Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Дифференцированный контроль знаний, умений и навыков учащихся при обучении математике



 

3.1 Дифференцированный подход в обучении математике на современном этапе развития общеобразовательной школы

 

В последние годы значительно усилился интерес учителей к проблеме дифференцированного подхода в обучении математике на различных ступенях математического образования. Этот интерес во многом объясняется стремлением учителей так организовать учебно-воспитательный процесс, чтобы каждый учащийся был оптимально занят учебно-воспитательной деятельностью на уроках и в домашней подготовке к ним с учетом его математических способностей и интеллектуального развития, чтобы не допускать пробелов в знаниях и умениях учащихся, а в конечном итоге дать полноценную базовую математическую подготовку учащимся обычного класса. Такой организации обучения математике требует современное состояние нашего общества, когда в условиях рыночной экономики от каждого человека требуется высокий уровень профессионализма и такие деловые качества как предприимчивость, способность ориентироваться в той или иной ситуации, быстро и безошибочно принимать решение.

Математика объективно является наиболее сложным предметом, требующим более интенсивной мыслительной работы, более высокого уровня обобщений и абстрагирующей деятельности. Поэтому невозможно добиться усвоения математического материала всеми учащимися на одинаково высоком уровне. Даже ориентировка на " среднего" учащегося в обучении математике приводит к снижению успеваемости в классе, к издержкам воспитательного характера у ряда учащихся (потеря интереса к математике, порождение безответственности, нежелание учиться и др.).

Признание математики в качестве обязательного компонента образования в большей мере обуславливает необходимость осуществления дифференцированного подхода к учащимся - как к определенным их группам (сильным, средним, слабым), так и к отдельным учащимся. Дифференцированный (групповой и индивидуальный) подход становится необходим не только для поднятия успеваемости слабых учащихся, но и для развития сильных учащихся, причем его понимание не должно сводиться лишь к эпизодическому добавлении в процессе обучения слабо успевающим учащимся тренировочных задач, а более подготовленным - задач повышенной трудности. Более полное понимание дифференциации обучения предполагает использование ее на различных этапах изучения математического материала: подготовки учащихся к изучению нового, введения нового, применения к решению задач, этапа контроля за усвоением и др. Дифференцировано может быть содержание изучаемого материала (выделение обязательного и дополнительного); дифференцировать можно методы (приемы) обучения, варьируя ими с целью оказания различной степени индивидуальной или групповой помощи учащимся при организации самостоятельной работы по изучению нового, при решении задач и др.; дифференцировать можно средства и формы обучения. Опыт передовых учителей показывает, что дифференциация может затрагивать все элементы методической системы обучения и в этом случае она дает наибольший эффект в условиях обычного класса.

В концепции образования дифференциация рассматривается как составная часть и необходимое условие гуманизации и демократизации образования, его перевода на новую культурообразующую базу.

В методической литературе по математике различают два вида дифференциации: уровневая (внутренняя) и профильная.

Уровневая дифференциация выражается в том, что обучение учащихся одного и того же класса в рамках одной программы и учебника проходит на различных уровнях усвоения учебного материала. Определяющим при этом является уровень обязательной подготовки (базовый уровень), который задается образцами типовых задач. На основе этого уровня формируется более высокий уровень овладения материалом - уровень возможностей. Предпринята попытка в разработке образцов задач для итоговых требований к математической подготовке учащихся, претендующих на более продвинутый уровень подготовки.

Уровневая дифференциация предполагает, что каждый учащийся класса должен услышать изучаемый программный материал в полном объёме, увидеть образцы учебной математической деятельности. При этом одни учащиеся воспримут и усвоят учебный материал, предложенный учителем или изложенный в книге, а другие усвоят из него только то, что предусматривается обязательными результатами в качестве минимума. Каждый учащийся имеет право добровольно выбрать уровень усвоения и отчетности в результатах своего учебного труда по каждой конкретной теме (разделу), а возможно и курсу в целом. Задачей учителя является обеспечение поступательного движения учащихся к более высокому уровню знаний и умений.

