Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Система питания дизельных двигателей



Дизельное топливо представляет смесь керосиновых, газойлевых и соляровых фракций после отгона из нефти бензиновой фракции. К основным свойствам дизельного топлива относятся воспламеняемость, оцениваемая цетановым числом, вязкость, температура застывания, чистота и др. Дизельное топливо выпускается разных сортов: ДЛ — летнее, ДЗ — зимнее и ДА — арктическое, отличаются эти топлива друг от друга главным образом температурами застывания, температурой вспышки и вязкостью

Система питания дизельного двигателя состоит из топливного бака, фильтров грубой и тонкой очистки топлива, топливоподкачивающего насоса с ручным насосом, топливного насоса высокого давления с регулятором частоты вращения и автоматической муфтой опережения впрыска топлива, форсунок и трубопроводов низкого и высокого давления [7].

При работе двигателя топливо из топливного бака засасывается топливоподкачивающим насосом через фильтр грубой очистки топлива и нагнетается через фильтр тонкой очистки к насосу высокого давления. Из насоса высокого давления топливо по топливопроводам высокого давления подается к форсункам, через которые в мелкораспыленном виде оно впрыскивается в цилиндры в соответствии с порядком работы двигателя. Излишнее топливо от насоса высокого давления и форсунок возвращается в топливный бак. Воздух в цилиндры поступает после очистки его в воздушном фильтре.

Топливный насос высокого давления предназначен для впрыска в цилиндры двигателя порции топлива под высоким давлением в определенной последовательности. Он расположен в развале блока цилиндров и приводится в действие от распределительного вала через шестерни. Насос  состоит из корпуса, кулачкового вала, секций (по числу цилиндров) и механизма поворота плунжеров. На передней части топливного насоса высокого давления установлен всережимный регулятор, который, изменяя количество подаваемого топлива в зависимости от нагрузки, поддерживает заданную водителем частоту вращения коленчатого вала двигателя.

На заднем конце кулачкового вала насоса расположена муфта опережения впрыска топлива, которая предназначена для изменения момента начала подачи топлива в зависимости от частоты вращения коленчатого вала двигателя. Секция насоса высокого давления состоит из плунжерной пары, роликового толкателя и нагнетательного клапана. Плунжерная пара представляет собой гильзу с двумя отверстиями, расположенными на разных уровнях, и плунжер, в верхней части которого имеются два отверстия и винтовая канавка. Плунжер подогнан к гильзе с высокой точностью. При движении плунжера вниз под действием пружины топливо под небольшим давлением, создаваемым топливоподкачивающим насосом, поступает через продольный впускной канал в корпусе в надплунжерное пространство. При движении плунжера вверх под действием кулачка и толкателя топливо перепускается в топливоподводящий канал до тех пор, пока торцевая кромка плунжера не перекроет окно гильзы. Дальнейшее движение плунжера вверх вызовет повышение давления в надплунжерном пространстве. Когда давление достигнет величины, при которой открывается нагнетательный клапан, плунжер приподнимается и топливо по топливопроводу высокого давления поступает к форсунке. Движущийся плунжер, продолжая перемещаться, создает давление, преодолевающее натяжение пружины иглы форсунки. Игла поднимается, начинается впрыск топлива в цилиндр двигателя. Впрыск продолжается до момента, когда кромка винтовой канавки открывает отверстие в гильзе; давление топлива падает, разгрузочный поясок нагнетательного клапана, опускаясь в гнездо под действием пружины, увеличивает объем в топливопроводе между форсункой и клапаном, за счет чего достигается четкая отсечка подачи топлива. При перемещении рейки плунжер поворачивается, И кромка винтовой канавки открывает отверстие гильзы раньше или позже, вследствие чего изменяется время, в течение которого закрыты отверстия гильзы, а следовательно, и количество топлива, впрыскиваемого в цилиндр, для ввода в цилиндр двигателя дозы тонкораспыленного топлива под давлением. Форсунка закрытого типа  состоит из стального корпуса, гайки, распылителя, запорной иглы, штанги и фильтра. Поступившее топливо проходит через фильтр, вертикальный канал, кольцевую канавку и затем поступает в топливную полость корпуса распылителя. Когда давление в полости распылителя становится больше усилия пружины форсунки, запорная игла поднимается вверх и топливо через отверстия распылителя впрыскивается в камеру сгорания. С понижением давления в топливопроводе ниже усилия, создаваемого пружиной, игла распылителя под ее действием опускается и закрывает отверстие распылителя — подача топлива прекращается. Избыток топлива отводится по сливному трубопроводу в бак. Форсунка регулируется на давление впрыска 17, 5... 18, 5 МПа.

