы.

В системах корректирующего радиоуправления К.А. необходимо оценить с высокой точностью либо значения начальных условий для определенного момента времени, либо значения параметров орбиты. Результаты первичных радиотехнических измерений здесь обрабатываются (вторичная обработка) в течение достаточно длительных интервалов времени.

В системах управления снарядами визиры цели, как правило, должны обеспечивать непрерывное получение оценок параметров движения в реальном масштабе времени (следящие оценки). Поскольку дальности в таких системах относительно невелики, то получение требуемых оценок с необходимой точностью технических трудностей обычно не вызывает.

В состав системы командного радиоуправления входят также вычислительные средства, размещаемые на пункте управления. Эти средства предназначаются для выполнения различных математических и логических операций, связанных с управлением Л.А.

В данной работе разрабатывается космическая система связи с КИМ-ЧМ-ФМ. Характер спектра сигнала с многоступенчатой модуляцией в значительной степени определяется спектром сигнала КИМ. Кодово-импульсная модуляция является наиболее распространенным методом цифрового преобразования аналоговых сигналов. При КИМ осуществляется три вида преобразований: дискретизация по времени исходного сигнала, квантование амплитуд дискретных отчетов сигнала и кодирование. Сформированные при дискретизации отчеты преобразуются в группы кодовых символов.

 


Расчет и выбор основных технических характеристик системы

Определение частоты опроса

 

Суть дискретизации по времени состоит в том, что непрерывное сообщение заменяется последовательностью его мгновенных значений (отсчетов), взятых в дискретных точках времени. При такой замене из рассмотрения исключается все множество значений непрерывной функции времени, находящихся внутри интервалов времени Tд. Полученная при этом функция имеет вид последовательности отсчетов, взятых в дискретные моменты времени.

Если непрерывная функция времени U(t) имеет спектр, ограниченный полосой частот от нуля до Fв, то эта функция полностью определена последовательностью своих мгновенных значений, взятых в моменты времени, отсчитываемые через интервалы Tд=1/2Fв.

 

 

В этом случае интерполирующая функция:

 

X(t)=sin2pFм(t-кТд)/2pFм(t-кТд);

 

То есть функция является идеальной интерполирующей функцией для сигнала с прямоугольным спектром. В этом случае частота дискретизации Fд=2Fм. Но это соотношение не может быть использовано на практике, потому что:

1) Сигналов с идеальным прямоугольным спектром нет.

2) Число выборок не равно бесконечности.

На практике частота дискретизации выбирается, исходя из соотношения:

Fд=2cFв, где Fв определяется формой спектра сигнала, в которой сосредоточена основная доля энергии, обычно 0, 99. Коэффициент c зависит от вида интерполирующих полиномов и требуемых значений показателя верности. Задаемся 4-ой моделью сигнала (сигнал с колоколообразным спектром), полиномом 2-го порядка и приведенным показателем верности g=0, 2% и получим:

 

c= 5.5/Ö g=5, 5/0, 447=12, 3

 

Отсюда

 

Fд=12, 3*2*6=147, 6 [Гц];

 

Рис.1

 

Рисунок соответствует временному уплотнению и синхронной передаче последовательности командных слов одинаковой длительности в течение интервала времени длительностью ТКИ. Этот интервал разбит на равные интервалы длительностью ТКС, каждый из которых закреплен за определенным каналом радиолинии. Число таких интервалов соответствует числу каналов NК в радиолинии. В данной работе Nк=5. Разделение каналов при приеме обеспечивается путем передачи синхронизирующего слова длительностью ТСК. В данной радиолинии в качестве синхрослова выбран код Баркера. Он является лучшим в своем канале. Для уменьшения ошибок, возникающих при обнаружении синхронизирующего сигнала и определении его временного положения, АКФ синхросигнала имеет узкий центральный пик и малый уровень боковых лепестков.