Профильная дифференциация - это дифференциация по содержанию. Она предполагает обучение разных групп учащихся по программам, отличающимся глубиной и широтой изложения материала. Дифференциация этого вида, как правило, осуществляется через курсы по выбору и профильное обучение. При этом одни учащиеся выберут общекультурный уровень изучения и усвоения учебного материала, другие - прикладной, третьи - творческий, в соответствии со своими интересами, способностями, склонностями и с учетом возможной в будущем профессиональной деятельности.

Учебные задачи в математике рассматриваются как цель и как средство обучения. В силу этого нормативные требования к усвоению того или иного раздела (темы) формулируются и задаются в виде задач различного уровня сложности, решение которых является обязательным или желательным результатом обучения.

Под задачей, следуя психолого-педагогическому определению, будем понимать цель, достижение которой возможно с помощью определенных действий (деятельности) в столь же определенной ситуации. В зависимости от варианта предъявления ученику названных трех компонентов задачи от него будет требоваться выполнение деятельности продуктивного или репродуктивного характера. Тем самым задается различный уровень усвоения:

 

Уровни усвоения

Компоненты задачи

Деятельность ученика

Цель Задачная ситуация Способ решения (действия)
1 Узнавание, понимание задана задана (типовая) внешне задан в виде правила (алгоритма) по аналогии с решенной задачей
2 Алгоритмический задана задана (типовая) явно не задан, воспроизводится по памяти, как ранее известный в виде алгоритма репродуктивно-алгоритмическая
3 Эвристический задана задана неявно, требуется уточнение (не типовая, но знакомая) не задан, требуется видоизменить известный или получить новый комбинацией из нескольких известных продуктивно-эвристическая
4 творческий задана в общей форме не задана, требуется найти подходящую ситуацию (проблемная) не задан, создается новый, ранее не известный продуктивно-творческая, исследовательская

 

В основу вычленения уровневой дифференциации задач может быть положен критерий субъективной новизны ситуации для решающего. Выделим три уровня сложности учебных задач, которые соответствуют 1, 3 и 4 уровням усвоения опыта, приведенным в таблице.

2 уровень. Задачи решаются учащимися на основе только что изученных знаний и способов деятельности, которые они воспроизводят по памяти. Это типовые задачи на непосредственное применение теорем, определений, правил, алгоритмов, формул и т. п. в различных конкретных ситуациях, не требующих преобразующего воспроизведения структуры усвоенных знаний. Готовность учащихся выполнять воспроизводящую деятельность этого уровня рассматривается как обязательный результат обучения, который вычленен в большинстве школьных учебников.

3 уровень. Задачи требуют от учащихся применения усвоенных знаний и способов деятельности в нетиповой, но знакомой им ситуации, которое сопровождается преобразующим воспроизведением. Учащийся, комбинируя известные приемы решения задач, уточняет, проясняет задачную ситуацию и выбирает соответствующий способ деятельности. К такого рода задачам относятся так называемые комбинированные задачи, требующие применения различных элементов знаний уже усвоенных на I уровне.

4 уровень. Задачи этого уровня требуют от учащегося преобразующей деятельности при избирательном применении усвоенных знаний и приемов решения в относительно новой для него ситуации, заключающейся в использовании действий 2 и 3 уровней, в конструировании новых для учащегося систем, позволяющих решить предложенную задачу. В процессе поиска решения задачи учащийся, используя интуицию, смекалку, сообразительность, сам выходит на неизвестный для себя способ решения, открывая новые знания. Деятельность учащегося постепенно освобождается от готовых образцов, сложившихся установок и приобретает гибкий поисковый характер.

Охарактеризованные три уровня умения решать математические задачи характерны для итогового контроля по теме (разделу), курсу. В процессе усвоения математических знаний необходимо выделить еще один уровень (в таблице он назван первым), который показывает сформированность их на уровне понимания, узнавания. Учащийся решает типовую задачу на основе образца иди подробной инструкции, пользуется учебником, справочником, записями в тетради. На этом уровне он демонстрирует своё понимание соответствия условия и цели задачи тому способу решения, который использует, но еще не его запоминание.