Все приборы системы питания дизельного двигателя соединены топливопроводами низкого и высокого давления. Топливопроводы низкого давления изготовлены из прозрачной маслобензостойкой пластмассы, а высокого давления — из толстостенных стальных трубок.

Для поддержания заданной частоты, вращения коленчатого вала служит регулятор, который относится к типу всережимных регуляторов прямого действия. Этот регулятор изменяет количество подаваемого в цилиндр топлива в зависимости от нагрузки, поддерживая заданную частоту вращения коленчатого вала. Регулятор устанавливается в развале между двумя рядами топливных секций и состоит из ведущей шестерни и муфты, на которой шарнирно закреплены грузы. Во время вращения грузы раздвигаются под действием центробежной силы и через упорный подшипник перемещают муфту. Муфта упирается в палец рычага, который связан одним концом с рейкой топливного насоса. При перемещении рейки одновременно перемещается один конец двуплечего рычага. Второй конец этого рычага, будучи соединен со второй рейкой, перемещает ее. Рычаг управления подачей топлива связан с системой рычагов, с которыми, в свою очередь, связана калиброванная пружина, воздействующая на рычаг, соединенный с рейкой. Натяжение пружины зависит от положения педали привода, которой устанавливается режим работы двигателя.

Автоматическая муфта опережения впрыска топлива служит для изменения момента начала впрыска топлива в зависимости от частоты вращения коленчатого вала, благодаря чему улучшаются пуск двигателя и его экономичность.

Состоит муфта опережения впрыска из двух полумуфт — ведущей и ведомой. Ведомая полумуфта закреплена на конце кулачкового вала насоса. Ведущая полумуфта посажена свободно на втулке ступицы ведомой полумуфты и приводится во вращение от распределительной шестерни через гибкие соединительные муфты. На осях ведомой полумуфты шарнирно насажены грузы, прижимаемые в исходное положение двумя пружинами. При увеличении частоты вращения коленчатого вала грузы под действием центробежных сил раздвигаются и при помощи профильных выступов поворачивают ведомую полумуфту, а с ней и кулачковый валик по ходу вращения, увеличивая угол опережения впрыска. При уменьшении частоты вращения пружины отводят кулачки к исходному положению, а ведомая полумуфта, поворачиваясь против хода вращения, уменьшает этот угол [8].

 

2.2 Система питания карбюраторных двигателей

Система питания карбюраторного двигателя служит для приготовления горючей смеси, состоящей из паров топлива и воздуха, подачи ее в цилиндры двигателя, а также удаления из цилиндров отработавших газов.

В систему питания карбюраторного двигателя входят приборы и устройства для хранения топлива и контроля его количества; фильтрации и подачи топлива; фильтрации и подачи воздуха, а также для глушения шума при впуске; приготовления горючей смеси и подачи ее в цилиндры двигателя; отвода газов из цилиндра и глушения шума при выпуске.

Топливо из бака, закрытого пробкой, подается насосом по трубопроводам к прибору приготовления горючей смеси — карбюратору, проходя очистку в фильтре-отстойнике и фильтре  тонкой очистки топлива. Количество топлива в баке контролируют по указателю, в электрическую цепь которого включен датчик. Воздух поступает в карбюратор через воздушный фильтр. Приготовленная в карбюраторе горючая смесь подается в цилиндры двигателя по впускному трубопроводу, в котором она подогревается. Отработавшие газы отводятся из цилиндров в атмосферу через выпускной трубопровод (коллектор), трубу и глушитель шума выпуска [9].


ОТРАБОТАВШИЕ ГАЗЫ

Отработавшие газы - смесь газов с примесью взвешенных частиц, образовавшихся в результате сгорания моторного топлива (проект федерального закона " Об обеспечении экологической безопасности автомобильного транспорта" ). В состав отработавших газов входят оксиды углерода, азота, серы, углеводороды, сажа и другие вещества. Количественный состав отработавших газов зависит от вида топлива.

 

Состав отработавших газов

В таблице 3.1. представлены состав выхлопных газов автомобилей с бензиновым и дизельными двигателями.