Совокупность командных и синхронизирующих слов, занимающая интервал времени длительностью Тå КИSK, называют кадром. Синхронизирующее слово передается в начале кадра и называется словом кадровой синхронизации. Это слово отличается от командных слов своей структурой. Этим самым обеспечивается возможность выделения в приемном тракте сигналов кадровой синхронизации, которые используются затем для разделения каналов.

Длительность канального сигнала Тå =1/FД=1/147, 6=0, 00678 [сек ]=6, 78 [мс];

Имеем 5 каналов, количество элементарных передаваемых символов в каждом канале равно числу уровней квантования В=8. Таким образом, количество элементарных символов в информационном сигнале NИ=5*8=40. Длительность синхрослова составляет 50%-70% от информационного символа, отсюда Тå =1, 5Тки. После чего получаем ТКИ=0, 00678/1, 5=0, 00452 сек, а ТSK= Тå - ТКИ = 0.00226 сек Таким же образом посчитаем количество элементарных символов в кадре NК=NS+NИ.

 

NS=NИ/2=40/2=20. Отсюда NК=20+40=60;

 

Длительность элементарного символа:

 

tО=TКИ/NК=0, 00452/60= 75, 3 [мкс];

 

Тактовая частота:

 

fТ=1/tО = 1/75, 3=13, 28 [кГц];


Вид группового сигнала:

синхрослово 1 канал ……….. 5 канал

Рис. 2

Измеряемая, монотонно нарастающая (или убывающая) величина g(t) непрерывно воспринимается бортовым радиоизмерительным устройством. Результат измерения обрабатывается в бортовом решающем устройстве и сравнивается с некоторой пороговой величиной gпор. В момент совпадения этих величин (g(t)= gпор) выдается разовая команда в виде скачка напряжения или в виде импульса, поступающая на исполнительное устройство. С выхода исполнительного устройства осуществляется управляющее воздействие Fy(t) на объект управления.

Неавтономные радиотелемеханические системы осуществляются как без обратной связи, так и с обратной связью. В обоих случаях на пункте управления принимается решение о формировании команды и осуществляется ее формирование. Сформированная команда Uк(t) в реальном масштабе времени или через программно- временное устройство поступает на вход радиоканала разовой команды или командной радиолинии, а затем передается на борт летательного аппарата.

Неавтономные радиотелемеханические системы без обратной связи по выполняемым функциям обычно аналогичны автономным радиотелемеханическим системам. Однако радиоизмерительное устройство, контролирующее величину g(t), находится здесь на пункте управления.

Примером неавтономной радиотелемеханической системы без обратной связи может служить радиосистема выключения двигателя баллистической ракеты при ее пуске на заданную дальность. Такая система включает в себя: радиосистему траекторных измерений на активном участке траектории, решающее устройство, радиоканал разовой команды, исполнительное устройство выключения двигателя и объект управления - ракетный двигатель.

 

А)Функциональная схема неавтономной радиотелемеханической системы.

Рис. 3

 


Б) Функциональная схема р/телемеханической системы с обратной связью.

Рис. 4

В радиотелемеханических системах с обратной связью информацию о состоянии и работе объектов управления - бортовых приборов и агрегатов- получают с помощью различного рода датчиков, устанавливаемых на борту летательного аппарата и связанных с контролируемыми величинами g(t). Полученные с датчиков и соответствующим образом обработанные величины поступают непосредственно или через запоминающее устройство на вход телеметрической радиолинии и передаются по ней на пункт управления. На пункте управления в устройстве выделения и обработки телеметрической информации получается оценка состояния объектов управления g*(t), необходимая для осуществления требуемого управления бортовыми приборами и агрегатами. Формирование команд осуществляется в результате сравнения оценки g*(t) c величиной gО(t), задающей необходимое состояние объектов управления. Сформированные команды по командной радиолинии передаются на борт летательного аппарата и поступают на исполнительное устройство, воздействующее на объекты управления. Контур радиотелемеханического управления оказывается замкнутым. В зависимости от решаемых задач, такое управление осуществляется либо как следящее, либо как корректирующее.