В процессе освоения умения решать задачу того или иного типа некоторые учащиеся долго не могут запомнить прием решения и даже на итоговом контроле показывают только умения 1 уровня. Учащиеся, которые путают способ решения и формулу, по которой решается задача не могут найти ее в учебнике и с ее помощью решать задачу, т.е. не освоили умение 1 уровня, без этого не смогут освоить 2 уровень - уровень решения типовой задачи по памяти. Поэтому недопустимо игнорировать контроль 1 уровня.

Ознакомление учащихся с уровнями усвоения материала позволяет им рассчитывать свои силы, в ходе изучения темы они могут самостоятельно и осознанно оценить свои знания и возможности.

 

3.2 Уровневое тестирование

Одним из наиболее эффективных и удобных методов уровневой диагностики математических знаний, умений и навыков по сравнению с традиционными видами контроля (зачеты, опросы, устные контрольные работы и др.) являются тесты.

Тест состоит из нескольких коротких задач (вопросов), на которые учащийся должен реагировать или составлением ответа (что часто представляет собой заполнение пробелов), или комбинированием предложенных ему готовых ответов (выбор правильного ответа, объединение подходящих элементов, суждение о правильности представленных ответов и т.д.), а чаще всего включает в себя образец правильного решения каждой задачи (эталон).

Чтобы правильно составить тест для контроля уровня усвоения математического содержания, нужно знать основные требования, предъявляемые к предметным тестам: 1) функциональная валидность - соответствие проверяемому уровню усвоения; 2) содержательная валидность - соответствие содержанию проверяемого материала; 3) простота - включение в тест задач одного уровня, проверяющих усвоение одного факта или одного действия, 4) определенность - обеспечение общепонятности формулировок задач для всех учащихся; 5) однозначность - создание эталона, соответствующего полному и правильному решению задач.

Приведем примеры уровневых тестов различных видов, которые соответствуют типологии В. П. Беспалько.

Тесты 1 уровня. Они нацелены на выявление: 1) умение выполнять действие " подведения под понятие" при внешне заданных правилах действования (" с подсказкой" ); 2) умения отличать правильное использование знания от неправильного. Тесты этого уровня должны требовать от ученика выполнение деятельности по узнаванию.

1. Тест опознания:

Является ли последовательность арифметической прогрессией: 1) 3; 6; 9; 12; ...; 2) 2; 4; 8, 16; ...; 3) 10; 7; 4; 1; ...; 4) 100; 10; 1; 0, 1; ...

Эталон: 1) - да; 2) - нет; 3) - да, 4) - нет.

2. Тест на различение:

Укажите арифметические прогрессии, разность которых равна 3: 1) 3; 6; 9; 12; ...; 2) 3, 0; –3; –6;...; 3) 1; 3; 9; 27;...; 4) –5; –2; 1; 4; ...

Эталон: 1) - да; 2) - нет; 3) - нет; 4) - да.

3. Тест на классификацию:

Укажите, какая из предложенных последовательностей является; а) арифметической прогрессией; б) геометрической прогрессией: 1) 3; 9; 27; …; 2) 1; 0, 1; 0, 01; …; 3) –40; –20; 0; …; 4) 23; 17, 2; 11, 4; …; 5) 8; 8; 8; …

Эталон: 1)- б); 2) - б); 3) -а); 4) -а); 5) -а) и -б).

4. Тест с пробелами:

Известны два члена арифметической прогрессии. Дополните неизвестный член прогрессии: 1) 4; 10; …; 2) 8; 5; …; 3) 3; …; 13; 4) 40; …; 10; 5) …; 5; 9; 6) …; 10; 6.

Эталон: 1) - 16; 2) - 2; 3) - 8; 4) - 25; 5) - 1; 6) -14.

5. Математический диктант:

Учащиеся на слух воспринимают формулировки определений, теорем, фактов, формул и т. п. и определяют верно или неверно приведена учителем формулировка, ответ фиксируют в тетради в виде символов: "  " - верно, " _" - неверно.

Верна или нет формулировка:

1) Две прямые называются параллельными, если они не пересекаются.

2) Два отрезка называются параллельными, если они не имеют общих точек.

3) Два луча называются параллельными, если они лежат на параллельных прямых.

4) Если при пересечении двух прямых третьей соответственные углы равны, то прямые параллельны.

5) Если при пересечении двух прямых третьей односторонние углы равны, то прямые параллельны.

Тесты 2 уровня. Они нацелены на выявление: 1) умения воспроизводить математическое содержание по памяти; 2) умения решать типовые задачи самостоятельно, воспроизводя по памяти способ решения.

1. Тест - подстановка:

Запишите формулы, которые надо использовать при решении следующих задач:

1) Найдите сумму десяти членов арифметической прогрессии, если a1 = 5, a10= 50.

2) Найдите сумму двадцати членов арифметической прогрессии: –23, –20.

3) В арифметической прогрессии a1 = 20; d = 5. Найдите двадцатый ее член.

4) В арифметической прогрессии a4 = 1, 7; a6 = 3, 2. Найдите a5.

5) Какой номер имеет член арифметической прогрессии, равный - 21, если первый член прогрессии равен 4, а равность рана 3.


 

2. Конструктивный тест:

1) Напишите формулу для нахождения двадцатого члена арифметической прогрессии.

Эталон: a20 = a1+19d.

2) Известны шестой и седьмой члены арифметической прогрессии. Напишите формулу, с помощью которой можно найти разность.

Эталон: d = a7 – a6.

3. Типовая задача.

Любая задача, взятая из обязательных результатов обучения.

Тесты 3 уровня. Нацелены на выявление: 1) умения воспроизводить и преобразовывать усвоенную информацию; 2) умения применять усвоенные способы решения типовых задач в нетипичной ситуации, но отчасти знакомой ученику.

1. Найдите сумму членов прогрессии от 10 по 20 включительно, если первый член прогрессии равен –10, а разность равна 3.

2. Найдите сумму первых десяти членов арифметической прогрессии: 2; 5; ...., стоящих на четных местах.

3. Найдите первый член арифметической прогрессии, если a10 = 4, a18 = 20.

Тесты 4 уровня. Они нацелены на выявление творческого уровня усвоения материала, сопровождающееся возможностью учащегося переносить усвоенные методы (приемы) решения задач в совершенно новую для него задачную ситуацию, находить новые способы решения задачи.

Задачи математических олимпиад часто соответствуют этому уровню сложности.

Во время текущего математического контроля можно предлагать учащимся задачи, выводящие учащегося на субъективно новую информацию. Такие задачи особенно уместны для коллективного обсуждения решения на уроке. Но на итоговом контроле такие задачи лучше не предлагать, а ограничиться задачами, в которых субъективная новизна проявляется не в новом для учащегося способе деятельности, а в новом, ранее не встречающемся сочетании приемов решения типовых задач.

1. Докажите, что для любых чисел а и b значения выражений

 

 

образуют арифметическую прогрессию.

2. Сумму n членов некоторой последовательности можно найти по формуле:

 

 

Будет ли эта последовательность арифметической прогрессией?

Решая первую задачу, ученик должен показать умение обобщить изученные свойства числовой арифметической прогрессии на алгебраические выражения, используемые в тексте. Решая вторую задачу, учащийся ставится в совершенно новую для него ситуацию, когда последовательность задана формулой суммы, и необходимо, прояснив ситуацию, определить, является ли последовательность арифметической прогрессией. Решая эту задачу, учащийся выводит новые соотношения, формулы, свойства.


Поделиться:



Последнее изменение этой страницы: 2020-02-16; Просмотров: 159; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.04 с.)
Главная | Случайная страница | Обратная связь