Таблица 3.1 - Состав автомобильных выхлопных газов  

Компоненты выхлопного газа

Содержание по объему, %

Примечание

Бензиновые двигатели Дизельные двигатели
Азот 74, 0…77, 0 76, 0…78, 0 нетоксичен  
Пары воды 3, 0…5, 5 0, 5…4, 0 нетоксичны  
Кислород  0, 3…8, 0 2, 0…18, 0 нетоксичен  
Диоксид углерода 5, 0…12, 0 1, 0…10, 0 нетоксичен  
Оксид углерода 0, 1…10, 0 0, 01…5, 0 токсичен  
Углеводороды неканцерогенные 0, 2…3, 0 0, 009… 0, 5 токсичны  
Альдегиды 0…0, 2 0, 001…0, 009 токсичны  
Сажа, г/м3 0…0, 04 0, 01…1, 1   токсична  
Оксид серы 0…0, 002 0…0, 03  токсичен
Бензопирен, мг/м3 0, 01…0, 02 до 0, 01 канцероген  

 

        

Как видно из таблицы 3.1. при работе дизельных двигателей выделяется меньше выхлопных газов.  При работе двигателя на этилированном бензине в составе выхлопных газов присутствует свинец, а у двигателей, работающих на дизельном топливе – сажа [10].

Оксид углерода (CO – угарный газ). Прозрачный, не имеющий запаха ядовитый газ, немного легче воздуха, плохо растворим в воде. Оксид углерода – продукт неполного сгорания топлива, на воздухе горит синим пламенем с образованием диоксида углерода (углекислого газа). В камере сгорания двигателя CO образуется при неудовлетворительном распыливании топлива, в результате холоднопламенных реакций, при сгорании топлива с недостатком кислорода, а также вследствие диссоциации диоксида углерода при высоких температурах. При последующем сгорании после воспламенения (после верхней мертвой точки, на такте расширения) возможно горение оксида углерода при наличии кислорода с образованием диоксида. При этом процесс выгорания CO продолжается и в выпускном трубопроводе.

Необходимо отметить, что при эксплуатации дизелей концентрация CO в выхлопных газах невелика (примерно 0, 1 … 0, 2%), поэтому, как правило, концентрацию CO определяют для бензиновых двигателей.

Оксиды азота (NO, NO2, N2O, N2O3, N2O5). Оксиды азота являются одними из наиболее токсичных компонентов отработавших газов. При нормальных атмосферных условиях азот представляет собой весьма инертный газ. При высоких давлениях и особенно температурах азот активно вступает в реакцию с кислородом. В выхлопных газах двигателей более 90% всего количества NOx составляет оксид азота NO, который еще в системы выпуска, а затем и в атмосфере легко окисляется в диоксид (NO2).Оксиды азота раздражающе воздействуют на слизистые оболочки глаз, носа, разрушают легкие человека, так как при движении по дыхательному тракту они взаимодействуют с влагой верхних дыхательных путей, образуя азотную и азотистую кислоты. Как правило, отравление организма человека NOx проявляется не сразу, а постепенно, причем каких либо нейтрализующих средств нет.Закись азота (N2O – гемиоксид, веселящий газ) – газ с приятным запахом, хорошо растворим в воде. Обладает наркотическим действием.NO2 (диоксид) – бледно-желтая жидкость, участвующая в образовании смога. Диоксид азота используется в качестве окислителя в ракетном топливе.Считается, что для организма человека оксиды азота примерно в 10 раз опаснее CO, а при учете вторичных превращений – в 40 раз.Оксиды азота представляют опасность для листьев растений. Установлено, что их непосредственное токсичное влияние на растения проявляется при концентрации NOx в воздухе в пределах 0, 5…6, 0 мг/м3. Азотная кислота вызывает сильную коррозию углеродистых сталей.На величину выброса оксидов азота оказывает значительное влияние температура в камере сгорания. Так, при повышении температуры от 2500 до 2700 К скорость реакции увеличивается в 2, 6 раза, а при уменьшении от 2500 до 2300 К – уменьшается в 8 раз, т.е. чем выше температура, тем выше концентрация NOx. Ранний впрыск топлива или высокие давления сжатия в камере сгорания также способствуют образованию NOx. Чем выше концентрация кислорода, тем выше концентрация оксидов азота [11].