Применение радиотелемеханических систем с обратной связью наиболее характерно для управления бортовой аппаратурой космических аппаратов.

 


Спектр сигнала КИМ-ЧМ-ФМ

 

Сигнал КИМ-ЧМ-ФМ является одним из наиболее часто применяемых сигналов при организации цифровой связи по радиоканалам большой длительности. Символы сигнала КИМ заполняются прямоугольными колебаниями (меандром) разной частоты для нулей и единиц. Сигналом КИМ-ЧМ модулируется по фазе несущее колебание.

Аналитическая запись сигнала КИМ-ЧМ-ФМ имеет вид:

 

где:

 

-колебания прямоугольной формы (меандр) с частотами w1 и w2, используемыми на второй ступени модуляции сигнала; Пс( t ) – последовательность положительных и отрицательных прямоугольных импульсов, т.е. сигнал КИМ.

Общий вид спектра сигнала изображён на рис.5.

 


Интенсивность непрерывной части спектра на частотах w 0 ± w 1 и w 0 ± w 2, т.е. величина А равна:

 

 

где j - девиация фазы на последней ступени модуляции; Р(1) – вероятность появления единиц в сигнале КИМ; t0 – длительность элементарного символа.

Спектр сигнала изображён для случая, когда Р(1)=Р(0). В том случае, когда Р(1)¹ Р(0), форма спектра на частотах w 0 ± w 1 и w 0 ± w 2.

 

Заключение

 

В данном курсовом проекте была разработана радиолиния КИМ-ЧМ-ФМ, которая полностью удовлетворяет заданным техническим характеристикам.

Использование трехступенчатой модуляции позволяет работать на дальностях до сотен миллионов километров со скоростью передачи информации порядка сотен бит.


7. Используемая литература

1) Основы радиоуправления. Под ред. В. А. Вейцеля и В. Н. Типугина. Учебное пособие для вузов. М., " Сов. Радио", 1973.

2) Теория и проектирование радиосистем. Под ред. В. Н. Типугина. Учебное пособие для вузов. М., " Сов. Радио", 1977.

3) Пенин П. И. Системы передачи цифровой информации. Учебное пособие для вузов. М., " Сов.радио", 1976.

4) Система передачи цифровой информации КИМ-ОФМН-ФМ: Методические указания к лабораторной работе / Рязань гос. радиотехн. Акад.: Сост.: В. С. Паршин, М. В. Кулакова. Рязань, 1995.

5) Радиосистемы передачи информации: Учеб. Пособие для вузов / И. М. Тепляков, Б. В. Рощин и др. Радио и связь, 1982.

6) Езерский В. В. Курс лекций, 2003.

7) Егоров А. В. Курс лекций, 2004.

8) Паршин В. С. Курс лекций, 2003.

 

РГРТА

Кафедра РУС

Курсовая работа на тему:

Цифровая радиолиния КИМ-ЧМ-ФМ

Рязань 2004


Содержание

1) Общая характеристика системы управления

2) Расчет и выбор основных технических характеристик системы

2.1 Определение частоты опроса

2.2 Определение разрядности квантователя

2.3 Выбор группового сигнала и расчет его параметров

2.4 Выбор несущей частоты передатчика

2.5 Расчет энергетического потенциала

3)Контур управления и его анализ

4)Разработка функциональной схемы радиолинии

4.1 Спектр сигнала КИМ-ЧМ-ФМ

4.2 Описание функциональной схемы передатчика

4.3 Описание функциональной схемы приемника

5) Конструкция бортового приемника

6) Заключение

7) Литература

 


Поделиться:



Последнее изменение этой страницы: 2020-02-16; Просмотров: 161; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.04 с.)
Главная | Случайная страница | Обратная связь