Углеводороды (CnHm – этан, метан, этилен, бензол, пропан, ацетилен и др.) Углеводороды – органические соединения, молекулы которых построены только из атомов углерода и водорода, являются токсичными веществами. В выхлопных газах содержится более 200 различных CH, которые делятся на алифатические (с открытой или закрытой цепью) и содержащие бензольное или ароматическое кольцо. Ароматические углеводороды содержат в молекуле один или несколько циклов из 6 атомов углерода, соединенных между собой простыми или двойными связями (бензол, нафталин, антрацен и др.). Имеют приятный запах. Наличие CH в отработавших газах двигателей объясняется тем, что смесь в камере сгорания является неоднородной, поэтому у стенок, в переобогащенных зонах, происходит гашение пламени и обрыв цепных реакций.Не полностью сгоревшие CH, выбрасываемые с выхлопными газами и представляющие собой смесь нескольких сотен химических соединений, имеют неприятный запах. CH являются причиной многих хронических заболеваний.Токсичны также и пары бензина, которые являются углеводородами. Допустимая среднесуточная концентрация паров бензина составляет 1, 5 мг/м3. Содержание CH в выхлопных газах возрастает при дросселировании, при работе двигателя на режимах принудительного холостого хода. При работе двигателя на указанных режимах ухудшается процесс смесеобразования (перемешивания топливовоздушного заряда), уменьшается скорость сгорания, ухудшается воспламенение и, как результат, - возникают его частые пропуски.Выделение CH вызывается неполным сгоранием вблизи холодных стенок, если до конца сгорания остаются места с сильным локальным недостатком воздуха, недостаточным распыливанием топлива, при неудовлетворительном завихрении воздушного заряда и низких температурах (например, режим холостого хода).Углеводороды образуются в переобогащенных зонах, где ограничен доступ кислорода, а также вблизи сравнительно холодных стенок камеры сгорания. Они играют активную роль в образовании биологически активных веществ, вызывающих раздражение глаз, горла, носа и их заболевание, и наносящих ущерб растительному и животному миру.Углеводородные соединения оказывают наркотическое действие на центральную нервную систему, могут являться причиной хронических заболеваний, а некоторые ароматические CH обладают отравляющими свойствами.Углеводороды (олефины) и оксиды азота при определенных метеорологических условиях активно способствуют образованию смога.

Смог. Смог (Smog, от smoke – дым и fog - туман) – ядовитый туман, образуемый в нижнем слое атмосферы, загрязненном вредными веществами от промышленных предприятий, выхлопными газами от автотранспорта и теплопроизводящих установок при неблагоприятных погодных условиях.Он представляет собой аэрозоль, состоящую из дыма, тумана, пыли, частичек сажи, капелек жидкости (во влажной атмосфере). Возникает в атмосфере промышленных городов при определенных метеорологических условиях.Поступающие в атмосферу вредные газы вступают в реакцию между собой и образуют новые, в том числе и токсичные соединения. В атмосфере при этом происходят реакции фотосинтеза, окисления, восстановления, полимеризации, конденсации, катализа и т.д.В результате сложных фотохимических процессов, стимулируемых ультрафиолетовой радиацией Солнца, из оксидов азота, углеводородов, альдегидов и других веществ образуются фотооксиданты (окислители).Низкие концентрации NO2 могут создать большое количество атомарного кислорода, который в свою очередь образует озон и вновь реагирует с веществами, загрязняющими атмосферный воздух. Наличие в атмосфере формальдегида, высших альдегидов и других углеводородных соединений также способствует вместе с озоном образованию новых перекисных соединений.Продукты диссоциации взаимодействуют с олефинами, образуя токсичные нитроперекисные соединения. При их концентрации более 0, 2 мг/м3 наступает конденсация водяных паров в виде мельчайших капелек тумана с токсичными свойствами. Их количество зависит от сезона года, времени суток и других факторов. В жаркую сухую погоду смог наблюдается в виде желтой пелены (цвет придает присутствующий в воздухе диоксид азота NO2 – капельки желтой жидкости).

 Смог вызывает раздражение слизистых оболочек, особенно глаз, может вызвать головную боль, отеки, кровоизлияния, осложнения заболеваний дыхательных путей. Ухудшает видимость на дорогах, увеличивая тем самым количество дорожно-транспортных происшествий. Опасность смога для жизни человека велика. Так, например, лондонский смог 1952 г. называют катастрофой, так как за 4 дня от смога погибло около 4 тыс. человек. Наличие в атмосфере хлористых, азотных, сернистых соединений и капелек воды способствует образованию сильных токсичных соединений и паров кислот, что губительно сказывается на растениях, а также сооружениях, особенно на исторических памятниках, сложенных из известняка. Кроме того при использовании сернистых бензинов в отходящие газы могут входить оксиды серы, при применении этилированных бензинов — свинец (Тетраэтилсвинец), бром, хлор, их соединения. Считается, что аэрозоли галоидных соединений свинца могут подвергаться каталитическим и фотохимическим превращениям, участвуя в образовании смога [12].


Поделиться:



Последнее изменение этой страницы: 2020-02-16; Просмотров: 119; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь